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Abstract

Out of the thousands of metabolites in a given specimen, most metabolomics experi-
ments measure only hundreds, with poor overlap across experimental platforms.

Here, we describe Metabolite Imputation via Rank-Transformation and Harmonization
(MIRTH), a method to impute unmeasured metabolite abundances by jointly modeling
metabolite covariation across datasets which have heterogeneous coverage of metab-
olite features. MIRTH successfully recovers masked metabolite abundances both within
single datasets and across multiple, independently-profiled datasets. MIRTH demon-
strates that latent information about otherwise unmeasured metabolites is embedded
within existing metabolomics data, and can be used to generate novel hypotheses and
simplify existing metabolomic workflows.

Keywords: Metabolomics, Missing data, Imputation, Unmeasured metabolites, Matrix
factorization

Background

Large-scale quantification of metabolite pool sizes (“metabolomics”) is a power-
ful approach for the mechanistic investigation of metabolic pathway activity and the
identification of metabolic biomarkers of disease and therapeutic response [1-5]. By
observing how metabolite levels are altered in various physiological conditions, metabo-
lomics can reveal the role of metabolites in homeostasis, in disease, or in response to
perturbations [6].

The bulk of large-scale metabolomics data in biology research is now generated
using mass spectrometry [7]. This technology ultimately reports the number of meas-
ured ions associated with a unique metabolite in a given biological specimen. To
accurately identify metabolites, targeted metabolomics studies must be calibrated for
maximum sensitivity for specific classes of metabolites with similar chemical proper-
ties [8]. Consequently, each metabolomics platform can only measure a subset of the
entire assortment of metabolites in a specimen. Metabolomics assays operated in dif-
ferent laboratories often measure sets of metabolites with little overlap. For example,
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in a pan-cancer series of eleven metabolomics datasets [9], only 23 out of 935 metab-
olites were measured across all samples. This lack of overlap restricts cross-dataset
comparisons and impedes the discovery of general principles of metabolite regulation
across datasets. The goal of this work is to enable cross-dataset comparisons by devel-
oping a method to impute missing metabolites between datasets.

Imputing missing values is specifically challenging in metabolomic data analysis
because metabolite levels are reported in arbitrary units, which we refer to as relative
abundance. A relative abundance level only contains information about the concen-
tration of a metabolite in a sample relative to all other measurements of that metabo-
lite in that dataset. These levels are not comparable between different metabolites in
the same dataset, nor are they comparable to the measurements of the same metabo-
lite in different datasets. The lack of a shared measurement scale between metabolites
and datasets prevents the application of existing imputation methods that assume
a common basis (e.g., probabilistic PCA [10]). Others have developed methods for
the imputation of single metabolomics datasets, including some based on k-nearest
neighbor imputation [11, 12], quantile regression imputation of left-censored data
and random forest imputation [13], kernel-weighted least squares imputation [14],
and multivariate imputation by chained equations [12]. These methods impute left-
censored values—missing values arising when a metabolite level falls below a detec-
tion threshold in a subset of samples—within a single dataset [13].

In contrast to the above-mentioned work, we consider here a related but larger and
more challenging class of problems related to imputing entirely-unmeasured metabo-
lite features across datasets. We present Metabolite Imputation via Rank-Transforma-
tion and Harmonization (MIRTH), a relative abundance matrix factorization model
that learns relationships between metabolite levels in one or more metabolomics
datasets. MIRTH’s key insight is that transforming relative abundance levels to nor-
malized ranks maps every measurement to a comparable scale between metabolites
and across batches. Critically, rank transformation enables MIRTH to discover pat-
terns of covariation between metabolite pools that are shared across datasets with-
out making assumptions about the relative concentrations of the same metabolite
across datasets. MIRTH factorizes rank-transformed metabolomics data into two
low-dimensional embedding matrices (Fig. 1). These embeddings describe the latent
structure between samples and metabolite features. By compressing the informa-
tion contained in the space of all metabolite features measured across all datasets
into low-dimensional embeddings, MIRTH discovers correlative relationships among
metabolites across datasets. These correlations enable the imputation of unmeasured
features in each dataset. Matrix factorization has been applied to imputing metab-
olomics data [15], but MIRTH differs from this previous work in two key respects.
First, MIRTH makes use of cross-validation rather than any potentially-biased priors
to tune the number of embedding dimensions. Second, MIRTH addresses the impu-
tation of entirely missing metabolites across datasets, enabled by rank-transforma-
tion, while previous work imputes only left-censored values in one dataset. Matrix
factorization techniques have also previously been applied to a variety of other data
modalities [16], including gene expression data [17—19], protein sequences [19], and
genomic data [20] for clustering analysis and class discovery.
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Fig. 1 Workflow for MIRTH Imputation of Metabolomics Data. a Individual datasets are normalized and
rank-tranformed, accounting for left-censoring. b Preprocessed datasets (D;) are combined into a sparse
aggregate data matrix (X), which is then factorized into embedding matrices W and H. The product WH
yields an imputed data matrix %).c Aggregate data from 9 pan-cancer metabolomics datasets with tumor
and normal samples reveals poor across-dataset metabolite feature overlap and high degree of missingness
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We evaluate the performance of MIRTH in a pan-cancer series of nine metabolomics
datasets. MIRTH achieves high accuracy in in silico experiments predicting ranks. In
each of our nine batches of experimental data, a proportion of simulated-missing metab-
olites entirely masked from a batch are imputed well by MIRTH. In kidney cancer data
with paired tumor and normal tissues, MIRTH correctly predicts unmeasured tumor-
enriched and tumor-depleted metabolites in one dataset by transferring information
from a second dataset where those metabolites were measured. MIRTH also accurately
imputes metabolites across ionization modes, enabling the imputation of unmeasured
metabolites across chemically distinct classes. By increasing the available information
about the metabolome, MIRTH increases the hypothesis-generating potential of existing
datasets while revealing new information embedded in existing metabolomics data.

Results

We completed a series of benchmark studies to assess the performance of MIRTH in
different imputation tasks. We evaluated the performance of MIRTH on a collection
of nine previously-published mass-spectrometry metabolomics datasets, consisting of
original raw ion counts before any preprocessing, e.g., normalization and imputation [9].
Metabolite names were harmonized by maximizing consistency across multiple metabo-
lite identifiers, as previously described [9]. Details on the number of samples and fea-
tures in each dataset are reported in Additional file 1: Table S1.

For each benchmark, we measured the concordance between the true and imputed
ranks of metabolite samples in held-out data. Across experiments, we found MIRTH
performed well in high sample-to-metabolite scenarios. In contrast, MIRTH performed
poorly when there were insufficient samples to train on and when samples were highly
censored. Furthermore, we found that a subset of metabolites were reproducibly well-
imputed across different datasets and imputation tasks, ascribing a quantitative metric
of confidence to MIRTH’s predictions.

MIRTH recovers missing metabolites within metabolomics datasets

We first verified that MIRTH accurately imputed missing measurements within a single
dataset. This represented the most straightforward imputation task because there were
no batch effects associated with merging of data from two or more distinct datasets. We
performed an in silico experiment, simulating a scenario where a set of metabolites was
not measured in a subset of samples in the dataset. First, we randomly select 50% of the
samples to serve as hold-out samples. Next, we randomly selected 10% of all the metabo-
lites to serve as hold-out metabolites (Fig. 2a). We masked the hold-out metabolites in
the hold-out samples to simulate that they were not measured in half the dataset. This
effectively split the dataset into two pseudo-datasets, where a smaller set of features was
measured in the hold-out pseudo-dataset.

For each of the 9 benchmarking datasets (Additional file 1: Table S1), we split the
data as described above and applied MIRTH to impute the held-out values (Fig. 2a
and “Methods”). Since the held-out values in the dataset were actually known, the
performance of MIRTH was assessable by comparing the actual and predicted ranks
in the simulated-missing features. We repeated this experiment 200 times for each
of the 9 datasets, randomly selecting a set of metabolites in a random set of samples
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Fig. 2 MIRTH achieves high accuracy imputing within datasets. a Samples for a subset of features

were masked in half of all samples in a dataset before imputation to create data on which to assess
imputation performance. b Imputation performance by dataset is reported by median p values across all
simulated-missing features in each MIRTH iteration. ¢ Imputation performance by metabolite, reported as
the median p value for each metabolite across all trials, is plotted for each batch. Metabolites are ordered
by decreasing imputation performance. d As dataset size (number of samples) increases along the x-axis,
the proportion of well-predicted metabolites in a dataset increases as well. This illustrates the relationship
between the number of training samples and overall imputation performance. e Imputation performance
for each metabolite summarized across datasets (median p values across datasets are plotted). A subset of
consistently well-imputed metabolites are labeled. Reproducibly well-predicted metabolites are indicated
in blue. f The predicted ranks versus the true ranks of example metabolites, methionine and palmitate
(16:0), when imputed in each single dataset. Each point represents one sample in which the metabolite was
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to mask in each iteration. The optimal number of embedding dimensions, chosen
through cross-validation separately for each dataset, ranged between 3 and 37 (Addi-
tional file 2: Fig. S1a). We also evaluated the performance of MIRTH and its sensitiv-
ity to dataset size and feature missingness using simulated metabolomics data. The
method and results of testing single-set performance on simulated data are available
in the Supplementary Information section.

When 10% of features were simulated missing in each trial, MIRTH successfully
predicted the abundance of approximately 89% of metabolites (significant positive
correlation with the true ranks in at least 90% of trials, p > 0,4 < 0.05, BH-corrected,
Fig. 2b). This proportion ranged from 11% in BrCa2 (likely due to its small number
of samples) to 100% in COAD (Additional file 1: Table S2). Variation in MIRTH per-
formance across datasets was partly explained by dataset size: median imputation
performance was better for the five datasets with the most samples, compared to the
other four (Fig. 2c). Using the same metric of predictive success, the proportion of
well-predicted metabolites in each dataset likewise increased as the sample size of the
dataset increased (Fig. 2d). This suggested that poor predictions may be the result of
an insufficient quantity of data from which MIRTH could learn. Similarly, when the
proportion of features simulated as missing was increased, imputation performance
worsened (Additional file 2: Fig. S1b). This result was expected since higher propor-
tions of masked metabolites leave less data from which MIRTH can learn. We also
investigated factors associated with each metabolite feature which might influence
imputation accuracy. We observed that metabolite features with larger coefficients of
variation (in the raw, non-rank-transformed data) tended to have lower imputation
accuracy (Additional file 2: Fig. S1c). Similarly, predictions of features with a greater
number of censored measurements (i.e., those where more measurements were
below the detection threshold) scored lower. This likely arose from a poor correlation
between censored values’ tied-for-last ranks at the input and their uniformly-mapped
ranks at the output (Additional file 2: Fig. S1d).

A total of 306 metabolites were reproducibly well-predicted by MIRTH across mul-
tiple datasets, meaning that they were measured in at least 4 datasets and well-pre-
dicted in at least three-quarters of the datasets in which they were measured (Fig. 2e).
Among these well-predicted metabolites were 84 amino acids, 22 carbohydrates, 16
cofactors and vitamins, 5 energy carriers, 120 lipids, 28 nucleotides, 21 peptides, 8
xenobiotics, and 2 uncharacterized metabolites. Well-predicted metabolites were
enriched in specific metabolite classes, including dipeptides, proteinogenic amino
acids and various lipid subsets (Additional file 1: Table S3). For example, palmitate
and methionine, which were measured in 8 and 9 datasets respectively, were both
well-predicted in 8 experiments (Fig. 2f). While these benchmarking experiments
were conducted in a setting where the ground truth was known, the observation that
certain metabolites were reproducibly well-imputed in different settings suggests that
imputation of their abundance by MIRTH in settings where the true abundance is
unknown should be associated with additional confidence relative to all other metab-
olites. Furthermore, the ability of MIRTH to recover ranks of subsets of samples of
metabolites in a single dataset motivated the use of MIRTH to impute entirely miss-
ing metabolites in a single dataset by learning from a matrix of aggregate datasets.
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MIRTH recovers missing metabolites by transferring knowledge across datasets

To determine if imputation of entirely unmeasured features could produce biologically
sound predictions of missing metabolites, we applied MIRTH to two independent kid-
ney cancer datasets, RC12 and RC3, each consisting of both tumor and adjacent normal
tissue samples. We reasoned that metabolites distinguishing tumor and normal tissues
should be highly concordant across both datasets. To test this assumption, we calcu-
lated the differential abundance of all metabolites (tumor vs. normal) in RC12 and RC3
(Additional file 2: Fig. S2). Of the 169 metabolites measured in both RC12 and RC3 that
showed statistically significant differences between tumor and normal in both datasets,
we observed that 159 (94%) showed identical changes, including canonical metabolites
such as glutathione (GSSG and GSH), lactate, NAD+, and fructose (g < 0.05, Wilcoxon
test, Fig. 3a). This demonstrated that the metabolite differences between tumor and nor-
mal samples in these datasets were comparable. Next, we repeated the analysis above
considering metabolites measured in RC12, but entirely unmeasured in RC3, which we
called test metabolites. After joint imputation of RC12 and RC3 with MIRTH, we com-
pared the differential abundance of test metabolites in RC12 (where they were meas-
ured) and RC3 (where their true abundance is unmeasured, but where they have been
imputed by MIRTH, Additional file 2: Fig. S2). Doing so, we again observed a strong
correlation between differential abundance (tumor vs. normal) in test metabolites in
RC12 and RC3. Out of 252 test metabolites, there were 235 (93%) significant and con-
sistently differentially abundant metabolites, including glucose-1-phosphate (G1P),
fructose-6-phosphate (F6P), fructose-1-phosphate (F1P), and gamma-aminobutyric acid
(GABA). Only 17 metabolites inconsistently distinguished tumor and normal samples
(g < 0.05, Wilcoxon test, Fig. 3b). This analysis confirms that MIRTH preserves rela-
tionships between sample types and biologically important metabolites when imputing
data across datasets, and suggests that MIRTH can be successfully applied to impute the
ranks of entirely unmeasured metabolites in metabolomic data.

To further assess the ability of MIRTH to accurately impute missing features across
datasets, we designated one of the nine datasets under analysis as the target, from which
we completely masked a set of features to simulate as unmeasured. MIRTH was then
applied to impute these unmeasured features, using data from the remaining eight data-
sets (and therefore testing the performance of MIRTH in the presence of a dataset-spe-
cific batch effect). We conducted nine such experiments, where each dataset was the
target for one experiment (Fig. 3c). We repeated each experiment for 200 trials for each
target dataset, randomly selecting 10% of features to simulate as missing each time. The
optimal number of embedding dimensions ranged between 26 and 48, but equivalent-to-
optimal performance could be achieved with approximately 30 dimensions (Additional
file 2: Fig. S3a). Performance was evaluated similarly to the within-dataset imputation,
comparing imputed and true ranks of the features simulated as missing.

Across the nine datasets under analysis, between 38% and 85% of the simulated-
missing metabolites entirely masked from a target dataset were well-predicted with the
MIRTH approach (p > 0,g < 0.05in >90% of trials, Fig. 3d, Additional file 1: Table S4).
Similar to the within-dataset imputation, performance degraded as a larger proportion
of features was simulated as missing (Additional file 2: Fig. S3b). Properties of the raw
data, such as the variance of the feature in the target dataset or the number of samples
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well-predicted metabolites. Each point represents one sample in which the metabolite was measured

in other datasets where the feature was measured, partially explained why some features
were better predicted than others (Additional file 2: Figs. S3c,d). Similar to the within-
set imputation, MIRTH reliably predicted the ranks of certain metabolites regardless
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of the target dataset (Fig. 3e). There were 218 reproducibly well-predicted metabolites,
consisting of 56 amino acids, 13 carbohydrates, 10 cofactors and vitamins, 94 lipids, 15
nucleotides, 18 peptides, 10 xenobiotics, and 2 uncharacterized metabolites (Fig. 3e,
Additional file 1: Table S5). Similar to the within-dataset imputation, reproducibly well-
predicted metabolites were enriched for lipid subsets and amino acids (Fig. 3e). Tyrosine
and palmitate, for instance, were reproducibly well-predicted with a median p of 0.892
and 0.845 respectively (Fig. 3f). These results outline a set of metabolites that are likely
to be reliably imputed in a new target dataset if one were to be added to our existing
aggregate set.

We also evaluated MIRTH’s across-set imputation performance on simulated metabo-
lomics data and on data from the Cancer Cell Line Encyclopedia (CCLE) [21], the full
results of which can be found in the Supplementary Information section. To summa-
rize, applying MIRTH to the CCLE dataset resulted in comparable or better imputation
of missing metabolites than with our 9 benchmarking datasets. For within- and across-
dataset treatments, 100% and, typically, 94.2% of metabolites were well-predicted.

MIRTH embeddings separate tissue of origin and metabolite class

MIRTH involves a matrix factorization that associates both metabolite features and
samples with a small number of embedding dimensions. In other contexts, analysis of
features and samples in embedding space can be used to interpret the similarity between
samples or the covariation of different features. We therefore applied MIRTH jointly
to all data available, factorizing the complete aggregate set (X) of all nine datasets. The
optimal number of dimensions for the factorization of the aggregate data matrix into
embedding matrices W and H was 30 (Additional file 2: Fig. S4a). Weights were mostly
small and right-skewed (Additional file 2: Fig. S4b). We used UMARP to visualize the
sample and feature embedding spaces [22].

In sample embedding space, some clustering occurred by tissue of origin, with sam-
ples from the three kidney cancer datasets, RC12, RC18, and RC3, overlapping (Fig. 4a).
COAD samples also separated from other tissues of origin. Interestingly, PrCa samples
separated into three distinct clusters, raising the possibility of a latent batch effect, i.e.,
that the PrCa dataset consists of three sub-datasets that are not preprocessed individ-
ually by MIRTH. Definition between other tissue types, i.e. between BrCal & BrCa2,
PaCa, and HCC, was less discernible. Tumor and normal samples from the same dataset
also separated in embedding space along UMARP axis 2 (Fig. 4b).

Dimensionality reduction of the feature embedding matrix also revealed separation
between certain metabolite classes, in particular of peptides and lipids from the rest of
the measured features (Fig. 4c). The outlying peptide features predominantly represented
dipeptides (Additional file 2: Fig. S4c). To determine whether individual embedding vec-
tors were associated with functionally-related groups of metabolites, we performed a
Fisher’s exact test for enrichment of a given metabolic pathway in each embedding vec-
tor after setting a cutoff value above which a feature was considered to be appreciably
weighted (here, weight = 0.2). This analysis was limited by statistical power, due to the
relatively small number of metabolites in each annotated pathway. Nevertheless, the
analysis identified enrichment of certain metabolite classes across multiple embedding
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dimensions, including dipeptides, sphingomyleins, diacylglycerols, and lysolipids
(Fig. 4d).

MIRTH imputes metabolites across MS ionization modes

Mass spectrometry-based metabolomics can be conducted in positive or negative ioni-
zation modes, which allows for quantification of metabolites that are more amenable to
acquiring a positive or negative charge [23-25]. We devised an experiment to assess the
viability of predicting positive-mode measurements from negative-mode ones (or vice-
versa), using a dataset where samples were profiled in both modes [24].

This dataset consisted of 448 features across 638 samples. Of the 241 quantified metabo-
lites, 191 were measured in both positive and negative modes (accounting for 398 features
due to redundancies). Of the remaining metabolites, 24 were measured only in positive
mode and 16 were measured only in negative mode. We devised a test scenario for MIRTH
whereby positive- or negative-mode measurements were completely masked from half the
samples. This simulated a scenario where half of the samples were measured in both modes
and the remaining samples were measured in just one mode (Fig. 5a). Imputation perfor-
mance was assessed on metabolites only measured in one mode across 200 trials with a dif-
ferent set of samples chosen for masking each time. All non-overlapping metabolites were
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well-predicted (o > 0,4 < 0.05 in > 90% of trials). Overall, negative-mode features were
predicted with a higher p than positive-mode features (Fig. 5b), perhaps due to the greater
reproducibility of the positive-mode measurements on which negative-mode predictions
were based [24]. Predictions for glyceraldehyde-3-phosphate, cadaverine, and putrescine
- features measured only in positive mode - were notably accurate, with median p values
of 0.765, 0.788, and 0.777, respectively (Fig. 5¢, Additional file 1: Table S6). Likewise, aco-
nitate, carbamoyl phosphate, and riboflavin were among the best-predicted negative-mode
features, with median p values of 0.901, 0.888, and 0.887, respectively (Fig. 5¢, Additional
file 1: Table S6). Once again, these results indicate that MIRTH can impute the ranks of
metabolites that were entirely unmeasured by leveraging latent information in metabo-
lomics data—in this case, in one ionization mode.

Discussion

MIRTH is a novel method to impute the ranks of otherwise unmeasured metabolites in
semi-quantitative mass spectrometry metabolomics data by applying a matrix factoriza-
tion approach tolerant to missing data. MIRTH successfully imputed (o > 0,p < 0.05 in
>90% of trials) between 38% and 85% of the missing metabolites in each dataset we tested.
Although not all metabolites were well-predicted in all datasets, the existence of a subset of
metabolite features that were reproducibly well-imputed across datasets reveals the prom-
ise of MIRTH for filling-in missing metabolites in new datasets.

That MIRTH imputes some metabolites poorly may partially be accounted for by the high
variance of those features across a dataset’s samples. Nevertheless, MIRTH reliably imputes
metabolites whose significant variation depends on the biological context, i.e., biologically-
relevant metabolites between tumor and normal samples. This demonstration adds con-
fidence to MIRTH predictions for metabolites whose level depends on biological context,
provided that there are enough training samples across a diversity of contexts. Furthermore,
the number of datasets the metabolite appeared in and the extent to which the metabolite
was left-censored in each dataset affected the imputation performance on certain metab-
olites. These circumstances both create situations in which there is little information on
which the model can train for that feature. Furthermore, there may well be technical fac-
tors that explain variation in performance across datasets. COAD samples, which yielded
the best performance in within-dataset imputation, were profiled in an independent mass-
spectrometry lab on a platform measuring comparatively few lipids. The PrCa dataset,
which yielded the worst across-dataset performance, consisted of three subgroups of data
with apparently strong batch effects and may need to be pre-processed individually. In the
future, some of the latent structure in these datasets could be included in more sophisti-
cated models based on MIRTH. For example, BrCal & BrCa2 samples had variable estro-
gen receptor (ER) positivity, a metabolically-relevant stratification that MIRTH does not
account for.

(See figure on next page.)

Fig. 5 MIRTH accurately imputes across features measured in different mass spectrometer ionization modes.
a Simulating a subset of samples as only measured in a single ionization mode, then imputing to assess
performance. b Summarized imputation performance by ionization mode. Only metabolites measured in a
single ionization mode are shown. ¢ Examples of metabolites that are well-predicted across ionization modes.
Each point represents one sample where the metabolite was measured
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MIRTH finds latent information in existing metabolomics data

The ability of MIRTH to impute completely unmeasured metabolite features may reduce
the cost and complexity of metabolomic profiling. As we have demonstrated, MIRTH
can recover rank-normalized metabolite abundances which are of biological or clinical
interest without requiring additional tissue or additional profiling. This enhances the
potential for discovery by enriching publicly-available metabolomics data with addi-
tional metabolite features. A key consideration here will be sample size: our success in
inferring positive-/negative-mode metabolites (Fig. 5) was in part related to the large
number of samples available for training in this dataset.

More generally, the success of MIRTH implies that information on a restricted set
of metabolites is sufficient for the imputation of a much larger set of metabolites.
We envision the development of an assay which, instead of comprehensively profil-
ing thousands of metabolites in a single sample, simply seeks to measure a small but
highly informative subset of metabolites. With accurate measurements of a small
panel of predictive metabolites combined with other datasets which measure a wider
profile of metabolites, MIRTH or related methods in the future may be able to offer a
much wider view of the metabolome at a greatly reduced cost. To that end, we have
identified a small set of metabolites from which MIRTH can impute the ranks of many
other metabolites, though further experimental work is required to determine the best
metabolites for such an assay (Supplementary Information, Additional file 1: Table S7,
Additional file 2: Fig. S9).

MIRTH embeddings encode biological information

The decomposition of metabolomics data into a product of two low-dimensional matri-
ces empirically captures some aspects of underlying biology. For example, the separa-
tion of tumor and normal samples in embedding space suggests that the MIRTH can
learn general differences in the metabolome between these types of samples across
cancer types. Similarly, since each embedding vector is a parts-based representation
of the underlying data, the feature embedding vectors can be considered to represent
different “components” of the metabolome, which are then linearly combined accord-
ing to the sample embeddings to recover the metabolite ranks of a given sample. Fur-
thermore, MIRTH embeddings appear to discern chemical classification of metabolites
without incorporating any additional information; for example, the separation of lipids
and dipeptides in embedding space hints at high covariance between members of these
metabolite classes. Future work could incorporate prior information into the matrix fac-
torization, such as additional information on metabolite classes and structural similari-
ties or on tissue and samples types.

The analysis of the embeddings also provokes questions about the general nature of
correlations between metabolite pool sizes. While the existence and characteristics of
such correlations are abundantly described in the literature [26—28], neither the mecha-
nistic basis from which they arise nor their generality across biological contexts (e.g.,
different tissues, or different cancer types) is understood. The general principles which
explain how metabolite pools co-vary have been difficult to discern because metabo-
lite pools are subject to complex regulation, both by the metabolic enzymes that pro-
duce and consume them, as well as by more distal changes in metabolic flux or cellular
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physiology. The analysis of the MIRTH embeddings suggests that a relatively small set
of linear combinations of metabolite pool sizes is sufficient to describe a large fraction
of all the variation in the bulk metabolome. Understanding whether these embeddings
are a reflection of a more fundamental, global relationship between metabolite pools is a
worthy question for future investigation.

Conclusions

The experiments described in this paper suggest that embedded within every metabo-
lomics dataset is latent information about otherwise unmeasured metabolite features.
Future work fully harnessing this latent information will likely require overcoming at
least two challenges. The first relates to the inherently semiquantitative nature of metab-
olomics data, in which pool sizes are reported in ion counts that can only be compared
across samples within the same feature. MIRTH overcomes this challenge by rank-trans-
forming each metabolite feature within each batch. The cost of this solution is the loss of
information on the magnitude of fluctuations in pool sizes. Future work which instead
preserves relative magnitudes while remaining amenable to modeling across batches of
data will prove powerful. MIRTH’s treatment of left-censored values could also be mod-
ified to draw on more sophisticated approaches that have been developed for within-
dataset imputation. The second challenge relates to the very likely possibility that some
correlations between metabolites will be specific to a particular tissue, disease, or other
biological context. For example, certain metabolites may accumulate to a large extent in
the context of mutations to genes coding for metabolic enzymes [29]. Further generali-
zations of NMF, including those which leverage additional information about the tissue
source or disease of interest, prior information on the relationship of metabolites to one
another in the metabolic network, or a secondary dataset (e.g., genomics, gene expres-
sion) may improve the predictive performance of MIRTH.

Methods

MIRTH imputes missing metabolites across K metabolomics datasets. Each of
i =1...K datasets D; contains the relative abundance levels of a subset p; of the total
metabolites P measured in n; samples. The relative abundance levels are not comparable
across metabolites or datasets. MIRTH overcomes this limitation by transforming rela-
tive abundance levels to a common scale (normalized ranks) within each batch. MIRTH
then applies a nonnegative matrix factorization algorithm to the transformed matrix. By
learning latent factors for each metabolite and sample, MIRTH is able to impute missing
metabolites both within the same dataset and across datasets.

We have implemented MIRTH in Python v.>3.7. A script for MIRTH imputation, as
well as a scaled-down demonstration of imputation performance, is available in our
Github repository: https://github.com/reznik-lab/MIRTH. Experiments are run on
Memorial Sloan Kettering Cancer Center’s High-Performance Computing Juno cluster.
Figures are generated in R.

We assume that we are given K datasets, each representing one batch of data, ie., a
collection of samples from one metabolomics experiment. Each dataset records meas-
urements of different sets of metabolites with different proportions of metabolite classes
represented (Additional file 1: Fig. S5a). Every entry in the dataset contains a raw ion
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count for a specific metabolite detected in a sample. Ion counts below a threshold are
not detected by the mass spectrometer. These counts are left-censored; the only infor-
mation about them is that they are smaller than the smallest reported ion count in that
dataset.

In the MIRTH method, the datasets individually undergo normalization and rank-
transformation accounting for left-censoring as described below (Fig. 1a). Then, the pre-
processed single datasets are aggregated into a multiple-dataset matrix, which is then
factorized and imputed (Fig. 1b).

Handling missing values in raw datasets

A targeted metabolomics dataset features two forms of missing data. The first class of
missing data corresponds to metabolites which exist in a biological specimen at physio-
logically-relevant concentrations, but which have not been measured. We refer to these
data as “missing metabolites,” emphasizing that their abundance is missing in all samples
in a given dataset. The goal of MIRTH is to impute these missing data.

The second corresponds to metabolite measurements that are missing in some sam-
ples, but are measured in other samples in the same dataset. These missing values often
represent instances where a metabolite’s abundance falls below the lowest quantified
abundance of that metabolite across all samples. We refer to such instances as “left-
censored” measurements. The extent of left-censoring varies by feature and by dataset
(Additional file 2: Fig. S5b). MIRTH has specific procedures which handle left-censored
data, as described below.

Normalization

A variety of normalization techniques are used to control for variation in sample load-
ing in metabolomics data [30]. We compared MIRTH’s imputation performance with
total ion count (TIC) normalization, probabilistic quotient normalization (PQN) and
without normalization enabled. MIRTH performs comparably with both normalization
methods (Additional file 2: Fig. S5c¢). For all analyses described in the text, each dataset
was preprocessed with TIC normalization. In TIC normalization, the ion count for every

metabolite entry in sample i is normalized by

D.
DN ="
Jo;
where DfV is the TIC-normalized sample vector, D; is the unnormalized sample vector,
and fp, is the TIC normalizer for sample i. The TIC normalizer is computed by summing
the ion counts of all j metabolites in the sample,

m
Jo; = Zdi’j + 0.5 x min(D;) x Ncensoredpi
j=1

where min(D;) is the minimum value in dataset D; and N_,50req in the number of left-
censored entries in the sample. Thus, left-censored values are included in the sum as
one-half the the minimum value in the dataset.
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Rank-transformation

Since metabolomics only semi-quantitatively measures metabolite pool sizes, only one
form of comparison (between two samples’ measurements of the same metabolite in the
same dataset) is admissible. In contrast, comparisons of the abundance of two metabo-
lites in the same sample or comparisons of the same metabolite across two samples from
two different datasets are inadmissible. This is a fundamental limitation of mass spec-
trometry data, as a relative abundance measurement depends not only on a metabolite’s
true concentration in the sample, but also on chemical and physical properties unique to
the metabolite in question.

We rank the metabolite abundances of all the samples within each dataset. The sam-
ples with the highest ion count for a metabolite in the given dataset are ranked highest.
The samples with the lowest ion count are ranked lowest. Left-censored values are tied
for last rank. This distributes the sample abundances in each metabolite in the same way,
allowing for the comparison of correlations between metabolite abundances in the same
dataset. Rank-transformation also ensures that metabolite measurements can be com-
pared across batches. Batch effects are typically assumed to take the form of shape and
scale effects [31]. That is, given true values Y*, the observed values Y are a latent linear

function of the truth,
Y =f(aY*+pB)

where f(-) is either assumed to take some parametric form like a normal distribution
or is treated nonparametrically and assumed only to be monotone without other speci-
fication. In either setting, the rank is invariant to batch effects: the monotonicity of
f (), whether it is normal or nonparametric, enforces that the ranks are preserved in
expectation.

Since the ranks are invariant to the local batch effects, we only need to be concerned,
statistically, with between-batch ranks. But here again, batch effects are by definition
localized to a batch. Thus by converting measurements to within-batch ranks, the ranks
should be comparable across batches, under typical batch effect assumptions.

The rank of the ith uncensored sample in a feature, d; ;, is found by:

Ntaml
1+ Y 1ld;; > dy)]
=1

1+N,

rank(diJ) =

otal

where Ny, is the total number of samples in the feature. The rank for the left-censored

entries in a feature is set to

0.5 x (1+ Ncensored)
1+ Ntoml

where N, s0req is the total number of censored samples in the feature. This rank is half-
way between the minimum rank of uncensored samples and zero. This maps the features
with only uncensored metabolites uniformly from 0 to 1. Following rank-transforma-
tion, features in each dataset have the same marginal distribution conditioned on having
the same sample size. Rank-transformation results in higher performance compared to
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simply scaling each feature from 0 to 1 in each dataset when imputing features across
datasets (Additional file 2: Fig. S5d).

Nonnegative matrix factorization (NMF)

Nonnegative matrix factorization (NMF) is commonly used to obtain a low-rank
approximation of nonnegative, high-dimensional data matrices [32]. NMF decomposes a
matrix X € R"™", X > 0into W € R and H € RF*" such that X ~ WH, W, H > 0.
When the rows of X contain samples, then the columns of factor W describe the rela-
tive contributions of each embedding vector to a sample [16] and can reveal clustering
among samples [18]. Similarly when the columns of X contain features (metabolites, in
this case), the rows of factor matrix H describes the relative contributions of the features
to an embedding vector [16, 18].

To prepare the data for NMF, datasets preprocessed with normalization and rank-
transformation are aggregated into a single aggregate data matrix X € R"*”, with rows
corresponding to individual samples and columns corresponding to the complete set of
metabolite measured across the batches. The sparseness of X depends on the sparseness
and feature overlap of the datasets that comprise it. For example, the matrix X consist-
ing of the nine metabolomics data datasets under consideration has 1727 samples, 1904
metabolite features, and 79.4% missing entries, including both missing metabolites and
left-censored entries (Fig. 1c). In MIRTH, we formulate metabolite imputation of the
unmeasured metabolites as a nonnegative matrix factorization problem which handles

missing values,

m n
. T 82
min E E (xij —w; hy)
i—1 j=1 (1)

subject to W,H > 0

where the original data matrix is factored into the product of two low-dimensional
matrices W € R”*K and H € R¥*”; missing x;; are omitted in the loss function. The
structure of NMF naturally allows the imputation of missing values. Because W and H
have fewer entries than X, not all the entries of X are required to perform the decompo-
sition. Provided the loss function is an entry-wise sum of losses, such as the least squares
error used here, the matrix can be factorized by dropping the terms corresponding to
the missing entries from the loss function [33]. This minimization problem is solved
with SciPy’s optimize.minimize [34] and the autograd-minimize wrapper [35] with the
L-BFGS-B algorithm [36]. Equivalently, a version of scikit-learn NMF that handles miss-
ing values can be used for faster runtimes [37]. Solving the optimization problem above
produces two matrices W and H (Additional file 3), each with no missing entries, whose
product X = WH also contains no missing entries. Following reconstruction, X is rank-
transformed again to ensure feature measurements remain mapped uniformly between
0 and 1. These entries are the predicted metabolite ranks imputed by MIRTH.
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Cross-validation

In order to determine the optimal number of embedding dimensions k, we perform
v-fold cross-validation; typically, v = 10. We evaluate performance over a range of k in
[1,80] or [1,60] in the single-dataset or across-dataset imputation cases, respectively.

For each k, we first identify the metabolite features that are available to use to score in
dataset-wise cross validation, i.e. the metabolites in each dataset that are also measured
in at least one other dataset. These available features are then equally partitioned into v
folds (i.e., sets of metabolite features in each dataset on which we will test model perfor-
mance with different sets of cross-validation parameters). Within each dataset, metabo-
lites are randomly assigned to folds in order to reduce the amount of overlap between
folds in different datasets (Additional file 2: Fig. S6a). Once the folds are defined, MIRTH
loops through them, treating one at a time as unmeasured (masking all the fold’s features
in the datasets where they appear), and factorize the resulting matrix. We then take the
product WH to recover X, the imputed matrix with no missing data. Next, we compute
the mean absolute error (MAE) between the true ranks of the metabolites in the fold
(the metabolites we simulated as unmeasured) and the imputed ranks of those metabo-
lites; the MAE is treated as the performance score for that fold. The scores for each fold
are averaged, which yields a score for the particular value of k. This process is repeated
for all &, and the value which results in the lowest MAE is chosen as the optimal number
of embedding dimensions for the factorization (Additional file 2: Fig. S6b).

Evaluating MIRTH’s performance

To evaluate MIRTH’s predictions of metabolite ranks, we mask a subset of metabo-
lite measurements to simulate them as missing. After imputing the masked data with
MIRTH, we compare the imputed metabolite ranks to the true ranks of the features that
were simulated as missing. The chosen performance metric is Spearman’s rank corre-
lation coefficient (p), computed between actual and predicted metabolite ranks. Cor-
relation coefficients are computed separately for each metabolite that was simulated as
missing. The resulting o values are then summarized, either across all the metabolites
simulated as missing in one experiment (to assess the overall prediction quality of a
single imputation) or for the same metabolite across several repeated experiments (to
assess metabolite-specific prediction quality). The p values are Fisher z-transformed
before summarization; the summarized z-scores are then inverse-z-transformed to yield
summarized p values. P-values are adjusted for multiple testing with Benjamini-Hoch-
berg (BH) correction [38]. Details on how metabolite ranks are simulated as missing
are included in their respective Results sections. Metabolites which are predicted with
significant positive correlations with true ranks in more 90% of trials are deemed well-
predicted. Metabolites are deemed reproducibly well-predicted if they are measured in
at least four datasets and are well-predicted in at least three-quarters of the datasets in
which they are measured.
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Appendix
MIRTH experiments with simulated data

Generating Simulated data

Generating simulated data can accelerate the development of machine learning meth-
ods when acquiring real training data is costly [41]. The nine benchmark datasets in this
study have variable size and sparsity. Evaluating MIRTH’s performance on realistic, syn-
thetic datasets can help parse the effect of size and sparseness on performance under
controlled conditions. As such, we simulated metabolomics datasets for benchmarking.

Our analysis confirmed that MIRTH’s multidimensional embedding space clusters
related samples and metabolite features (Fig. 4a—c). Consequently, a simulated dataset
{s1,...»sn'} would consist of # observations of a random m-dimensional Euclidean vari-
able, such that the data belongs to / clusters.

We use a generative model to simulate metabolomics datasets, § € R”*” where m is
the number of samples and # is the number of metabolites. The dataset is generated as
the product of simulated embeddings matrices, Wi € R™*K and Hgjpy € R¥" where
k is the number of embedding dimensions. To generate the embeddings matrices, a
k-dimensional multivariate distribution of / cluster centroids is generated. This distribu-
tion is sampled to set the center of each embedding vector. The dataset is simulated as
follows,

To generate Wyiy,:

o iiﬁi'Gamma(k = 100,80 = 1)
Jelusters'Kdims
' Cat (o) (2)
Wi kgms ~ Gamma(k = 100,60 = 1) + c:i"n)kdims

To generate Hjyy:

ch iﬂl'Gamma(k = 100,06

kdims:jcluszzrs
dn %" Cat (@) ¥
i s ~ Gamma(k = .1,6 = 1000) + C/éd,»m;,dm

1)

To generate S:
S = Wsim X Hsim (4)

whereoj = 1,j = 1.. . joysters.

The matrix product of these two embedding matrices constructs a simulated dataset.
A set of feature names to sample from is defined. The columns of the dataset are ran-
domly assigned a subset of these feature names. The rows of the dataset are given labels
according to dataset and sample number. Once labeled, the dataset can then be com-
bined into an aggregate data matrix (X) or used in a single-set imputation. We generated
data with jj,sers = 5 and k = 10. The shape, k, and scale (0) of the sampled distributions
for both the centroids and embedding matrix weights were chosen to create data similar
to the 9 real datasets used for benchmarking.
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Experiment 1: Size

In this experiment, nine simulated datasets of identical size to the real datasets were
generated. To isolate the effect of dataset size on within-dataset imputation perfor-
mance, First, we applied MIRTH to one dataset at a time, masking 10% of the features
in half the samples (Fig. 2a). These masked entries in each dataset were imputed. Per-
formance was better for larger datasets (Additional file 2: Fig. S7a), indicating that larger
sample size improves within-set imputation performance. In general, the simulated data
was imputed with much higher median p than real data.

To isolate the effect of dataset size on cross-set imputation performance, we applied
MIRTH to the aggregate dataset (9 merged simulated datasets), holding out entire fea-
tures in one target dataset at a time (Fig. 3c). The cross-dataset imputation performance
on the simulated data was roughly constant while the performance on the real data var-
ied depending on the target dataset (Additional file 2: Fig. S7c). This simulation indi-
cated that factors other than size contribute to performance of the across-set MIRTH

imputation.

Experiment 2: Missingness

To test the effect of randomly-missing data on MIRTH’s imputation performance, identi-
cally-sized datasets were generated. Entries were randomly masked, with the proportion
of masked entries ranging from 0 to 90% with a 10% step size. We evaluated single-set
MIRTH imputation as usual (Fig. 2a). As the number of missing entries increases, the
median performance (p) approached 0 (Additional file 2: Fig. S7b). The low performance
stabilized around 50% missing entries.

We also constructed three datasets of identical size whose entries were randomly
masked at different proportions (10%, 50%, 90%). We evaluated MIRTH’s across-set
imputation performance as usual (Fig. 2c). As the number of randomly-missing entries
increased, the median performance (p) decreased, approaching 0 (Additional file 2: Fig.
S7d).

Experiment 3: Censoring

To simulate left-censoring, the ten lowest-valued entries in each feature in a dataset are
masked. The imputed ranks of the simulated-censored measurements are compared to
the true ranks of the same samples. Alternatively, the imputed ranks of the unmasked
ten-lowest values can be compared to their true ranks.

We evaluated censoring imputation on real data (RC12). There are already many cen-
sored measurements in the dataset. Imputed ranks are consistently lower when their
corresponding measurements are simulated as censored than when they are actually
included in the training data (Additional file 2: Fig. S7e). Since some features have only
one or a few measurements, a cluster of true ranks appears near 0.5.

This evaluation scheme was also run on a simulated dataset with 30% of entries ran-
domly missing. Similarly, imputed ranks are lower when the data point is simulated cen-
sored than when the data point is actually included in the training data (Additional file 2:
Fig. S7f). These findings confirm that MIRTH preserves the low ranks of censored data,
which ultimately correspond to low metabolite abundance.
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Using MIRTH to identify a set of core predictive features

Given the success of MIRTH for within- and across-dataset imputation, we aim to
identify a small set of metabolites that could inform the predictions of a larger set of
metabolite ranks. With further development, precise measurements of this small set of
metabolites could constitute an assay that reduces the cost of profiling large parts of the
metabolome.

One approach is to find the set of features that maximizes the mutual information of
the core features and batch features. In other words, we want to find the set of training
features which reduces the uncertainty about all the features in the dataset. The mutual
information, I, between sets X and Y'is defined as

I1X,Y):=HX)-HX|Y) (5)

where H is the entropy of the set [42].
Let C be the set of core features selected for a dataset, and let F be the set of all fea-
tures measured in that dataset. To find the best set of core features, we want to find

mCaX I(C,F) (6)

Choosing a set of features that are maximally informative through mutual information is
hard to estimate statistically [43]. However, we can approximate the concept by instead
minimizing the predictive error between the true data and the data predicted by MIRTH
trained under the core features. We want to find the set that minimizes the mean abso-
lute error (MAE),

i ]\/IAE()A( X ) = mi 71 E |A — | 7
min 5 = min Xi Xi
¢ test test ¢ ”i - i i ( )

with X rest the predicted ranks of the testing data trained on the set of core features C,
and X the true ranks of the testing data.
As we augment the set of core features, we choose f; such that

Hﬁn MAE (Xtest: Xtest) (8)

where X test is imputed by the model trained on C U f;.

To approximate the solution to this minimization problem, we use a greedy forward
step-wise selection algorithm (Algorithm 1). In doing so, we assume that the problem is
submodular, i.e. that the marginal gain in performance from adding an extra element ¢
to the set of core features C is greater than the marginal gain in performance when ¢ is
added to any superset of C [44]. Submodularity is a reasonable assumption since choos-
ing the set of core features through mutual information is submodular [45].

Before selecting core features, we calculate the by-dataset baseline MAE values of
MIRTH imputation with no training features in the target dataset (due to non-uniform-
ity cause by left-censoring, the MAE values of rank-transformed are not necessarily
0.25). Selection of a core feature begins with a list of candidate features, consisting of
all features in the aggregate dataset except for the current core features (when selecting
the first core feature, this set is empty). Each candidate feature, along with any previous
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core features, are used as training data for each target dataset. All other features are held
out from the target dataset. MIRTH is applied to the remaining data (including all other
non-target datasets), and MAE is computed. If a candidate feature is not present in a tar-
get dataset, the previous baseline MAE is substituted. Once all candidate features have
been assessed in all datasets, the average MAE across for each candidate is computed
across datasets. The candidate feature yielding the lowest average MAE is selected as the
next core feature; the by-batch MAE values become the new baseline MAE values. This
process is repeated for the desired number of candidate features.

Algorithm 1 Greedy Algorithm for Core Feature Selection

Initialize C as {}

Input: X € R™*"™ with D datasets, the set of m features F' measured across all datasets, by-dataset
baseline MAE, the number K of desired core features

Output: C C F, the set of core features

while |C| < K do
for each feature f,, in F: do
for d in range(d): do
if f, € dataset d: then
Set training data as {X \ Xq} U {X4(CU fm)}
Set testing data as Xq \ C U fp,
Apply MIRTH to training data
Calculate MAE for candidate feature f,, from testing data in X and X
else
MAE < baseline MAE for dataset d
end if
end for
end for
Average f,, MAEs across D datasets
Pick fpest, the fm, which resulted in lowest average MAE
fvest by-dataset MAEs become the new baseline MAEs
Add fpest to the set of core features:
C+—CUfn
Remove fpes: from the set of available candidates:
F <+ F\ fm
end while

We identified 50 core metabolite features using Algorithm 1. As expected, the average
MAE decreased as the size of the set of core features increased (Additional file 2: Fig.
S9). The selection algorithm is biased to first pick features that are measured in many
datasets, before quickly becoming biased toward features measured in only one data-
set (Additional file 2: Fig. S9). The first of the 50 metabolites, phosphoethanolamine, is
involved in phospholipid metabolism. The core features span various metabolite classes:
they consist of 12 lipids, 7 xenobiotics (5 of which are drugs), 6 peptides, 4 amino acids,
3 cofactors and vitamins, 1 carbohydrate, 1 nucleotide, and 16 uncharacterized metabo-
lites (Additional file 1: Table S7).

Algorithm 1’s tendency toward choosing metabolites that are measured in few data-
sets somewhat hinders the utility of the list of 50 metabolites it has nominated. It may
also suggest the existence of cancer-type-specific core metabolite features. Nonetheless,
the selected set serves as a template for future investigation. Further refinement of Algo-
rithm 1, as well as in-vitro experiments to determine the reliability of measuring these
metabolites, could help curate or expand the set of core metabolite features.
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