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Background
The increasing population and unpredictability evoked by global climate change have 
brought new demands to increase the productivity and quality of our crops [1]. Food 
production must increase 70% by 2050 to feed the increase in the world’s population [2]. 
The past few decades have witnessed a rapid evolution of sequencing and marker tech-
nologies alongside the widespread adoption of genome-based breeding approaches [3]. 
These technological revolutions have promoted innovations in crop breeding from con-
ventional phenotype-based selection to genomics-assisted breeding and genetic engi-
neering [4, 5].

While they harbor great potential, the development of breeding technologies and 
the explosive growth of biological information have also highlighted the insufficiencies 

Abstract 

Background:  Maize (Zea mays L.) is at the vanguard facing the upcoming breeding 
challenges. However, both a super pan-genome for the Zea genus and a comprehen-
sive genetic variation map for maize breeding are still lacking.

Results:  Here, we construct an approximately 6.71-Gb pan-Zea genome that contains 
around 4.57-Gb non-B73 reference sequences from fragmented de novo assemblies of 
721 pan-Zea individuals. We annotate a total of 58,944 pan-Zea genes and find around 
44.34% of them are dispensable in the pan-Zea population. Moreover, 255,821 com-
mon structural variations are identified and genotyped in a maize association mapping 
panel. Further analyses reveal gene presence/absence variants and their potential roles 
during domestication of maize. Combining genetic analyses with multi-omics data, we 
demonstrate how structural variants are associated with complex agronomic traits.

Conclusions:  Our results highlight the underexplored role of the pan-Zea genome 
and structural variations to further understand domestication of maize and explore 
their potential utilization in crop improvement.

Keywords:  Pan-Zea genome, Gene presence/absence variation (gPAV), Structural 
variation (SV), Narrow-sense heritability, GWAS

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Gui et al. Genome Biology          (2022) 23:178  
https://doi.org/10.1186/s13059-022-02742-7

Genome Biology

*Correspondence:   
yjianbing@mail.hzau.edu.cn

1 National Key Laboratory 
of Crop Genetic Improvement, 
Huazhong Agricultural University, 
Wuhan 430070, China
2 Hubei Hongshan Laboratory, 
Wuhan 430070, China
3 Department of Molecular 
Physiology, Max-Planck-
Institute of Molecular Plant 
Physiology, Am Mühlenberg 1, 
14476 Potsdam, Golm, Germany

http://orcid.org/0000-0001-8650-7811
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02742-7&domain=pdf


Page 2 of 22Gui et al. Genome Biology          (2022) 23:178 

in conventional genomics-assisted breeding strategies. The first of these insufficien-
cies is the use of a single reference genome. More and more evidences have shown 
that mapping reads onto a single reference genome can result in reference bias and 
missing information in highly polymorphic regions and regions that are not present 
in the genome [6–8]. Thus, a more comprehensive way is to replace the single refer-
ence genome with a pan-genome, which represents the complete genetic repertoire of 
a species. With reduced sequencing costs in recent years, the desirability to construct 
pan-genomes has spread from Streptococcus agalactiae [9] to eukaryotic species [10–
12], including many major crops, such as rice, bread wheat, soybean, and tomato [13–
16]. Secondly, the conventional genomics-assisted breeding strategies majorly rely on 
single nucleotide polymorphisms (SNPs) and short insertions/deletions (InDels, here-
after representing insertions/deletions < 50 bp) because they could be easily acquired 
from low-depth resequencing of cultivated lines. However, SNPs/InDels do not rep-
resent the complete genetic repertoire of a species [17, 18]. Other genetic variations, 
such as structural variations (SVs), also play important roles in plant genetics [19, 20], 
and their potential should be harnessed for crop breeding and improvement. Besides, 
applying multi-omic (e.g., transcriptomic, proteomic, metabolomic, and epigenetic) 
bio-data to reveal genetic mechanisms is becoming more practical [21]. It is highly 
conceivable that systematic integration of multi-omics data could accelerate crop 
breeding and improvement [22, 23]. Given these considerations, it follows that to aid 
in increasing the productivity and quality of crops from the perspectives of genomics 
and genetics, we should (i) construct a genus-level crop pan-genome, or “super-pan-
genome” [24], that includes both cultivated and wild accessions within a genus; (ii) 
include more genetic variations (e.g., SVs) in addition to SNPs/InDels into genom-
ics-assisted crop breeding, and (iii) systematically integrate multi-omics evidence to 
accelerate crop breeding.

Maize is a staple crop and a model organism for genetic research [25]. Since the first 
release of the maize B73 reference genome in 2009 [26], more than 40 maize genomes 
have been released to date. Moreover, multi-omics maize data, including DNA rese-
quencing [27–31], transcriptomic [32, 33], metabolomic [34, 35], proteomic [36, 
37], and epigenomic [38] data, have accumulated at the population scale. Recently, 
pan-maize gene sets have been constructed from the genome assemblies of the 26 
founder lines of the Nested Association Mapping (NAM) population [39] and the 
population-level transcripts of hundreds of diverse lines [40, 41]. The potential effects 
of SVs on maize phenotypes have also been investigated [17, 20]. However, a pan-
genome of the genus Zea (pan-Zea genome), including maize and wild taxa, and its 
graphical representation is still lacking. Here, we (i) constructed a pan-Zea genome 
from 11 public genome assemblies and de novo draft assemblies of 721 accessions, 
including 507 modern maize, 31 landraces, and 183 teosintes; (ii) revealed the pat-
terns of genes and presence/absence variations in the genus Zea; and (iii) identified 
SVs among the maize population and systematically analyzed the potential role of the 
pan-Zea genome and SVs in maize phenotype variations. These resources and analy-
ses will allow us to more comprehensively understand the genetic bases of complex 
agronomic traits in maize and provide valuable information for future improvements 
in maize.
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Results
Pan‑Zea genome construction and characterization

The pan-Zea genome was constructed from the alignments against the maize B73 refer-
ence genome V4 (AGPv4) of the de novo draft assemblies from 721 individuals, includ-
ing 507 diverse maize inbred lines [42], 31 landrace individuals [43], and 183 teosinte 
individuals [44]. An additional 11 chromosome-level assemblies of the Zea genus from 
previous studies were also included (Additional file  1: Fig. S1–S3, Additional file  2: 
Table  S1, Additional file  3: Table  S2, Additional file  11: Supplementary Text S1). The 
resulting pan-Zea genome, with a total length of about 6.71 Gb, comprised ~2.14 Gb 
of the B73 AGPv4 reference genome (31.83%) and ~4.57 Gb of the non-B73 reference 
sequences (NRSs, 68.17%). More than half of the NRSs (58.86%) were anchored to the 
B73 AGPv4 reference genome (Additional file 11: Supplementary Text S1 and Additional 
file 12: Supplementary Materials and Methods) (Fig. 1A). Of the anchored NRSs, 68.50% 
were only found in the 721 re-sequence assemblies, and not in the B73 reference genome 

Fig. 1  Pan-Zea genome, gene, orthologous group PAV, and variant graph genome representation. A The 
genomic landscape of the pan-Zea genome. The pan-Zea genome (PANZ) comprised the AGPv4 reference 
genomes (RefChr_1–10) and non-reference sequences (NRINS_1–10 and NRINS_Unanchored_1–4). The 
reference sequence did not belong to the 10 chromosomes and the related anchored non-reference 
sequences were not plotted. See the legend in the circle diagram for details. B Proportions of different 
assembly types in the anchored non-reference sequences. “Chromosome-level assembly only”, non-reference 
sequences that were only found in the 11 chromosome-level genome assemblies; “Re-sequence assembly 
only”, non-reference sequences that were only found in the 721 WGS de novo assemblies. C Proportion of 
anchored non-reference sequences with different sub-group origins. TEO, LAND, and MZ represent teosinte, 
landrace, and modern maize origins, respectively. D Comparison of non-reference sequences from this study 
to those generated from the founders of maize nested association mapping population (NAM founder). E 
Sankey plot of the proportions of the core and dispensable genes in pan-Zea (PANZ), the teosinte sub-group 
(TEO), and the maize sub-group. F Distribution of the number of pan (black) and core (blue) genes along 
with different numbers of sequenced individuals. See also Additional file 1: Fig. S8D–E. G Schematic of the 
variant graph genome representation for AGPv4 Chr2:171064-171220, with the SNP paths, short InDels, and a 
large deletion. H The identity and mapping rate distribution of the simulated short reads from the genomes 
of the 26 NAM founders against the variant graph. Dark blue individuals are presented on the variant graph, 
whereas light blue individuals are not
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(Fig. 1B). Interestingly, more than one-third of the anchored NRSs were not present in 
the modern maize sequence pool, including 34.14% of the teosinte-specific sequences, 
0.17% of the landrace-specific sequences, and 2.90% of the sequences shared by teosinte 
and the landraces (Fig. 1C). Alignments between our pan-Zea NRSs and the NRSs gen-
erated from the 26 NAM founders (NAM-NRSs, Additional file 11: Supplementary Text 
S1 and [39]) showed that the pan-Zea NRSs included almost all (98.76%) of the NAM-
NRSs, as well as many (69.52%) additional NRSs that were not identified in the NAM-
NRSs (Fig. 1D). This result indicates that our pan-Zea NRSs considerably enlarged our 
genetic catalog of the maize gene pool.

The gene models and functional annotations for the pan-Zea genome were next gen-
erated by merging the AGPv4 reference gene annotations with the non-reference genes 
that were annotated based on a combination of transcript evidence, homologous protein 
evidence, and ab initio gene predictions (Additional file 1: Fig. S4 and Additional file 12: 
Supplementary Materials and Methods), resulting in 58,944 genes (39,591 AGPv4 genes 
and 19,353 non-reference genes, see Additional file 4: Table S3) and 21,167 orthologous 
groups (Additional file 12: Supplementary Materials and Methods). About 85.82% of the 
genes were assigned to at least one functional annotation (Additional file 1: Fig. S5).

The gene presence/absence (gPAV) patterns for each maize inbred and teosinte indi-
vidual (landrace individuals were excluded from the downstream analysis to avoid bias, 
leaving 691 genotypes for subsequent analysis, see Additional file  12: Supplementary 
Materials and Methods) were estimated using a read-mapping-based method that main-
tained robustness among different read depths (Additional file 1: Fig. S6A). The resulting 
gPAV patterns followed previous reports (Additional file  1: Fig. S6B–D), with an esti-
mated genotyping accuracy of ~99.71% and ~95.84% for true presence and true absence, 
respectively (Additional file 1: Fig. S6E). Principal component analysis and linkage dis-
equilibrium (LD) rank analyses of the gPAVs revealed that the gPAVs were related to the 
population structure and were well represented by SNPs with ~97.37% gPAVs displaying 
high LD with nearby SNPs (Additional file 1: Fig. S7 and Additional file 12: Supplemen-
tary Materials and Methods). Next, to investigate the PAVs of genes and the orthologous 
groups from a population perspective, we identified the “core” (with population-level 
loss rate not significantly greater than 1%) and “dispensable” (with population-level loss 
rate significantly greater than 1%) genes and orthologous groups based on the gPAV 
and the derived orthologous group PAV (oPAV) matrices (Additional file  1: Fig. S8A, 
Additional file 12: Supplementary Materials and Methods). The results of these analy-
ses revealed that ~44.34% of the pan-Zea genes were dispensable, while only ~7.42% 
of the pan-Zea orthologous groups were dispensable (Fig. 1E and Additional file 1: Fig. 
S8B). An average of 6020 genes displayed PAV patterns between two individuals, with 
larger differences for two inter-subspecies individuals (~6779 between one teosinte and 
one maize) than inner-subspecies (~5520 between two maize and ~5635 between two 
teosintes) (Additional file 1: Fig. S8C). Given our knowledge of the core and dispensa-
ble gene/orthologous groups, we estimated the gene/orthologue-group set size for the 
pan-Zea genome and the core genome. The in silico simulation showed that the pan-Zea 
genome (Fig. 1F), as well as the subspecies pan-genomes (pan-maize genome and pan-
teosinte genome, Additional file  1: Fig. S8D–E), displayed characteristics of a “closed 
pan-genome” [45] with plateaus in the size curves, suggesting that we identified almost 
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all of the genes in maize and teosinte. The results show that 27 individuals represented 
an average of 95% of the pan-Zea gene-set (range ~91.9 to ~97.3%), while 99 individuals 
covered 99% of the pan-Zea genes (Fig. 1F).

In addition to the linear representation of the pan-Zea genome, we also constructed 
a graph-based genome (Fig. 1G), including the SNPs, short InDels (<50 bp in length), 
and SVs (>50 bp in length) (see sections below and Additional file 12: Supplementary 
Materials and Methods for details of the SVs). Furthermore, we estimated a represen-
tation of the variant graph genome using reads simulated from the 26 NAM founder 
genome assemblies. The results showed that reads simulated from the “not-in-graph” 
NAM founders (23/26) had compatible mapping rates (99.40% on average) and align-
ment identities (91.00% on average) with those of the “within-graph” NAM founders 
(3/26, including B73, with 99.44% and 91.14% for the average mapping rate and align-
ment identity, respectively) (Fig. 1H), indicating that the variant graph represented the 
vast majority of the maize genetic repertoire.

The presence/absence patterns of pan‑Zea genes and the orthologous groups

An interesting question is which genes are more likely to show gPAVs in the genus Zea. 
To address this question, we investigated the associations between the gPAVs and genic 
features, including the sub-genome origin, gene age, gene length, orthologue group size, 
expression levels, and selective constraints (Additional file  12: Supplementary Materi-
als and Methods and Additional file 5: Table S4). The results of these analyses revealed 
that the gPAV was significantly associated with the genic features under investigation 
(Fig. 2A). Specifically, they showed that the absence of pan-Zea genes was more preva-
lent among genes that were newly derived, within large orthologous groups, and with 
genes that were either minimally or tissue specifically expressed. The dispensable genes 
were more likely to be evolving under relaxed selective constraint than the core genes. 
These findings are consistent with previous findings that older genes are more essential 
[46] and associated with higher expression levels and stronger purifying selection [47].

The 691 pan-Zea individuals were divided into three maize sub-populations and eight 
teosinte sub-populations (Fig. 2B and C, [42, 44]). To investigate whether these sub-pop-
ulations lost genes and orthologous groups evenly, we clustered the dispensable genes 
into 16 clusters (CLS1–16 in Fig. 2B and Additional file 5: Table S4) and the ortholo-
gous groups into 13 clusters (oCLS1–13 in Fig. 2C). The distributions of the gPAVs and 
oPAVs were associated with the topology of the species tree. The distal-to-maize teo-
sinte subspecies (Zea nicaraguensis, Zea luxurians, Zea diploperennis, Zea perennis, and 
Zea mays ssp. huehuetenangensis) had more subspecies-enriched genes and ortholo-
gous groups than close relatives of maize (Zea mays ssp. mexicana and Zea mays ssp. 
parviglumis).

Enrichment analysis suggested that the gPAV and oPAV clusters may reflect dis-
tinct molecular functions among the sub-populations (Fig.  2D–E, Additional file  6: 
Table  S5, Additional file  7: Table  S6 and Additional file  1: Fig. S9). Specifically, the 
teosinte concentrated genes (CLS5, 8, 9, 10, 11, and 12 in Fig.  2A) had enrichment 
signals, including plant-pathogen interactions, bacterial toxins, biosynthesis of fla-
vonoids, di-/tri- or sesqui-terpenoids, cutin, suberin and wax, and the mitogen-
activated protein kinase signaling pathway (Fig. 2D). These enriched pathways are all 
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Fig. 2  The features of the gene and orthologous group PAVs. A Distributions of the core and dispensable 
genes along with features, including gene age, gene length, number of genes per orthologous group, 
maximum expression, number of expressed tissues, pan-Zea Tajima’s D value, and dN/dS between the 
teosinte and maize populations. The gray histograms in C–H are the distributions of counts for each feature 
item. B, C Distributions of the PAV matrices for the dispensable genes (B) and the orthologous groups (C) 
according to the clusters and populations. X- and Y-axes represent the individuals and genes (or orthologous 
groups), with the top-most and right-most bars indicating the cluster information and sub-population 
groups, respectively. D The lollipop plots of the GO enrichment analyses (GOEA) and KO enrichment analyses 
(KOEA) of each gene cluster, with the X- and Y-axes indicating the fold enrichment and each enriched item, 
respectively. The point size indicates the P-value (only records with corrected Q values < 0.05 were plotted). 
E The heatmap plot indicates the KEGG pathways enriched in maize and concentrated in the orthologous 
group clusters (oCLS10–13) when compared to the pan-Zea scatted clusters (oCLS1–5). The color gradient 
indicates the number of KOs related to the current pathway. F Sankey plot of the proportions of unbalanced 
sub-group genes. G, H The distributions of random (G) and unbalanced (H) genes along the domestication 
(DOM) and adaptation (ADAPT) selective sweep regions. Background, regions that were not in the top 5% of 
the selective sweep signals. I Features of maize-specific and teosinte-specific genes. Shared legends with A, F, 
and G. The Z-scores and P-values were calculated from 10,000 permutations of the Wilcoxon-Mann-Whitney 
test. TEO, teosinte; TST, tropical/subtropical maize; TEM, temperate maize; RANDOM, balanced across groups; 
NA, not available due to core or lost in the entire group; the enriched genes were further divided into two 
categories: “Fixed”, present in all individuals of the current group, and “Specific”, present specifically in the 
current group (absent in all individuals of the other groups)
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related to abiotic and biotic stress responses [48]. These findings corroborate the pre-
vious finding that reduced genetic diversity during crop domestication leads to the 
loss of several loci related to the stress response [49], suggesting the potential role of 
gene loss in the stress-susceptible changes in crops. Comparatively, maize-enriched 
genes (CLS6, 13, 15, and 16 in Fig. 2A) and orthologous groups (oCLS10-13 in Fig. 2B) 
were more likely to be related to germination, nutrition, and flavor-related pathways 
[50, 51]. For example, the maize concentrated orthologous group oCLS7 was enriched 
in amino acid and protein-related pathways when compared to the teosinte concen-
trated orthologous group oCLS6 (Additional file  1: Fig. S10), and the orthologous 
groups that are rarely present in teosintes (oCLS10–13) were enriched in metabolite 
pathways related to folate, fatty acids, ascorbate, carotenoids, biotin, and various car-
bohydrates (Fig. 2E).

To further address the contents of teosinte-specific genes and maize-specific genes, 
we investigated the sub-population gPAV distribution differences in teosinte versus 
maize (TEO-Maize) and tropical maize versus temperate maize (TST-TEM) in more 
detail. As results, 51.09% (3452/6756) of the maize-enriched genes were absent in 
all teosinte individuals (hereafter referred to as maize-specific genes), while 17.83% 
(2189/12,278) of the teosinte-enriched genes were lost in maize (teosinte-specific 
genes) (Fig.  2F). We detected 3543 TST-TEM unbalanced (enriched or diminished) 
genes, with only 1.93% of the sub-group-specific items. A total of 4042 genes were 
found with no specific distribution preference in any sub-group (random genes, 
Fig. 2F). Further analysis revealed that the random genes were significantly under-rep-
resented in the domestication and adaptation selective sweep regions (Fig. 2G), sug-
gesting that sub-group unbalanced genes were selected during maize domestication 
and adaptation. Thus, we compared the proportion of different sub-group-enriched 
genes between selected and background regions (Fig. 2H). This analysis revealed that 
although the distribution of sub-group-enriched genes was not significantly different 
between TEM and TST maize, the teosinte-enriched genes were more likely to appear 
in domestication regions (Fig. 2H), suggesting that some teosinte genes were selected 
to be lost during domestication.

Another notable question is the pattern of gain-or-loss of teosinte/maize-specific 
genes, considering that a gene can become group-specific either through (i) loss of all 
members of the other group or (ii) gained from exogenous sources that were not avail-
able to the other group. While the gPAVs showed a predominance of teosinte-enriched 
genes, the oPAV clusters showed the opposite trend in that more orthologous groups 
were enriched in maize than in teosinte (Additional file  1: Fig. S11A and B), and the 
maize-enriched orthologous groups, particularly the maize-specific groups, tended to be 
smaller (Fig. 2I and Additional file 1: Fig. S11C). The comparisons of group-specific gene 
features indicated that the teosinte-specific genes showed a typical “easy-to-lose” pattern 
within larger families of shorter and newer. However, the maize-specific genes showed 
an opposite pattern of smaller family size and longer and considerably older genes 
(Fig. 2I). These analyses suggest that the teosinte-specific genes most likely resulted from 
gene loss, while at least a subset of the maize-specific genes were derived from resources 
outside of the Zea genus, perhaps through horizontal gene transfer from bacteria [52], 
fungi [53], or pests [54] or from lateral gene transfer with other grasses [55].
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Complementing the maize genetic variation map with structural variations

SVs have received significant attention and are responsible for various complex traits 
in many species [13, 18, 56]. Previous research has constructed a high-density haplo-
type map of the genus Zea using the same populations by mapping with the B73 refer-
ence genome [44]. To complement the genetic variation map and estimate the impact 
of SVs on the maize phenotypic variations, we constructed a comprehensive SV map by 
integrating evidences from variant graphs, comparative genomics, and short-read align-
ments. We filtered the SVs with a set of strict conditions, and only the common (MAF 
> 0.05) SVs within the maize population were retained (Additional file 1: Fig. S12 and 
Additional file 12: Supplementary Materials and Methods). We detected 274,649 com-
mon SVs, including 181,874 deletions (DELs), 19,628 insertions (INSs), 26,894 transloca-
tions (TRAs), 7020 duplications (DUPs), and 1577 inversions (INVs), as well as 18,828 
common gPAVs from the aforementioned gPAV matrix. A total of 11,208,912 SNPs and 
2,015,663 InDels (1,045,218 short-insertions and 970,445 short-deletions) that were 
common in the maize population were extracted from the Zea haplotype map and were 
combined with the common SVs identified in the current study to form a maize com-
mon genetic variation map for downstream analyses (Fig. 3A and B and Additional file 1: 
Fig. S13A-B). Considering the repeat-rich nature of maize, we also assigned the SVs to 
their closest transposable elements (TEs) according to physical overlap and sequence 
similarity (Additional file  12: Supplementary Materials and Methods) and found that 
~60.03% of the SVs were TE-related (Additional file 1: Fig. S13B), indicating the TE ori-
gin of a sizeable proportion of SVs in maize. The size of most of the genotyped common 
SVs was smaller than 5 Kb (Additional file 1: Fig. S13C), which may have been caused by 
the limitation in WGS short reads [56]. The SNPs, InDels, and SVs showed similar MAF 
distribution patterns that skewed toward rare variants (Additional file 1: Fig. S13D). The 
estimate of the representativeness of each SV by nearby SNPs revealed that 37.36% of 

Fig. 3  Features of the maize genetic variation map. A Pie plots of the proportions of SNP, InDel, and SV. B Pie 
plots of the proportions of InDel and SV sub-types. C Distribution of the number of SV r2 ranks (0–300) that 
are above the SNP-based median r2 value (referred to as SNP LD rank value) for common SVs. D Distribution 
of heritability within different omics trait classes. The white diamond within each box indicates the mean 
value, and hereinafter. E Distribution of heritability of the different variant types among the different omics 
trait classes. F Trend lines of heritability among the different genetic variant features. Light purple lines 
indicate the feature item’s mean heritability of all traits for each randomization. Blue lines indicate each 
feature item’s mean heritability for all 100 randomizations. Red lines indicate the mean heritability of all of the 
feature items. See also Additional file 1: Fig. S13
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the SVs showed low LD levels with nearby SNPs (Fig. 3C and Additional file 12: Sup-
plementary Materials and Methods), suggesting that these SVs could harbor information 
that cannot be represented by nearby SNPs.

With the representative genetic variation map that covered the typical genetic varia-
tion types, we conducted comprehensive investigations on the differences in the parti-
tioning of narrow-sense heritability (h2) among the different genetic variation types. To 
address this, we estimated the phenotypic variance explained by the genetic variations 
from a collection of complex agronomic phenotypes and multi-omics molecular trait 
data, including gene expression, metabolites, protein contents, and DNA methylation 
(Additional file 8: Table S7 and Additional file 12: Supplementary Materials and Meth-
ods). This analysis revealed that each class of the multi-omics traits displayed high herit-
ability (average values of 0.72, 0.66, 0.67, 0.70, and 0.85 for agronomic traits, expression, 
metabolites, DNA methylation, and proteins respectively; see also Fig.  3D), indicating 
their capability to characterize the heritability patterns among the genetic features. The 
h2 values of the SVs were higher than those of the SNPs and InDels in the multi-omics 
molecular traits (Fig. 3E) even though there were significantly more SNPs (43.8 times) 
and InDels (7.9 times) than SVs. To estimate the h2 differences in an unbiased manner, 
we binned, or partitioned and randomized, the genetic variations to keep each of the 
compared features, including MAF, the SNP LD rank, variant types/sub-types, genomic 
locations, and impacts on the genes, in the same volume (see Additional file 12: Supple-
mentary Materials and Methods). As a result, the SVs showed a more clearly decreasing 
h2 pattern with the increase in the MAF than SNPs/InDels. The h2 values of the SVs 
were negatively correlated with the SNP LD rank values, in contrast to those of InDels 
(Additional file 1: Fig. S13E). When came into the same volume, SVs (with an average 
h2 of 0.71, range 0.70–0.72 for each randomization) explained an average of 14.19% and 
1.48% more phenotypic variance than the SNPs (with average h2 of 0.63, range 0.60–0.65 
for each randomization) and InDels (with an average h2 of 0.70, range 0.68–0.72 for each 
randomization), respectively (Fig. 3F). Higher h2 values were found in the intergenic var-
iants, genic variants with a high impact on genes, gPAV, and TRA type of SVs, as well as 
the LTR and helitron-related SVs (Fig. 3F and Additional file 1: Fig. S13F). These findings 
suggest that SVs are more likely to lead to functional changes than other variants.

The impact of the pan‑Zea genome and structural variations on maize phenotypic 

variations

The comprehensive genetic variation map and the multi-level phenotypes provided 
opportunities to further investigate the potential effects of different genetic and genomic 
features on the phenotypes. To this end, we performed genome-wide association analy-
ses for the complex traits (agronomic traits, metabolites, and protein contents) and local 
association analyses for the molecular traits (gene expression and DNA methylation) 
(see Additional file  12: Supplementary Materials and Methods for details). A total of 
21,255 non-redundant QTLs with a median QTL interval of ~152.77 Kb were identified 
for 21,206 different traits (Fig. 4A, Additional file 1: Fig. S14 and Fig. S15). About 32.78% 
of the identified QTLs were SV-QTL (Fig. 4B). Among them, 459 QTLs were SV-specific 
(could only be identified by SVs, Fig. 4C and Additional file 9: Table S8). The proportion 



Page 10 of 22Gui et al. Genome Biology          (2022) 23:178 

of SV-QTLs was much higher than the proportion of SVs in all of the variants, indicating 
that SVs are more likely to lead to functional changes.

About 47.54% (8950) of the tested gPAVs had associated signals (Fig.  4D and Addi-
tional file 12: Supplementary Materials and Methods), suggesting the functional impor-
tance of these gPAVs. An excellent example is shown in Fig. 4E–H in which a premature 
pectin methylesterase (PME) gene (Zm00001d048936) at the maize gametophyte factor1 
(Ga1) locus was reported to be causative of unilateral cross-incompatibility [163]. In 
our results, the major QTL contained at the Ga1 locus was also detected to underlay 
the unilateral-crossing seed set ratio (a representation of the unilateral cross-incompat-
ibility-related trait, see also Additional file 12: Supplementary Materials and Methods). 
Additionally, the presence of a non-reference gene (PZ00001a032490) was significantly 
related to a high ratio of seed setting (P = 1.91E−43, R2 = 0.51, Fig.  4E and F). The 
non-reference gene PZ00001a032490 was anchored to the position where the premature 

Fig. 4  Characteristics of the phenotype associated QTLs, genes, and causal variants. A Distribution of the 
associated QTLs, genes, and causal variations (example with chromosome 1, see Additional file 1: Fig. S14 
for the whole genome). The heatmap represents the QTL density within each 1-Mb window, while the 
histograms indicate the density of the candidate causal variants that were normalized with the number of 
all variants within the 1-Mb window. B Proportions of QTL types (QTLs lead with different variant types). C 
Proportions of INDEL/SV-specific QTLs (QTLs that cannot be detected by SNPs). D Proportions of associated 
gPAVs for the reference genome genes (Ref-Genes) and non-reference genome genes (NonRef Genes). 
E Manhattan plot of the association result of the Ga1 locus related to the ratio of seed sets, with gPAVs 
highlighted in red. F The proportion of different levels of seed set ratio related to the absence/presence of 
PZ00001a032490; the larger the number, the higher the seed set ratio. G The genome alignment indicates 
the anchoring of the NRS (PanRep_01830195) on the AGPv4 genome, and the schematic plot illustrates 
the differences between the three PME genes (PZ00001a032490, SDGa25, and Zm00001d048936). Solid 
rectangles indicate the gene coding sequence, while the dashed rectangles indicate the missing coding 
part related to SDGa25. Gray ribbons indicate the matched blocks. Pink ribbons indicate the matched CDS 
blocks. H Distribution of the PAV patterns (track 2) of the six PME genes and the ratio of seed sets (track 3) 
according to the structure tree of pan-Zea individuals (track 1). I Distribution of the number of presented PME 
genes (# PMEs) related to the levels of the seed set ratio. The gray histogram is the distribution of total sample 
numbers (count) according to the X-axis, while the colored histogram indicates the proportions. The P-value 
was calculated from 10,000 permutations of the Wilcoxon-Mann-Whitney test
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PME gene Zm00001d048936 was located in AGPv4. Further alignment showed that 
PZ00001a032490 was highly similar to the intact PME gene in SDGa25 reported by 
Zhang et  al. [163] and the Zm00001d048936 flanking sequence, with a 96-bp DEL 
and a premature nonsense point mutation (Fig.  4G). Although both were premature, 
the gene body of PZ00001a032490 had an additional 126 bp coding sequence that was 
absent in Zm00001d048936 (Additional file 1: Fig. S16), which contributed to the PAV 
polymorphism that failed to be detected in Zm00001d048936 (Fig.  4H). These results 
indicate that although most of the gPAVs were represented by nearby SNPs, leverag-
ing the pan-Zea genome and gPAVs was highly useful in identifying candidate genes, 
which could not be directly detected using a single reference genome. Notably, in addi-
tion to the two PME genes (Zm00001d048936 and PZ00001a032490) in the Ga1 locus, 
we also found four more non-reference PME genes (PZ00001a047012, PZ00001a046864, 
PZ00001a046478, and PZ00001a046460) (Additional file 1: Fig. S17). These PME genes 
all showed similar presence/absence patterns with PZ00001a032490, and the presence of 
these PME genes was enriched in teosintes (with presence ratio of ~85.97% in teosintes 
and ~40.35% in maize, Fisher’s exact test P-value < 2.2e–16, Fig. 4H). The function of 
these newly identified PME-like genes merits further study.

Another question of concern is to estimate the feature priorities to identify the causa-
tive genetic variations underlying the phenotypic variations. Thus, we identified the 
candidate causal variant (CCV) set using a Bayesian-based statistical fine-mapping algo-
rithm [146]. A total of 807,787 genetic variations (3.25% SVs, 15.73% InDels, and 81.02% 
SNPs) were kept as CCVs, as they were within the 95% confidence interval of the causal 
variant set for at least one trait. On average, the statistical fine-mapping kept ~18 vari-
ants as CCVs from ~229 nominally associated variants (with P < 0.001, see Additional 
file 12: Supplementary Materials and Methods) for each QTL. The number of CCVs was 
poorly correlated with the QTL quality score, the significance of the leading variant, and 
the number of genetic variations within the QTL (Additional file 1: Fig. S18A), indicat-
ing that CCVs could reflect additional information that cannot be represented by using 
the leading variants alone. The estimate of the effect sizes of the CCVs showed that SVs 
and gPAVs had a larger effect size than that of the SNPs/InDels (Additional file 1: Fig. 
S18B). The general feature enrichment analyses between the CCVs and the nominally 
associated variations (see Additional file  12: Supplementary Materials and Methods) 
showed that the SVs, particularly INSs and gPAVs, were more likely to be enriched in 
the causal variant sets than SNPs or InDels (Additional file  1: Fig. S18C). Specifically, 
INSs were enriched in expression, metabolites, and methylation, while gPAVs were only 
found enriched in expression (Additional file 1: Fig. S19). For SVs related to different TE 
classes, the helitron and TIR-related SVs were more likely to be causal than the LTR-
related SVs. Genic variants, particularly those with a high impact on genes, were more 
likely to be causal (Additional file 1: Fig. S18C).

To further investigate the effect of different genetic variations on gene expression, we 
estimated the enrichment of CCVs in the cis-eQTLs along their distance to the tran-
scription start site (TSS). The results showed that the CCVs were enriched in TSS-
nearby regions (“Causal variants” track in Additional file 1: Fig. S20), following previous 
results [164]. Further investigation revealed that the SVs displayed the waviest trend for 
the fold enrichment changes along distances to the TSS than INDELs and SNPs (“SNP,” 
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“INDEL,” and “SV” tracks in Additional file 1: Fig. S20). This pattern indicated that the 
TE-related SVs were more likely to be enriched in the upstream regions of TSSs (“TE-
related SVs” track in Additional file 1: Fig. S20). These findings suggest that rather than 
directly affect TSSs or gene body regions, SVs (particularly TE-related SVs) would be 
more likely to affect gene expression by affecting nearby upstream regions of the gene, 
where most cis-regulatory elements (CREs) are located [165].

A detailed example is illustrated in Fig.  5. The impact of a SV on the expression of 
Zm00001d023299, a zinc finger CCCH domain-containing protein (ZEAMAP [57]) 
that has been previously proposed to be a candidate QTL (marked as IDP103 in Maize​
GDB), related to drought and ultraviolet stressors [58] and was highly expressed in 
response to various stressors in maize (Additional file 1: Fig. S21). In the current study, 
an SV-specific eQTL related to the expression of Zm00001d023299 in drought-stressed 
leaves harbored a CCV named PZ00001aSV02097079INS (Fig.  5A). The expression of 
Zm00001d023299 in leaves [33] responded to different drought treatment levels, and the 
presence of PZ00001aSV02097079INS suppressed gene expression in leaves (Fig.  5B). 
The presence of PZ00001aSV02097079INS could also increase the survival rate of maize 
under drought stress [59] (Fig. 5C). Comparisons among maize genomes indicated that 
PZ00001aSV02097079INS is a 1947-bp Harbinger-transposon-like sequence (Additional 
file 1: Fig. S22) inserted 2269 bp upstream of Zm00001d023299 (Fig. 5D). This evidence 
suggests that PZ00001aSV02097079INS could be one of the causes of maize drought 
resistance by suppressing the expression of Zm00001d023299 in leaves. An investiga-
tion into the expression patterns in different tissues of four maize founder individuals 
from the Complete-diallele design plus Unbalanced Breeding-like Inter-Cross (CUBIC) 
population [60] with/without PZ00001aSV02097079INS showed that the impact of the 
PZ00001aSV02097079INS was restricted to the elongation stage (V9) of leaves (Fig. 5E). 
These associations were also validated in CUBIC offspring (Additional file 1: Fig. S23). 
These findings suggest that the suppressed expression was most likely caused by affecting 
tissue-specific CREs. Further epigenetic evidence and TF binding sites in maize leaves 
[61] revealed typical patterns of active regulatory elements near the inserted region of 
PZ00001aSV02097079INS, which lacked DNA methylation, and signals of several TFs, 
particularly the basic leucine zipper (bZIP) and basic/helix-loop-helix (bHLH) TF fami-
lies (Fig. 5F). There were numerous predicted CREs within the upstream region of the 
Zm00001d023299 target gene (Fig.  5F), and remarkably the insertion of PZ00001aS-
V02097079INS was located exactly within a predicted abscisic acid responsive element 
(ABRE) motif (Fig.  5G). The activity of the predicted ABRE was validated by a lucif-
erase experiment demonstrating that obliterating the function of the ABRE significantly 
reduced the expression of its downstream target gene (Fig. 5H, Additional file 1: Fig. S24, 
and Additional file 10: Table  S9). This finding suggests that PZ00001aSV02097079INS 
may have affected the expression of Zm00001d023299 in maize leaves by transposing 
into an ABRE motif region and blocking the binding of some tissue-specific TFs (bZIPs 
and/or bHLHs), which suppressed the tissue-specific expression of Zm00001d023299 in 
leaves, and contributed to drought tolerance in maize.

In conclusion, we revealed the genomic feature priorities that were more causatively 
associated with multi-omics-level phenotype variations. We showed that leveraging SVs 
and pan-Zea genome-based gPAVs can be used to detect causative associations related 

http://www.zeamap.com/feature_info/Zm00001d023299?tripal_pane=group_func_anno_refe77841
https://www.maizegdb.org/gene_center/gene/IDP103
https://www.maizegdb.org/gene_center/gene/IDP103
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Fig. 5  An example showing that inserting a transposon suppressed gene expression by destroying 
the tissue-specific TF binding element. A Manhattan plot of an eQTL (Chr10:2344288-2356500) of 
Zm00001d023299 expression in drought-stressed leaves. Note that the eQTL has no associated SNPs that 
passed the Bonferroni-corrected P-value cut-off, the leading variant had a large effect size (BETA), and 
the highest probability for the cause (fine-mapping) was an insertion (PZ00001aSV02097079INS) located 
2269 bp upstream the target gene. B The influence of PZ00001aSV02097079INS on the Zm00001d023299 
expression related to different levels of drought stress. WW, well-watered; WS1, 70% relative leaf water 
content (RLWC); WS2, 50% RLWC; 0/0, the reference allele; 1/1, the alternative allele. The significant differences 
were evaluated using the Kruskal-Wallis test. C The influence of PZ00001aSV02097079INS on the drought 
resistance-related trait (survival rate under drought stress). The significant differences were evaluated using 
the Wilcoxon-Mann-Whitney test. D The validation of PZ00001aSV02097079INS alleles by multiple genome 
alignment of the maize reference-level genomes. The genomes with reference and alternative alleles are blue 
and red, respectively. E Comparison of the Zm00001d023299 expression patterns in different tissues of four 
CUBIC parents with (red) or without (blue) the PZ00001aSV02097079INS insertion. The expression difference 
in the tenth leaf at the V9 stage is highlighted by the black rectangle. F The epigenetic patterns and TF 
binding sites of maize leaves, and the predicted cis-regulatory elements in the targeted eQTL region. Only 
items showing distinct peaks near the PZ00001aSV02097079INS were plotted for the epigenetic patterns 
and TF binding sites. Only the elements located in the positive strand and 4 Kb upstream of the target gene 
were plotted for the predicted CREs. G An illustration showing that the PZ00001aSV02097079INS inserted in a 
predicted cis-acting element involved in the abscisic acid responsive element (ABRE). H The relative promoter 
activities represented by the ratio of luciferase (LUC) to Renilla luciferase (REN) activity (LUC/REN in Y-axis) for 
the treatments (X-axis), including pGreenII 0800-LUC without a minimal promoter (CK), with ABRE (ABRE+) 
and without ABRE (ABRE−), see also Additional file 1: Fig. S23. The P-values were calculated from 10,000 
permutations of the t-test
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to important agronomic phenotypic variations that could not be directly identified using 
single genome-based SNPs.

Discussion
Community resources to accelerate maize molecular breeding

To meet the upcoming food production challenge, considerable efforts are required in 
maize genomics and genetics to further understand the genetics of agronomic traits 
and increase the efficiency of molecular breeding. In this study, we constructed a genus-
level pan-genome for Zea, identified the pan-Zea gene and orthologous group presence/
absence patterns, complemented the maize genetic variation map by including com-
mon SV types, and systematically investigated the potential genetic and genomic feature 
priorities for multi-omics traits by identifying the trait-associated QTLs and candidate 
causal variants from GWAS summary statistics data. These resources will provide useful 
information for maize breeding in the following three ways.

First, the wild relatives of maize have shown their potential for increasing stress toler-
ance and overall yield [62–64]. The de novo fragmented assemblies of the 183 teosinte 
individuals that covered all seven teosinte subspecies, the pan-Zea genome, and the 
functional annotation of the pan-Zea genes and orthologous groups could all be useful 
alternatives. The pan-Zea gene-set size analyses indicated the ability to cover ~95% of 
the pan-Zea genes with a random sampling of 27 individuals, which provides general 
guidance for individual selection. Furthermore, the gene and orthologous group PAVs 
were categorized into sub-population-enriched clusters, and these clusters were often 
enriched with different biological functions. These results will enable breeders to select 
specific individuals for target traits based on genomic evidence.

Next, we assessed the potentiality of using SVs and the high-density genetic variation 
map for maize genome-assisted breeding. We constructed a comprehensive SV geno-
type matrix including all common SV types by combining the evidence from whole-
genome comparisons, NGS mapping, and graph-based genotyping. The SV genotypes, 
along with the gPAV matrix and the previously reported SNPs and InDels from the same 
association mapping panel were composed into a comprehensive genetic variation map 
for maize genome-assisted breeding. Based on this genetic variation map and the multi-
omics trait variation data of agronomic phenotypes, metabolites, expression, proteins, 
and methylations, (i) many of the SVs (~37.36%) were not well represented by nearby 
SNPs; (ii) SVs explained more heritability than SNPs and InDels in the same volume; (iii) 
SVs were more likely to be the cause of phenotype variation than SNPs and InDels; and 
(iv) SVs can represent QTLs that cannot be detected by SNPs only. These findings will 
enhance maize genome-based breeding in the future.

We also analyzed the practical value of the summary association statistics, QTL, asso-
ciated genes, and causal variants for the multi-omics traits. The summary association 
statistics have shown their forces by being broadly used for humans in analyses involv-
ing gene-based association tests, fine-mapping, polygenic prediction, and cross-trait 
analyses [65]. While GWAS have been successful in decoding genotype-phenotype asso-
ciations in maize [66], there is still a lack of comprehensive public release of summary 
association statistics for this crop. Here, a comprehensive genetic variation map was 
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developed based on the summary association statistics for the multi-omics traits from a 
widely used maize association mapping panel [42, 66]. This map could be a resource for 
more specific analyses, such as imputing genotypes or discovering variant associations 
with small effects using meta-analyses. A challenge for genome-assisted breeding in the 
big data era is to explain or predict the biochemical and macroscopic level phenotypes 
from the underlying genomic and genetic information under different environmental 
conditions, which have spawned various machine learning applications to improve crops 
[67]. Thus, the associated QTL and candidate causal variants could be useful resources 
for optimal weighting of the marker information into genomic selection models [68].

Untangling the genotype‑phenotype relationship by leveraging the pan‑Zea genome 

and structural variation map

A substantial proportion of the challenges and rewards in crop genetics are dependent 
upon understanding the genetic architecture of complex agronomic traits. Considerable 
progress has been made to untangle the puzzle of maize phenotypic variations [34, 38, 
69–71], yet it still lacks global insight from the perspective of multi-omics integration. 
Our surveys on heritability of genetic variant feature partitions and the genetic feature 
priorities for the causes of the phenotypic variations provide an overview of the genetic 
architecture of agronomic traits in maize.

Estimates and randomization of narrow-sense heritability have shown high levels of 
maize omics phenotypic variance explained by genome-wide additive genetic factors. 
Intergenic variations, which were the majority of GWAS association hits, explained 
most of the phenotypic variations. However, enrichment of candidate causative varia-
tions showed that intergenic variants were less likely to be the cause of the GWAS QTL 
(which need to have large enough effects to be detected) than genic variants. These find-
ings suggest the ubiquitous polygenic nature of maize agronomic traits, a largely additive 
genotype-to-phenotype relationship in maize, and that non-coding sequences may more 
likely contribute by adding multiple variants with small effects.

In addition to the general genotype-phenotype association patterns, we have also 
shown the potential of leveraging the pan-Zea genome, the comprehensive genetic 
variation map, and population-level multi-omics data to reveal genotype-phenotype 
relationships. Extra efforts would be needed to determine the underlying cause within 
the QTL when using a single reference genome, even if the association QTL could be 
detected through SNP-based analyses, particularly when the causative genes are absent 
in the reference genome. In our results, at least 32.83% of the pan-Zea genes were absent 
in the commonly used maize reference genome. We detected the associations between 
the causative gPAV and the unilateral cross-incompatibility in maize by harnessing the 
pan-Zea genome. In addition, by leveraging multi-omics data and statistical fine-map-
ping, we propose the potential mechanism of how a TE-derived SV affected drought 
resistance in maize by tissue-specific changes in gene expression. These cases have not 
only shown the practicability of harnessing the pan-Zea genome and SVs to substantially 
reduce the workload of genome-assistant breeding but have highlighted the potential 
of the pan-Zea genome and the SV map to better understand the internal mechanism 
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of the associations between genetic and phenotypic variations, thus facilitating maize 
breeding and improvement.

Conclusions
In summary, we constructed a pan-Zea genome, analyzed the gene presence/absence 
patterns, and investigated the impact of the pan-Zea genome and different genetic vari-
ant features on maize biochemical and phenotypic variations. These findings will provide 
useful information for unraveling the genetic architecture of maize complex agronomic 
traits, accelerate maize molecular breeding, and improve our understanding of maize 
domestication and adaptation procedure. Still, some limitations have hampered more 
informative pan-Zea genomic and genetic results in the current study.

Perhaps the most obvious holding-back of the pan-Zea genome in the current 
study is the lack of teosinte reference genomes and population-level deep long-read 
sequencing data for teosintes, landraces, and elite maize. With the fragmental assem-
blies generated from deep-WGS reads, we had to perform additional data polishing 
steps to ensure credibility, which inevitably affected the volume of the results, and led 
to an underestimate of the teosinte sequences and genes within the pan-Zea genome, 
the large and rare SVs, and the untangled variations in the highly repetitive regions.

Foreseeable actions that could address these limitations and boost our understand-
ing of maize breeding and improvement would be to (i) enrich the pan-Zea genomic 
information pool with reference genomes and population-level long-read sequences 
of teosintes and maize landraces, (ii) enlarge the pan-Zea genetic variation matrices 
and their associations with more biochemicals, (iii) refine the genetic interactions 
by investigating causation and pleiotropy, and (iv) decrypt the regulatory network of 
maize phenotypic variation by combining the genetic interactions with other bio-net-
works, such as interactomes [72] and cell-cell communications [73]. The concept of 
the pan-genome has expanded from the whole gene and sequence set to the whole set 
of genomic and genetic variations within a genus. Moreover, with the development 
of reference-free whole-genome alignments [74] and genome graphic representations 
[8], it may be time to change the maize reference genomes [7]. We have many reasons 
to be optimistic when facing the imminent challenges of increasing the productivity 
and quality of crops with our current resources and the anticipated upcoming pro-
gress in crop genomics and genetics.

Methods
The detailed materials and methods, including (i) collection of genomic and transcrip-
tomic data, (ii) de novo assembly, whole-genome comparison, and pan-genome con-
struction, (iii) pan-genome gene annotation, (iv) pan-Zea gene and ortholog group 
analyses, (v) characterizing gene features, (vi) genotyping and characterizing the maize 
genetic variation map, (vii) variant graph constructing, reads simulation, and mapping, 
(viii) phenotype data collection and normalization, (ix) estimating of narrow-sense her-
itability, (x) identifying trait-associated QTLs, genes, and variants, (xi) analyses of gPAV 
and SV cases, and (xii) miscellaneous statistical analyses and visualizations, are available 
in Additional file 12: Supplementary Materials and Methods.
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