
PerSVade: personalized structural variant
detection in any species of interest
Miquel Àngel Schikora‑Tamarit1,2    and Toni Gabaldón1,2,3,4*    

Background
Structural variants (SVs) are large changes (typically >50 bp) in the DNA between indi-
viduals that alter genome size (duplications and deletions) or generate rearrangements
(inversions, translocations, and interspersed insertions) [1, 2]. In eukaryotes, SVs can
drive clinically relevant phenotypes including cancer [3–5], neurological diseases [6, 7],
or antifungal drug resistance [8, 9]. In addition, SVs may generate significant intraspe-
cific genetic variation across many taxa like humans [10–12], songbirds [13], or rice
plants [14]. Despite their role on human health and natural diversity, most genomic
studies overlook SVs due to technical difficulties in calling SVs from short reads [15].
This means that the role of SVs remains largely unexplored across eukaryotes.

Inferring SVs from short reads is challenging because it relies mostly on indirect evi-
dence coming from de novo assembly alignment, changes in read depth, or the presence
of discordantly paired / split reads in read mapping analysis [16–21]. Long-read-based
SV calling may avoid some of these limitations, but short read-based SV calling remains
a cost-effective strategy to find SVs in large cohorts [14, 15, 22]. Recent benchmarking
studies compared the performance of different tools in human genomes and found that
SV calling accuracy is highly dependent on the methods and filtering strategy used [15,

Abstract 

Structural variants (SVs) underlie genomic variation but are often overlooked due to
difficult detection from short reads. Most algorithms have been tested on humans,
and it remains unclear how applicable they are in other organisms. To solve this, we
develop perSVade (personalized structural variation detection), a sample-tailored pipe‑
line that provides optimally called SVs and their inferred accuracy, as well as small and
copy number variants. PerSVade increases SV calling accuracy on a benchmark of six
eukaryotes. We find no universal set of optimal parameters, underscoring the need for
sample-specific parameter optimization. PerSVade will facilitate SV detection and study
across diverse organisms.

Keywords:  Structural variants, Variant calling, Short reads, Parameter optimization

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Schikora‑Tamarit and Gabaldón ﻿
Genome Biology (2022) 23:175
https://doi.org/10.1186/s13059-022-02737-4

Genome Biology

*Correspondence:
toni.gabaldon@bsc.es

1 Barcelona Supercomputing
Centre (BSC-CNS), Plaça Eusebi
Güell, 1‑3, 08034 Barcelona, Spain
2 Institute for Research
in Biomedicine (IRB Barcelona),
The Barcelona Institute
of Science and Technology,
Baldiri Reixac, 10,
08028 Barcelona, Spain
3 Catalan Institution for Research
and Advanced Studies (ICREA),
Barcelona, Spain
4 Centro Investigación Biomédica
En Red de Enfermedades
Infecciosas, Barcelona, Spain

http://orcid.org/0000-0003-2964-9818
http://orcid.org/0000-0003-0019-1735
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02737-4&domain=pdf

Page 2 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

23, 24]. Such studies are useful to define “best practices” (optimal methods and filter-
ing strategies) for SV calling in human samples. However, few studies have investigated
the accuracy of these tools on non-human genomes. It is unclear whether the human-
derived “best practices” for SV calling can be reliably used in other species. We hypoth-
esize that this may not be the case for genomes with different contents of repetitive or
transposable elements, which constrain the short read-based SV calling accuracy [24]. In
summary, current tools for short-read-based SV calling are often unprepared for non-
human genomes, which hinders the study of SVs in most organisms.

To overcome this limitation, we developed the personalized structural variation
detection pipeline, or perSVade (pronounced “persuade”), which is designed to adapt a
state-of-the-art SV calling pipeline to any sample/individual of any genome/species of
interest. PerSVade detects breakpoints (two joined regions that exist in the sample of
interest and not in the reference genome) from short paired-end reads and summarizes
them into complex SVs (deletions, inversions, tandem duplications, translocations, and
interspersed insertions). The pipeline provides automated benchmarking and parameter
selection for these methods in any genome or sequencing run, which is useful for species
without such recommended parameters. PerSVade provides an automated report of the
SV calling accuracy on these simulations, which serves to estimate the confidence of the
results on real samples. Beyond SV detection, perSVade can be used to find small vari-
ants (single-nucleotide polymorphisms (SNPs) and insertions/deletions (IN/DELs)) and
read depth-based copy number variation (CNV), all implemented within a flexible and
modular framework.

The following sections describe perSVade and its SV calling performance on various
datasets of both simulated and real genomes with SVs.

Results
PerSVade: a pipeline to call and interpret structural variants in your species of interest

PerSVade identifies SVs from a paired-end WGS dataset and a reference genome as sole
inputs. It identifies breakpoints from the aligned reads with gridss [21] and summarizes
them into actual SVs (insertions, translocations, deletions, inversion, and tandem dupli-
cations) with clove [25]. We followed the recent recommendation of using a single, high-
performing algorithm for breakpoint calling instead of using multiple software [24]. We
chose gridss because of its high accuracy in several benchmarking studies [23, 24]. In
addition, our pipeline generates a functional annotation of the variants, which is use-
ful to evaluate the altered genomic regions and aid downstream analyses. In summary,
perSVade is a pipeline to find and interpret SVs from most eukaryotic sequencing data-
sets (Fig. 1).

A key feature of perSVade is the parameter optimization step (implemented in the
“optimize_parameters” module and shown in Additional file 1: Figure S1). There are
no specific recommendations for filtering the outputs of gridss and clove in most spe-
cies, and it is unclear whether the parameters validated on model organisms are uni-
versal. Similarly, the performance of these algorithms on different sequencing formats
(i.e., varying read lengths, coverage, or insert size) is not easy to predict. To solve this
automatically, perSVade “optimize_parameters” generates simulated genomes (based
on the reference genome and input dataset) with SVs and chooses the most accurate

Page 3 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

filters (with the highest harmonic mean between precision and recall (F-value)) for these
simulations. To account for different mechanisms of SV formation, the simulations can
be either (1) randomly placed across the genome (“random” simulations), (2) around
regions with previously known SVs (“known” simulations), or (3) around regions with
homologous sequences (“homologous” simulations). We consider that “known” and
“homologous” simulations are more realistic than the “random” ones. See “Methods”
for further details. Regardless of the simulation type, the optimized filters can be used
for the SV calling on real data, potentially yielding the highest possible performance.
The accuracy of the optimized filters on different simulations is reported as a tabular
file, which is useful to define the expected calling accuracy. We hypothesize that this

Fig. 1  Schematic representation of the modular workflow of PerSVade. This figure shows the modules
of perSVade (each represented in a different box and executable with a single command), which may be
combined following the drawn arrows. The italic text describes the algorithms used at each step. The pipeline
identifies either structural variants (SVs) (module “call_SVs”), coverage-derived copy number variants (CNVs)
(module “call_CNVs”), small variants (module “call_small_variants”), and/or changes in the coverage per gene
(module “get_cov_genes”) from aligned short paired-end reads (obtained with the module “align_reads”).
The different types of SVs output by “call_SVs” are drawn at the bottom for clarity. In addition, the module
“trim_treads_and_QC” can be used to trim the reads and perform quality control with FASTQC before read
alignment. On another note, several modules (“call_SVs,” “find_knownSVs_regions,” “integrate_SV_CNV_calls,”
“optimize_parameters,” and “call_small_variants”) use an annotation of genomic repeats that can be obtained
with the module “infer_repeats” (bottom left). The most novel aspect of perSVade is the automatic parameter
optimization for SV calling adapted to the input (implemented in the module “optimize_parameters”). This is
achieved through simulations of SVs on the reference genome, which can be randomly placed (“random”),
around regions with previously known SVs (“known”) or on regions with pairwise homology (“homologous”).
The modules “find_knownSVs_regions” and “find_homologous_regions” can be used to infer these “known”
and “homologous” regions, respectively. In addition, the variants found with “call_SVs” and “call_CNVs” can be
combined with the module “integrate_SV_CNV_calls.” Finally, the modules “annotate_SVs” and “annotate_
small_vars” can be used to obtain a functional annotation of the variants. See “Methods” for more details. In
addition, note that Additional file 1: Figure S1 includes a more detailed representation of how “optimize_
parameters” works

Page 4 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

accuracy may vary across species and/or sequencing formats, and perSVade can infer it
on any input sample. All in all, perSVade automatically finds the best filters and reports
the expected calling accuracy for each input sample.

We validated the usability of perSVade by running it on available sequences for six
phylogenetically diverse eukaryotes with different genome sizes (Candida glabrata (12
Mb), Candida albicans (14 Mb), Cryptococcus neoformans (19 Mb), Arabidopsis thali-
ana (120 Mb), Drosophila melanogaster (144 Mb), and Homo sapiens (3163 Mb)), with
three WGS runs per species (yielding datasets with 6.75×106–1.59×109 reads, see
“Methods”). We ran the pipeline using parameter optimization with “random,” “known,”
or “homologous” simulations. In addition, we ran perSVade with default parameters as
a baseline, useful to evaluate the impact of parameter optimization (the core and most
novel feature of perSVade) on calling accuracy and resource consumption. We found
that the computational burden (running time and memory used) was highly variable
among datasets and correlated with genome and dataset sizes. As expected, parameter
optimization increased resource consumption in all cases. This burden was particularly
high for the human datasets, which may hinder the usage of perSVade on such large
genomes if computational resources are limited (Additional file 1: Figure S2). However,
we consider that such choices should be left to the user based on these results, since the
increased accuracy due to parameter optimization may outweigh resource costs. Taken
together, our analysis indicates that perSVade can be used for SV calling in a wide range
of eukaryotes and sequencing datasets.

PerSVade’s parameter optimization improves calling accuracy in simulated datasets

In order to clarify the impact of parameter optimization on calling accuracy, we meas-
ured the performance of perSVade’s SV calling on these samples and simulations. We
found that the F-value after parameter optimization on “random” and “known” simula-
tions was high (between 0.75 and 1.0) in most samples and SV types (with one exception
in Drosophila melanogaster that yielded an F-value ~ 0.5). The F-value on “homologous”
simulations was often lower (depending on the species), suggesting that SVs happening
on regions with pairwise homology may be more difficult to resolve. As expected, the
accuracy on “random” SVs was higher than on more realistic simulations (“known” and
“homologous”), suggesting that it may overestimate real data accuracy. In general, the
F-value was higher than the “default” setting in most species (except in C. neoformans),
and the improvement was dramatic in some SV types (i.e., the F-value went from <0.1 to
>0.95 in C. glabrata’s deletions or insertions) (Fig. 2). In addition, we found that param-
eter optimization increases recall rather than precision, which is >0.95 in most simula-
tions and SV types (Additional file 1: Figure S3). We also found that using a single set of
(global) parameters optimized for all SV types in a given sample yields an accuracy that
is as high as using a set of parameters specifically for each SV type (Additional file 1:
Figure S4). This validates our approach of running SV calling once (with a single set of
parameters) for each sample. Taken together, our results suggest that parameter opti-
mization yields maximum performance by improving the recall of SVs as compared to
default parameters.

Page 5 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

We next explored whether different runs of perSVade (i.e., in different species or
simulation types) yield similar parameters, which may clarify how necessary this opti-
mization is. We hypothesized that each sample and simulation type combination may
require specific parameters that would not necessarily work for other samples. To test
this, we first compared the chosen parameters across different runs, which appeared
to be sample-specific (Additional file 1: Figure S5A). This suggests that there is not
a universal recipe (i.e., filtering parameters) for SV calling with perSVade. However,
another (null) hypothesis could be that different parameter sets have similar out-
comes, without changing the SV calling accuracy. This question was highly important
to us. If perSVade’s optimization converges to equivalent parameter sets in different
samples we would not need the optimization on every sample (i.e., we could re-define
one of these parameters as default). In order to sort this out, we evaluated how dif-
ferent parameter sets (either “default” ones or those that are defined as “optimum”
for a given sample) work on simulated genomes related to other samples. The results
of this analysis are shown in Fig. 3 and Additional file 1: Figure S6. As hypothesized,
not all the parameter sets yield accurate results on all samples, with large differences
between species (Fig. 3A). However, we found that parameters optimized for one

Fig. 2  PerSVade’s parameter optimization improves the SV calling accuracy on simulations. We ran perSVade’s
SV calling on three samples / species for six eukaryotes (see “Methods”) using either “random,” “known,” or
“homologous” simulations. These plots show the F-value of either default (gray) or optimized (red) parameters
(for each sample and simulation type) on these simulations. The x axis represents the type of SV (deletions
(del), tandem duplications (tan), inversions (inv), insertions (ins), translocations (tra), and the average of all
SVs (all)). Note that Additional file 1: Figure S3 shows the corresponding precision and recall, from which the
F-value is calculated

Page 6 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

sample are mostly accurate on samples of the same species, regardless of the simu-
lation type (Fig. 3B). Of note, the parameters yielded by “random” simulations were
accurate on “homologous” and “real” simulations (Fig. 3). This indicates that running
perSVade on “random” simulations (the cheapest setting in terms of resources) yields
accurate parameters for more realistic simulations and possibly real SVs. On another
line, we found that the different parameters changed mostly the SV calling recall, and
not the precision (Additional file 1: Figure S6).

Fig. 3  There is no universal recipe for SV calling across all species. A In order to assess whether perSVade’s
parameter optimization is necessary for a given combination of sample and simulation (mentioned in Fig. 2),
we measured the SV calling accuracy of each optimized parameter set on the other combinations. Each row
indicates a different “training” parameter set optimized for each sample and simulation type in all species.
In addition, the first row refers to the default parameters. Each column represents a simulation from a given
sample / simulation type to be “tested.” The heatmap shows the F-value of each parameter set on each tested
simulation (hereafter referred to as “testing instance”). Note that the species are ordered alike in rows and
columns. In addition, note that each sample (from a given species and simulation type) yielded one set of
training parameters and two simulated genomes tested here, which explains why there are two columns
for each row. The colored boxes indicate testing instances where the training and testing species are equal.
The asterisks refer to instances where both the sample and type of simulation are equal in the training and
testing (equivalent to the “optimized” parameters from Fig. 2). Note that Additional file 1: Figure S6 shows the
corresponding precision and recall, from which the F-value is calculated. B We summarized the data shown
in A to compare how similar types of training parameters performed on each species (in the rows) and type
of simulations (in the columns). Each point corresponds to a testing instance, matching one cell from the
heatmap in A. The “default” and “same sample” reflect testing instances where the training parameters were
either un-optimized or optimized specifically for each sample, respectively. The “different spp” group includes
instances where the training parameters were from different species. The “same spp” group shows testing
instances with both training parameters and tested simulations from a different sample of the same species.
The “same simulation” reflects instances with the same training and testing sample, but different simulation
types. For clarity, the right box shows how the training parameters are grouped for a set of “homologous”
simulations based on one example C. glabrata sample (which corresponds to the first two columns in A)

Page 7 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

To understand why certain parameter choices impact SV calling accuracy, we tested
how changing each parameter in isolation (keeping all others with default values) affects
accuracy in these different species and simulations (Additional file 1: Figure S5). We first
used these data to assess whether the change of single parameters drives the optimiza-
tion process. We measured, for each parameter and sample, the ratio between the sin-
gle-parameter-change F-value (where only one parameter has the optimal value) and the
maximum F-value (obtained with the set of parameters where all parameters are opti-
mized). We find that 78.05% of these parameter-sample instances have an F-value ratio
below 0.75 (Additional file 1: Figure S5B), suggesting that the optimal accuracy is mostly
reached by a complex interplay between different (at least 2) parameters, rather than
being driven by a single-parameter change.

This analysis also serves to evaluate the impact of different parameters on SV calling
accuracy. For example, we find that the set of vcf “FILTER” tags defining accepted break-
points (wrong_FILTERtags parameter) drastically affects the accuracy in C. glabrata,
in a way that requiring de novo assembly support for breakpoints (default behavior) is
too conservative. A similar (but smaller) effect is observed in C. albicans, but not in the
other species, which could be due to unique genomic features and/or technical proper-
ties in the Candida samples driving worse assembly performance. In addition, the cov-
erage thresholds that define tandem duplications and deletions (min_rel_coverage_dup
and max_rel_coverage_del, respectively) determine accuracy in a way that is dependent
on ploidy, likely because diploid species (C. albicans, D. melanogaster, and H. sapiens)
require a less conservative threshold to accept heterozygous variants. Importantly, these
three parameters (wrong_FILTERtags, min_rel_coverage_dup and max_rel_coverage_del)
explain why default parameters are suboptimal in most cases, as the default values can
be too conservative in different species. On another line, the minimum number of sup-
porting reads per variant (min_Nfragments) changes accuracy, with sample-specific
effects (see D. melanogaster and A. thaliana), which we attribute to varying cover-
age, read lengths, or sequencing quality. Finally, filtering out variants that overlap any
repetitive elements (filter_overlappingRepeats) generally reduces accuracy for realistic
simulations (“homologous” and “known”), likely due to the fact that real variants could
appear around such repeats. Conversely, there are other parameters that have minimal
effects on accuracy (dif_between_insert_and_del, filter_noReadPairs, max_to_be_con-
sidered_small_event, maximum_length_inexactHomology, maximum_microhomology,
maximum_strand_bias, min_QUAL, min_af, min_length_inversions, range_filt_DEL_
breakpoints) (Additional file 1: Figure S5B). However, these parameters can have an
impact in some samples and, since perSVade only considers parameter values that can
change the filtering in each sample (see “Methods”), we consider that they should not be
removed from the “optimize_parameters” module.

Our analysis also showed that the need for parameter optimization is different for each
species. An illustrative example is the dramatic difference between C. neoformans and
C. glabrata (Fig. 3A), which provides further insights on the role of various parameters.
We found that the parameter choice is irrelevant in C. neoformans, while C. glabrata
samples required specific optimization (Fig. 3A). We consider that this is unlikely driven
by intrinsic genomic differences between the two species, as both have small (<20Mb)
haploid genomes with low content of simple repeats (0.98% in C. glabrata and 0.80% in

Page 8 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

C. neoformans) or low-complexity regions (0.16% in C. glabrata and 0.21% in C. neo-
formans). We hypothesized that C. glabrata samples have an excessively high cover-
age (>300×, while C. neoformans samples have a 30×–40× coverage (Additional file 1:
Table S1)) which may constrain SV calling accuracy and require optimized parameters.
To test this, we measured the accuracy of different parameter sets on the C. glabrata
simulations with randomly downsampled coverages. As hypothesized, we find that most
parameters are accurate on the C. glabrata with 30× coverage, while simulations with
lower (10×) and higher (100×–500×) coverage require specific parameters (Additional
file 1: Figure S7). These results suggest that 30×–40× could be the optimal coverage for
perSVade, which is reasonable given that gridss was developed for human datasets with
similar coverage. However, there are still differences between the C. neoformans and the
downsampled (30×) C. glabrata samples. For example, there are two parameter sets
optimized for the high-coverage C. glabrata samples (both requiring at least 30 support-
ing reads per SV) which are accurate on all C. neoformans simulations (Fig. 3A), but not
on the C. glabrata 30× (Additional file 1: Figure S7). This suggests that there are differ-
ent genomic features between these species (i.e., content of simple repeats) constraining
the accuracy. These findings indicate that both technical variation (i.e., changes in cover-
age) and different genomic features underlie the observed differences in SV calling accu-
racy between species. Importantly, this also illustrates that perSVade can adapt to each
sample and yield optimal results.

In summary, our results suggest that parameter optimization is necessary for maxi-
mum performance in each species and dataset and that there is a complex interplay
between parameters.

PerSVade’s parameter optimization improves the calling accuracy in datasets with defined

sets of real SVs

The performance of SV calling on simulations may not be equivalent on real data, as
SVs often appear around repetitive or low-complexity regions which hamper their
detection [24, 26–28]. It is thus possible that we overestimated the real accuracy in our
simulations. We partially addressed this with our analysis based on “realistic” simula-
tions (“known” and “homologous”), where the inferred accuracy was lower (Fig. 2) and
potentially closer to the real one. To further validate the usage of perSVade for real SV
calling, we tested it on datasets with known SVs, which were available for the human
samples tested above (i.e., Fig. 3). We ran perSVade (using different simulation types)
on the same three datasets, which had previously defined deletions and inversions (see
“Methods” for details).

We used these data to assess the accuracy of perSVade on real datasets, using different
sets of parameters (optimal for each simulation and sample from the six species tested
above, shown in Fig. 3). As expected, we found a lower F-value on real datasets (Fig. 4)
as compared to the simulated genomes (Figs. 2 and 3), with high precision and lower
recall (Fig. 4B). In addition, parameter optimization improved the F-value modulating
both precision and recall (Fig. 4B). However, the other results described in the simu-
lations’ analysis (related to the performance of the pipeline and the universality of the
parameters) are qualitatively equivalent in these real datasets (Fig. 4). Taken together,

Page 9 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

Fig. 4  PerSVade’s parameter optimization improves the SV calling accuracy on datasets with known real
SVs. A To test perSVade’s performance on real SVs, we measured how the parameters optimized for several
simulations in different species (see Fig. 3) work on three human samples (CHM, HG002, and NA12878)
with defined sets of real SVs. Each row indicates one of these different “training” parameters optimized for
each sample and simulation type. In addition, the first row refers to the default parameters. Each column
represents a sample with defined real SVs to be “tested.” The heatmap shows the F-value of each parameter
set on each tested real sample (hereafter referred to as “testing instance”). In addition, we divide the testing
instances into different groups (“default,” “different spp,” “same spp,” and “same sample”), which are relevant to
understand the B panel. The “different spp” group refers to instances where the training and testing species
were different. The “~” (same spp) refers to instances where the training and testing samples were different,
but from the same species. Finally, the “*” (same sample) refers to instances where the training and testing
samples were the same. B We summarized the data shown in A to compare how similar types of training
parameters performed on each testing sample (each represented by a different color). Each row corresponds
to a different accuracy measure. Each point corresponds to a testing instance (matching one cell from the
heatmap in A in the bottom “F-value” plots). The “default” and “same sample” reflect testing instances where
the training parameters were either un-optimized or optimized specifically for each sample, respectively. The
“different spp” group includes instances where the training parameters were from a different, non-human,
species. The “same spp” group shows testing instances with both training parameters and tested simulations
from different samples of the same species. In addition, each column represents testing instances where
the training parameters were based on “random” or “known” simulations, respectively. Note that the different
groups of “training parameters” are equivalent to those shown in A 

Page 10 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

our analysis indicates that perSVade improves SV calling in real datasets (similarly to
simulated genomes).

Discussion
Despite large variation of genomic features across taxa, SV detection approaches in
non-model organisms tend to rely on tools and parameters developed for other species
(generally human). We hypothesized that this “one size fits all” approach is suboptimal,
and likely biased towards certain species. To test this idea and overcome the problem,
we developed perSVade, a flexible pipeline that automatizes the calling and filtering of
structural variants (SV) across eukaryotes. PerSVade is a modular method to automati-
cally adapt a state-of-the-art SV calling pipeline to any sample/species of interest. PerS-
Vade uses simulations to choose the optimal filters for each sample and report the calling
accuracy, which can inform about the reliability of the results. This will allow users to be
aware of the accuracy in their datasets (i.e., perSVade may be inaccurate in some data-
sets due to low coverage, short read lengths, or excessive repeats in the genome) and
make informed choices.

We validated the broad usability of perSVade by testing it on simulations and real data-
sets for a wide range of eukaryotes (with genomes of 12–3000 Mb and datasets includ-
ing 107–109 reads). We found that there is a significant computational burden related to
parameter optimization, which may hinder its usage on large genomes. This means that
perSVade may be particularly cost-effective for small genomes (i.e., <200 Mb). However,
the chosen settings will likely depend on the available resources, and some users may
consider that the resources spent (see Additional file 1: Figure S2) are worth it given that
parameter optimization yields improved accuracy (see below).

This testing also revealed that, as we hypothesized, parameter optimization improves
the calling accuracy on both simulations and datasets with real, previously defined SVs.
We found that the optimization mostly improves the recall rather than precision (which
is generally high regardless of the used parameters). However, there are some exceptions
(mostly in the testing on real SVs), suggesting that optimization can be necessary for
reaching both high recall and precision in some samples. In addition, perSVade’s opti-
mization yielded unique parameter sets for each sample, which were often inaccurate on
other datasets. This means that there is no universal set of parameters that work well for
all samples, which justifies the need for parameter optimization and a tool like perSVade
to automate such a task. Conversely, we found some trends that can be useful to skip
parameter optimization in some cases. For instance, parameter sets were often accurate
across datasets of the same species (which could be due to differences in coverage and/
or intrinsic genomic features). In addition, parameters resulting from “random” simula-
tions performed well in more realistic (“known” and “homologous”) simulations as well
as in real SV datasets of the same species, indicating that they can be used for maximum
performance. Based on these findings, we propose the following recommendations for a
cost-effective usage of perSVade:

–	 For SV calling on many datasets of one species with similar properties (similar
coverage, read length, and insert size), run perSVade using “random” simulations
on one sample, and use the optimized parameters for the other samples (skip-

Page 11 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

ping optimization). The reported calling accuracy may be overestimated since the
simulations are not realistic, but the chosen parameters are expected to be opti-
mal. This strategy may be particularly suited to large genomes, where users would
avoid the computational burden of optimizing parameters for each sample.

–	 For approximating the real SV calling accuracy, run perSVade on realistic simula-
tions (“homologous” or “known”), which may report an accuracy that is closer to
the real one.

–	 For SV calling on large datasets, consider the following options to speed up
the process. First, rationally design the parameters (based on parameters opti-
mized for similar samples (see first point) and/or the benchmarking shown
in this work) instead of inferring them with the “optimize_parameters” mod-
ule for every new sample. Second, skip marking duplicates in read alignment,
which can be very costly. Third, limit the simulations to a subset of chromo-
somes in the “optimize_parameters” module. Fourth, randomly downsample
your reads (i.e., to 30×), which may improve both performance and accuracy
(see Additional file 1: Figure S7).

We note that perSVade is not a fundamentally new algorithm for SV detection but
rather a pipeline implementing existing algorithms. This is why we did not compare
it with other such methods (like manta [20] or delly [29]). The novelty of our pipe-
line lies in the automatic parameter selection feature, which is unique (to the best of
our knowledge) for short read-based SV calling. We thus centered our testing on the
accuracy of different parameters on SV calling. In fact, some recent approaches spe-
cifically developed for human genomes [22, 30] may outcompete perSVade in human
samples. However, such methods rely on previously defined sets of known SVs, which
are not available in most taxa. We thus consider that our pipeline will be mostly use-
ful in species without such specific methods available. For example, perSVade was
used in a recent study to find SVs associated with antifungal drug resistance in the
non-model yeast Candida glabrata [9], which successfully validated all (8/8) the pre-
dicted variants using PCR.

An open question is whether a similar parameter optimization strategy can be
applied to SV calling pipelines based on other algorithms. Several studies have shown
that the filtering strategies (considering parameters like read coverage, variant qual-
ity and vcf “FILTER” tags) largely affect the calling accuracy in various algorithms
[23, 24]. This suggests that most SV callers could be boosted with a parameter opti-
mization strategy such as the one described here for gridss and clove. However, due
to high heterogeneity in SV callers, each algorithm may require a custom pipeline to
deal with caller-specific parameters, outputs, and SV types.

Finally, perSVade also includes modules for CNV identification and SNP/INDEL
calling, as a way to automate the finding of other broadly used genomic variants. In
addition, it includes variant annotation features to ease the functional interpretation
of these variants for downstream analyses. In summary, perSVade is a Swiss-knife-like
framework to identify many types of variants with a few bash commands. We con-
sider that this tool will be useful to understand the role SVs in different phenotypes
and organisms, particularly those with no specific recommendations.

Page 12 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

Conclusions

–	 perSVade can identify SVs from short reads with sample-optimized parameters using
a few bash commands.

–	 perSVade can predict the SV calling accuracy on simulated genomes, which informs
about the reliability of the calling process in an automatic manner.

–	 perSVade’s parameter optimization improves the SV calling accuracy on simulated
variants for five eukaryotic organisms, and on a reference dataset of validated human
variants.

–	 We found no universal set of “optimal” parameters, which underscores the need for
species-specific parameter optimization for SV calling.

Methods
PerSVade pipeline

PerSVade has several modules that can be executed independently (each with a single
command) and/or combined to obtain different types of variant calls and functional
annotations. The following sections describe how each of these modules work, and Fig. 1
shows how they can be combined.

Module “trim_reads_and_QC”

This module runs trimmomatic [31] (v0.38) with default parameters for the input reads
followed by fastqc [32] (v0.11.9) on the trimmed reads. These trimmed reads may be
used for downstream analysis after checking that they are reliable according to the out-
put of fastqc.

Module “align_reads”

This module runs bwa mem [33] (v0.7.17) to align the short reads, generating a sorted
.bam file (using samtools [34] (v1.9) with marked duplicates (through GATK MarkDupli-
catesSpark [35] (v4.1.2.0)), that is the core input of several downstream modules (“call_
SVs,” “optimize_parameters,” “call_CNVs,” “call_small_variants,” and “get_cov_genes”). If
--skip_marking_duplicates is specified, this module skips the marking of duplicate reads
(default behavior), which may be useful to speed up the process in large datasets.

Module “call_SVs”

This module uses gridss [21] to infer a list of breakpoints (two regions of the genome—
two breakends—that are joined in the sample of interest and not in the reference
genome) from discordant read pairs, split reads, and de novo assembly signatures. The
breakpoints are summarized into SVs with clove [25] (v 0.7). Importantly, this mod-
ule (and others) runs clove without the default coverage filter to classify deletion-like
(DEL-like) and tandem duplication-like (TAN-like) breakpoints into actual deletions
and tandem duplications. Instead, perSVade “call_SVs” calculates the relative coverage
of the regions spanned by such breakpoints (using mosdepth [36]). This information is
used to define the final set of deletions (DEL-like breakpoints with a coverage below a
“max_rel_coverage_to_consider_del” threshold) and tandem duplications (TAN-like

Page 13 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

breakpoints with a coverage above a “min_rel_coverage_to_consider_dup” threshold).
This setting allows a separate thresholding for the classification of DEL and TAN-like
breakpoints, which is a novel feature of perSVade as compared to the current implemen-
tation of clove. Note that this module requires as an input a set of parameters to filter the
gridss and clove outputs. These parameters may be inferred using the module “optimize_
parameters” (described below) or rationally designed based on the benchmarking shown
here (which can be useful to speed up the process). In addition, the user can use a set of
default parameters, described in the section “Filters used by perSVade” below. Note that
these default parameters are inspired by previous filtering strategies from [21, 37, 38].

The final output of this module is a set of files with the called variants (one file for each
variant type), which belong to these types:

–	 Simple SVs: deletions, inversions, and tandem duplications (duplication of a region
which gets inserted next to the affected region). This module outputs one .tab file for
each of these SV types.

–	 Translocations: whole-arm balanced translocations between two chromosomes,
which can be inverted or not. There is one .tab file for translocations.

–	 Insertions: a region of the genome is copied or cut and inserted into another region.
Note that these are not de novo insertions (i.e., of DNA not present in the reference),
which are actually not called in this module. There is one .tab file for insertions.

–	 Unclassified SVs: One .tab file reports all the variants that are called by clove and can-
not be assigned to any of the above SV types. These include clove’s unclassified break-
points (which could be part of unresolved/unknown complex variants) and complex
inverted SVs (which are non-standard SVs). These types of SVs are not included in
the simulations performed by “optimized parameters” (see below), so that their accu-
racy is unknown. This is why we group them together into a single file.

These separate files have a tabular format, where each variant is represented in a single
line. In addition, the module “integrate_SV_CNV_calls” (see below) generates a single
.vcf file with all the variants together, represented in a way that is focused on how each
SV affects particular regions of the genome (useful for functional annotation). PerS-
Vade’s github wiki [39] includes further information on the output formats.

On another line, note that gridss does report de novo insertions, but the usage of short
reads limits the calling to small events, which may miss many real de novo insertions.
This is why we decided to not consider such variants as a trustful output in this module
or the “optimize_parameters.” However, “call_SVs” saves the raw gridss output, and the
unfiltered small de novo insertions can be obtained (although these should be treated
with caution). In addition, note that these de novo insertions are different from non-tem-
plate insertions happening around the breakends of actual SVs. Non-template insertions
are likely the product of DNA repair after the rearrangement, and they are considered in
the “integrate_SV_CNV_calls” (see below).

Module “optimize_parameters”

To find optimal parameters for running “call_SVs” in a given input dataset, this mod-
ule generates two template (haploid) simulated genomes (the number can be customized

Page 14 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

with --nsimulations) with up to 50 SVs of each of five types (insertions, transloca-
tions, deletions, inversion, and tandem duplications) with RSVsim [40] (v1.28) and cus-
tom python (v3.6) scripts (which use biopython [41] (v1.73)). By default, this template
genome contains all chromosomes in the reference, but this can be customized with the
--simulation_chromosomes argument to only simulate a subset of chromosomes and
speed up the process. For each template genome, the module simulates reads with wgsim
[42] (v1.0) and seqtk [43] (v1.3) with a read length, insert size, and coverage matching
that of the input dataset. Note that the read simulation is performed according to a user-
defined zygosity and ploidy (through the mandatory argument “--simulation_ploidies”)
to resemble various organisms. For example, if “--simulation_ploidies diploid_hetero”
is specified, this module simulates reads with heterozygous SVs by merging reads from
both the reference genome and the simulated genome with SVs in a 1:1 manner. Impor-
tantly, --simulation_ploidies can have multiple values, so that for each template simu-
lated genome and simulation ploidy this module generates unique simulated reads with
the specified ploidy and zygosity. For example, if “--nsimulations 2 --simulation_ploidies
diploid_hetero,diploid_homo” is set, this module generates four simulated reads. First
it generates two template genomes, and for each of them it simulates reads with either
heterozygous or homozygous SVs. Note that “--simulation_ploidies” can include any
combination of “haploid,” “diploid_homo,” “diploid_hetero,” and “ref:<nref>_var:<nvar>”
(where <nref> / <nvar> are the number of reference / alternative chromosomal copies,
respectively). For example, setting “--simulation_ploidies ref:3_var:1” simulates reads
assuming a tetraploid genome, where three chromosomes are like the reference and one
has the SVs. This flexibility in setting ploidies / zygosity allows adapting this module to
polyploid genomes or complex samples (i.e., pools of different samples of a population).

For each set of simulated reads (from one template genome with a specific ploidy
and zygosity), perSVade “optimize_parameters” then tries several combinations
(>278,000,000,000 by default, although this can be user-defined with the argument --range_
filtering_benchmark) of parameters to run gridss and clove and filter their outputs. The
detailed explanation about the used filters can be found in the section “Filters used by perS-
Vade” below. To reduce the number of parameter combinations to be optimized, the pipe-
line discards parameter values that do not change breakpoint filtering as compared to an
unconservative set of parameters. This means that the set of parameters to be optimized
are limited to those that can be relevant, and these could be different in any run. One of
these possible filters includes removing SVs that overlap repetitive elements, which may be
inferred with the module “infer_repeats” (see below). This module selects the combination
of filters that yield the highest F-value (the harmonic mean between precision and recall)
for each SV type in each template simulated genome and ploidy/zygosity (see the section
“Comparing sets of SVs to calculate precision and recall” below for more information on
how accuracy is calculated). These filters are optimized for each simulation, and thus may
not be accurate on independent sets of SVs (due to overfitting). In order to reduce this
effect, perSVade “optimize_parameters” selects a final set of “best parameters” that work
well for all simulations, ploidies/zygosities, and SV types. This set of best parameters may be
used in the “call_SVs” module. The accuracy (F-value, precision, recall) of these parameters
on each simulation and SV type is reported in a tabular file, which serves to evaluate the
expected calling accuracy. Note that we default the number of template simulated genomes

Page 15 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

to two in order to have a meaningful evaluation of overfitting (which likely requires more
than one template genome). In addition, note that setting several simulation ploidies can be
useful to select parameters that work well for different ploidies/zygosities.

All plots are generated using python (v3.6) and the libraries seaborn [44] (v0.9.0) and
matplotlib [45] (v3.3.0). In addition, the python packages scipy [46] (v1.4.1), scikit-learn
[47] (v0.21.3), psutil [48] (v5.7.2), and pandas [49] (v0.24.2) are used for scripting and
various statistical calculations. On another line, pigz [50] (v2.4) and gztool [51] (v0.11.5)
are used for fast compression steps. Finally, perSVade “optimize_parameters” uses picard
[52] (v2.18.26) to construct a sequence dictionary for the provided reference genome.

By default, the simulated events are placed randomly across the genome. However, real
SVs often appear around repetitive elements or regions of the genome with high similar-
ity (e.g., transposable elements insertions) [24, 26–28]. This means that random simu-
lations may not be realistic, potentially leading to overestimated calling accuracy and
a parameter selection inaccurate for real SVs [24]. To circumvent this, perSVade “opti-
mize_parameters” can generate more realistic simulations occurring around some user-
defined regions (i.e., with previously known SVs or homologous regions) provided with
the --regions_SVsimulations argument. Importantly, perSVade provides an automatic
way to infer such regions through the modules “find_knownSVs_regions” and “find_
homologous_regions” (described below). Beyond setting custom regions, users may
want to tune the number of simulated SVs (through the --nvars argument) to be realistic
in the samples/species of interest. In addition, note that the variant size is proportional
to genome length, which ensures that long genomes have larger sections under SV.

Finally, note that Additional file 1: Figure S1 includes a detailed graphical representa-
tion which can be useful to understand how this module works.

Module “find_knownSVs_regions”

This module finds regions with known SVs using a provided list of sequencing datasets
(with the option --close_shortReads_table) from species close to the reference genome.
These datasets are processed with perSVade’s modules “trim_reads_and_QC,” “align_
reads,” and “call_SVs” (using default parameters) to find SVs. This module then outputs
a .bedpe file with the ±100bp regions around the breakends from these SVs. This .bedpe
file can be input to the module “optimize_parameters” through the --regions_SVsimula-
tions argument in order to perform “known” realistic simulations.

Module “find_homologous_regions”

This module infers homologous regions by defining genomic windows (from the refer-
ence genome) of 500 bp as a query for a blastn [53] (v2.10.0+) against the same ref-
erence genome. Hits with an e-value <10−5 that cover >50% of the query regions are
defined as pairs of homologous regions, which are written as a .bedpe file. This .bedpe
file can be input to the module “optimize_parameters” through the --regions_SVsimula-
tions argument in order to perform “homologous” realistic simulations.

Module “call_CNVs”

Copy number variants (CNVs) are a type of SVs in which the genomic content varies
(deletions or duplications). The “call_SVs” module (see previous section) identifies some

Page 16 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

CNVs (insertions, tandem duplications, deletions, and complex inverted SVs) but it can
miss others (i.e., whole-chromosome duplications or regions with unknown types of
rearrangements yielding CNVs [8, 54]). PerSVade uses this “call_CNVs” module to call
CNVs from read-depth alterations. For example, regions with 0× or 2× read depth as
compared to the mean of the genome can be called deletions or duplications, respec-
tively. A straightforward implementation of this concept to find CNVs is challenging
because many genomic features drive variability in read depth independently of CNV
[55, 56]. In order to solve this, perSVade “call_CNVs” calculates the relative coverage for
windows of the genome (using bedtools [57] (v2.29.0) and mosdepth [36] (v0.2.6)) and
corrects the effect of the GC content, mappability (calculated with genmap [58] (v1.3.0)),
and distance to the telomere (using cylowess [59] for nonparametric regression as in
[56]). Note that cylowess uses the library cython [60] (v0.29.21). This corrected coverage
is used by CONY [61] (v1.0), AneuFinder [62] (v1.18.0), and/or HMMcopy [63] (v1.32.0)
to call CNVs across the genome. Note that we modified the R code of CONY to be com-
patible with the input corrected coverage. The corrected code (used in the pipeline) is
available in “scripts/CONY_package_debugged.R” from [39]. PerSVade “call_CNVs”
generates consensus CNV calls from the (up to) three programs taking always the most
conservative copy number for each bin of the genome. For example, if the used pro-
grams disagree on the copy number of a region the closest to 1 will be taken as the best
estimate. Note that the parameters obtained in the module “optimize_parameters” can-
not be used for this module, since the SV and CNV calling methods are fundamentally
different.

Module “integrate_SV_CNV_calls”

This module generates a vcf file showing how SVs (called by the modules “call_SVs” and/
or “call_CNVs”) alter specific genomic regions. We designed this vcf to be compatible
with the Ensembl Variant Effect Predictor [64] (VEP) tool for functional annotation,
which can interpret tandem duplication (TDUP) duplication (DUP), deletion (DEL), and
breakend-like (BND) events. This requires the decomposition of each variant into such
TDUP, DUP, DEL, and BND events (one event in each row of the vcf). For example, each
inversion is decomposed into two BND events (two rows in the vcf), one for each end
of the inversion. The rationale behind this is that, in terms of functional annotation for
inversions, we are interested in genomic features that are around the ends of the inver-
sion, where the rearrangement happens. Each SV can thus be split across multiple rows
when it affects more than one region of the genome. All rows related to the same SV are
identified by the field variantID in INFO. On top of this, each row has a unique identifier
indicated by the field ID. Some SVs generate non-template inserted sequences around
the breakends (likely the product of DNA repair after a rearrangement), and each of
these is represented in a single row. Note that each of the rows may indicate a region
under CNV (with the SVTYPE in INFO as DEL, DUP, or TDUP), a region with some
breakend (with the SVTYPE in INFO as BND) or a region with a non-template insertion
(with the SVTYPE in INFO as insertionBND) around the breakend. Such non-template
insertions are included here because they may modulate the impact of SVs on genomic
features, and thus they are relevant for functional annotation. Note that this module
also removes redundant calls between the CNVs identified with “call_SVs” (tandem

Page 17 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

duplications, deletions and insertions) and those derived from “call_CNVs.” To remove
redundancy, this module skips any CNV called by “call_CNVs” that overlaps reciprocally
(by at least an 80% of the region) a CNV called by “call_SVs” using bedmap from the
bedops tool [65] (v2.4.39). See the FAQ “What is in SV_and_CNV_variant_calling.vcf?”
from [39] for more information about the format of this .vcf file.

Module “annotate_SVs”

This module runs the Ensembl Variant Effect Predictor [64] (v100.2) on the vcf output of
the module “integrate_SV_CNV_calls” to get the functional annotation of each SV. This
requires a .gff file from the user.

Module “call_small_variants”

This module performs small variant (SNPs and small IN/DELs) calling with either free-
bayes [66] (v1.3.1), GATK HaplotypeCaller [67] (v4.1.2.0), and/or bcftools call [68] (v1.9)
and integrates the results into .tab and .vcf files. The section “Calling of small variants”
below provides further information on how this calling is performed.

Module “annotate_small_vars”

This module runs the Ensembl Variant Effect Predictor [64] (v100.2) on the vcf output
of the module “call_small_variants” to obtain the functional annotation of each variant.
This requires a .gff file from the user.

Module “get_cov_genes”

This module runs mosdepth [36] (v0.2.6) to obtain the coverage for each gene, which
requires a .gff file from the user.

Module “infer_repeats”

This module annotates repetitive elements in a genome, which can be used for the mod-
ules “call_SVs,” “find_knownSVs_regions,” “integrate_SV_CNV_calls,” “optimize_param-
eters,” and “call_small_variants.” These repeats are inferred with RepeatModeler [69]
(v2.0.1) and RepeatMasker [70] (v4.0.9). The user can input these repeats to several
modules (with --repeats_file), which will have the following effects:

–	 If repeats are provided, “optimize_parameters” will assess whether removing SV
calls overlapping repeats increases the overall accuracy. If so, the resulting optimized
parameters will include a “filter_overlappingRepeats : True.” If you use these opti-
mized parameters in “call_SVs,” any breakpoint overlapping repeats will be removed.

–	 If repeats are provided, “call_SVs” may filter out SVs that overlap repeats if the SV
filtering parameters include a “filter_overlappingRepeats : True.”

–	 If repeats are provided, “find_known_SVs” will pass them to the “call_SVs” module.
–	 If repeats are provided, “integrate_SV_CNV_calls” will add a field in the INFO which

indicates whether the SVs overlap repeats.
–	 If repeats are provided, “call_small_variants” will add a field in the tabular variant

calling file which indicates whether the SVs overlap repeats.

Page 18 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

Alternatively, the user can specify “--repeats_file skip” to avoid the consideration of
repeats in all these modules.

Testing SV calling with perSVade on simulated structural variants

To test perSVade’s performance on different species, we ran it on paired-end WGS data-
sets for six eukaryotes (Candida glabrata, Candida albicans, Cryptococcus neoformans,
Arabidopsis thaliana, Drosophila melanogaster, and Homo sapiens). To obtain a high
number of SVs, we gathered three samples for each species with enough genetic diver-
gence to the reference genome. For this, we first used an automatic pipeline to find these
samples running the custom script “scripts/perSVade.py” from [39] with the options
--close_shortReads_table auto --n_close_samples 3 --nruns_per_sample 1 --target_taxID
<species_taxID>. This used entrez-direct [71] (v13.3), SRA Tools [72] (v2.10.9), and ete3
[73] (v3.1.2) to query the SRA database [74] and find three WGS datasets of close tax-
IDs (to each <species_taxID> according to the NCBI taxonomy species tree [75]) with a
coverage >30× and >40% of mapped reads to the reference genome. We could find three
such datasets for C. albicans, C. neoformans, A. thaliana, and D. melanogaster, which
included samples from the same species or genera as the target species, with >65% of the
reads mapping to the reference genome. We randomly downsampled the A. thaliana and
D. melanogaster runs to 30× coverage (using samtools [34] (v1.9)) for faster computa-
tion (using the option --max_coverage_sra_reads 30). For C. glabrata, we used datasets
generated in our lab from three divergent strains (BG2, CST34, and M12, from [9]). All
these datasets are listed in Additional file 1: Table S1. Finally, we tested perSVade on three
H. sapiens datasets previously used for benchmarking SV callers [23, 24]. These included
NA12878 (a Genome in a Bottle (GIAB) cell line related to the Ceph family [76, 77]),
HG002 (another GIAB project with reads available at [78]), and CHM1/CHM13 (two
haploid cell lines sequenced independently [79], for which we merged the raw reads to
generate synthetic diploid data). Note that we chose testing datasets with various read
lengths and coverages (see Additional file 1: Table S1) to evaluate how perSVade works on
realistic diverse scenarios. The reference genomes were taken from the Candida Genome
Database [80] (version s02-m07-r35 for C. glabrata and “haplotype A” from version A22-
s07-m01-r110 for C. albicans), GenBank [81] (accession GCA_000149245.3 for C. neofor-
mans, GCA_000001735.2 for A. thaliana and GCA_000001215.4 for D. melanogaster),
and UCSC [82] (the latest version of genome hg38 at 06/04/2021 for H. sapiens, keeping
only chromosomes 1-22, X,Y and the mitochondrial DNA). In addition, we performed
quality control of the reads with fastqc [32] (v0.11.9) and trimming with trimmomatic
[31] (v0.38).

We ran the SV calling pipeline of perSVade (using the modules “align_reads,” “call_
SVs,” and “integrate_SV_CNV_calls”) on all these datasets using either “default” or opti-
mized parameters (based on “random,” “known,” or “homologous” simulations using
the modules “optimize_parameters,” “find_homologous_regions,” and “find_knownSVs_
regions”). Note that the default parameters were designed as a baseline to understand
the need for parameter optimization. We thus pre-defined these parameters based on
standard author recommendations (from previous filtering strategies designed by the
gridss authors [21, 37, 38]). By comparing the results of such parameters (designed

Page 19 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

based on previous usage) and the optimized ones, we could assess the gain in SV call-
ing accuracy associated with parameter optimization. In addition, note that we used
the module “infer_repeats” to find repetitive elements in each genome. These were
provided to “optimize_parameters” to assess whether filtering out repeats improved
SV calling accuracy. In addition, we simulated diploid heterozygous SVs for the diploid
genomes (C. albicans, A. thaliana, D. melanogaster, and H. sapiens) and haploid SVs
for the haploid genomes (C. glabrata, C. neoformans). Note that we decided to only
simulate heterozygous variants in the diploid genomes to create the most challenging
scenario for SV calling (since homozygous variants are expected to be easier to find
due to higher coverage), as previously done [24]. In addition, the output of the “infer_
repeats” module was used to calculate the fraction of the genome with simple repeats
or low-complexity regions of C. glabrata and C. neoformans. We used computational
nodes in an LSF cluster (https://​www.​ibm.​com/​suppo​rt/​pages/​what-​lsf-​clust​er) with
16 cores and either 32 Gb (for C. glabrata, C. albicans, C. neoformans), 64 Gb (for A.
thaliana and D. melanogaster), and 96 Gb (for H. sapiens) of RAM for the testing. We
first ran the read alignment step (module “align_reads”) for all samples, and then used
the resulting .bam files as inputs for the other perSVade modules. We calculated the
resource consumption (running time and maximum RAM used) for each of these perS-
Vade runs, thus ignoring the resources related to read alignment. Of note, perSVade
was run with different parameters for the human datasets to avoid excessive resource
consumption and match our computational infrastructure. First, we skipped the mark-
ing of duplicate reads on the .bam files (default behavior) with perSVade’s --skip_mark-
ing_duplicates option on the module “align_reads.” Second, we ran the simulations on
a subset of the genome (only chromosomes 2, 7, 9, X, Y and mitochondrial), by using
the --simulation_chromosomes argument of the “optimize_parameters” module. Third,
we skipped the “homologous” simulations in human samples because we could not fin-
ish the inference of pairs of homologous regions (see previous section) due to excessive
memory consumption. By running this inference on a few chromosomes, we realized
that there are millions of such regions, generating excessively large files. Note that this
strategy may be used in general to speed up parameter optimization.

Finally, we tested the accuracy of all the optimized parameters (for each sample /
simulation) on the other samples / simulations using the script “testing/get_accuracy_
parameters_on_sorted_bam.py” from [39]. In addition, to test the impact of changing
each parameter in isolation, we generated sets of parameters where only one parameter
is changed to a non-default value. We then used this same script (“testing/get_accuracy_
parameters_on_sorted_bam.py” from [39]) to measure the accuracy of each parameter
set on each sample / simulation. On another line, to assess whether the high coverage
of C. glabrata samples (>300×, see Additional file 1: Table S1) constrained SV calling,
we measured the accuracy of each parameter set (optimized for each species / simula-
tions) on the C. glabrata simulations with varying coverage. For each simulation (based
on a sample and a type of simulation (homologous / known / uniform)), we subsampled
randomly the reads to get a coverage of 10×, 30×, 50×, 100×, 200×, or 300× using
samtools [34] and mosdepth [36] on the aligned simulated reads. We then used our cus-
tom script “testing/get_accuracy_parameters_on_sorted_bam.py” from [39] to test the
SV calling accuracy on each downsampled simulation. The section “Comparing sets of

https://www.ibm.com/support/pages/what-lsf-cluster

Page 20 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

SVs to calculate precision and recall” below provides further information on how accu-
racy is calculated.

Testing perSVade on real SVs

To validate the usage of perSVade on real data, we focused on public datasets with avail-
able short reads and independently defined sets of known SVs. We could find such SVs
in the human samples (also used in the testing mentioned above), for which SV callsets
of deletions or inversions exist (as done in [24]). We defined as “true SVs” the deletions
of NA12878 (defined in [77], available at [83]), the high-confidence deletions of HG002
(available at [84]) and the union of all deletions and inversions found in either CHM1 or
CHM13 lines (defined by [79], available at [85]).

We then tested the accuracy of the “training” parameters optimized for each sam-
ple and simulation of the six eukaryotes mentioned above (in the section “Testing
SV calling with perSVade on simulated structural variants”) on these human sam-
ples using our custom script “testing/get_accuracy_parameters_on_sorted_bam.py”
from [39]. In addition, we removed SVs overlapping simple repeats or low-complexity
regions (as inferred by the module “infer_repeats”) from this analysis. Note that each
of these “true SV” datasets were defined on different reference genomes: the NA12878
and HG002 callsets were based on hg19 and the CHM1/CHM13 was relative to hg38.
This means that we could not directly use the optimized training parameters from
the human samples from the previous section, since they were all based on hg38. We
thus ran perSVade’s SV calling and parameter optimization modules on NA12878
and HG002 using the hg19 reference, and used the resulting optimum parameters as
“training” for these two samples. For this, we obtained the latest version of hg19 and
hg38 genomes at 06/04/2021 from UCSC [82], keeping only chromosomes 1-22, X,Y,
and the mitochondrial DNA.

Filters used by perSVade

These are the filters used in the module “call_SVs,” whose values may vary across param-
eter optimization in perSVade (note that most of the gridss filters were inspired by the
filtering strategy used to generate the somatic call set from [21, 37] and the original
gridss paper [37, 38])):

–	 min_Nfragments: Minimum number of reads supporting a breakend in gridss to be
accepted (default is 5).

–	 min_af: Minimum variant allele frequency of a breakend in gridss to be accepted
(default is 0.25).

–	 min_af_EitherSmallOrLargeEvent: Minimum variant allele frequency (VAF) of a
breakend in gridss to be accepted, regardless of how VAF is calculated (default is 0.25).
Note that VAF is calculated differently depending on if the breakend spans a region
longer than the insert size or not (see https://​github.​com/​Papen​fussL​ab/​gridss/​issues/​
234#​issue​comme​nt-​52148​9484). We regularly (i.e., for the min_af filter) calculate a
VAF assuming that the breakend is a small event (vaf_small) or a large event (vaf_
large). If the length of the breakpoint is above a certain threshold, related to the insert
size (“median insert size + median absolute deviation of the insert size”), perSVade

https://github.com/PapenfussLab/gridss/issues/234#issuecomment-521489484
https://github.com/PapenfussLab/gridss/issues/234#issuecomment-521489484

Page 21 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

sets VAF to be “vaf_large” and vice versa. Note that our distinction between small and
large breakends could be error prone in some cases, and min_af_EitherSmallOrLar-
geEvent allows the filtering based on VAF independently of the size of the event. If
min_af_EitherSmallOrLargeEvent is above 0, breakends that have both “vaf_small”
and “vaf_large” below the set min_af_EitherSmallOrLargeEvent will be discarded.

–	 min_QUAL: Minimum quality (QUAL field of the vcf file) of a breakend in gridss to
be accepted (default is 0).

–	 max_to_be_considered_small_event: Maximum length of a breakpoint in gridss to
be considered a small event (default is 1000). Events shorter than this value are con-
sidered as “small events,” which are treated particularly by other filtering steps.

–	 min_length_inversions: Minimum length of inversion-like breakends in gridss to be
accepted (default is 40).

–	 maximum_lenght_inexactHomology: Maximum length of the inexact homology
region around a breakend in gridss to be accepted (default is 50). This filter is not
applied to “small events,” as defined by “max_to_be_considered_small_event.”

–	 maximum_microhomology: Maximum length of the exact homology (microhomol-
ogy) region around a breakend in gridss to be accepted (default is 50).

–	 maximum_strand_bias: Maximum strand bias of a breakend in gridss to be accepted
(default is 0.99). This filter is only applied to “small events,” as defined by “max_to_
be_considered_small_event.”

–	 filter_noReadPairs: Discards gridss breakends without discordant read pair support
(default is false). This filter is not applied to “small events,” as defined by “max_to_be_
considered_small_event.”

–	 filter_noSplitReads: Discards gridss breakends without split-read evidence (default is false). This
filter is only applied to “small events,” as defined by “max_to_be_considered_small_event.”

–	 filter_overlappingRepeats: Discards gridss breakends overlapping repetitive elements
(default is false). This will only have an effect if you provide a repeats file as inferred
by the module “infer_repeats.”

–	 filter_polyGC: Discards gridss breakends with long inserted G or C sequences
(>15bp) (default is true).

–	 wrong_FILTERtags: A set of values in the FILTER field of the gridss vcf which flag
discarded breakends (default is [“NO_ASSEMBLY”]).

–	 range_filt_DEL_breakpoints: A range of lengths in which DEL-like breakends (as defined
by gridss) are discarded if the breakend has a region with inexact homology above 5bp
(default is [0, 1]). For example, if set to [500, 1000], DEL-like breakends whose length is
between 500 and 1000bp with an inexact homology sequence >5 bp would be discarded.

–	 dif_between_insert_and_del: The margin given for comparing the length of the
inserted sequence (len_seq) on a gridss DEL-like breakend and the length of the
actual event (len_event) (default is 5). If len_seq > (len_event - dif_between_insert_
and_del), the breakend is filtered out. This filter is only applied to “small events,” as
defined by “max_to_be_considered_small_event.”

–	 max_rel_coverage_to_consider_del: The maximum relative coverage that a region
spanning a DEL-like breakpoint (as defined by clove) can have to be classified as an
actual deletion (default is 0.1). Note that the default is a conservative filter adapted to
haploid genomes or homozygous variants.

Page 22 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

–	 min_rel_coverage_to_consider_dup: The minimum relative coverage that a region
spanning a TAN-like breakpoint (as defined by clove) can have to be classified as an
actual tandem duplication (default is 1.8). Note that the default is a conservative filter
adapted to haploid genomes or homozygous variants.

Note that all the breakpoints that have at least one breakend that does not pass the
filters are discarded by perSVade.

Calling of small variants

PerSVade’s small variant calling pipeline (module “call_small_variants”) uses three alter-
native methods (GATK Haplotype Caller (HC) [67] (v4.1.2), freebayes (FB) [66] (v1.3.1),
and / or bcftools (BT) [68] (v1.9)) to call and filter single-nucleotide polymorphisms
(SNP) and small insertions/deletions (IN/DEL) in haploid or diploid configuration
(specified with the -p option). The input is the bam file generated by the “align_reads”
module. This module defines as high-confidence (PASS) variants those that are in posi-
tions with a read depth above the value provided with --min_coverage, with extra filters
for HC and FB. For HC, it keeps as PASS variants those where (1) there are <4 addi-
tional variants within 20 bases; (2) the mapping quality is >40; (3) the confidence based
on depth is >2; (4) the phred-scaled p-value is <60; (5) the MQRankSum is >−12.5,
and (6) the ReadPosRankSum is >−8. For FB, perSVade “call_small_variants” keeps as
PASS variants those where (1) quality is > 1 or alternate allele observation count is > 10,
(2) strand balance probability of the alternate is > 0, (3) number of observations in the
reverse strand is > 0, and (4) number of reads placed to the right/left of the allele are
> 1. Then, bcftools (v1.10) and custom python code are used to normalize and merge
the variants called by each software into a consensus variant set, which includes only
those variants called with high-confidence by N or more algorithms This results in one
.vcf file with the high-confidence variants for each N. Note that this .vcf file only keeps
variants for which the fraction of reads covering the alternative allele is above the value
provided with --min_AF (which may be 0.9 for haploids or 0.25 for diploids). For dip-
loid calls, it defines the genotype with the strongest support (the one called by most
programs). In addition, the quality of each variant is calculated from the mean of the
three algorithms. Beyond the filtered variant calls, this module writes a tabular file with
all the raw variants with various metadata columns (i.e., the programs that called the
variant), which can be used to apply a custom filtering of the variants.

Comparing sets of SVs to calculate precision and recall

To measure accuracy in different sets of “called SVs” (in perSVade’s simulations and also
the testing of the pipeline (related to Figs. 2, 3, and 4 and Additional file 1: Figures S1, S3,
S4, S5, S6, S7)), we compared them against the corresponding sets of “known SVs” and
calculated the following estimates:

Page 23 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

where true positives (TP) are those in the “called SVs” that match at least one variant
from the “known SVs,” false positives (FP) are those in the “called SVs” that do not match
any from the “known SVs,” and false negatives (FN) are those in the “known SVs” that are
not matched by any variant from the “called SVs.” We define that two SVs are “matching”
using a different approach for each type of SV:

–	 Inversions, tandem duplications, and deletions: both SVs are in the same chromo-
some, their altered regions are overlapping by 75% and their breakends are <50bp
apart.

–	 Insertions: both SVs have the same origin and destination chromosomes and are
both either cut-and-paste or copy-and-paste. In addition, the regions of the origin
chromosome are overlapping by 75% and the breakends are <50bp apart. Finally,
the starts of the destination chromosomes (insertion sites) in both SVs are <50bp
apart.

–	 Translocations: both SVs have the same origin and destination chromosomes and
are both either inverted or not. In addition, the breakpoint positions in both SVs are
<50bp apart.

In addition, we calculated “integrated” precision and recall measures (related to Figs. 3
and 4 and Additional file 1: Figure S6) merging all the variants together into single sets
of “called SVs” and “known SVs.” We used custom python (v3.6) code and bedmap from
the bedops tool [65] (v2.4.39) to calculate all these overlaps. See the section “PerSVade
pipeline” above for further information on the meaning of each type of SV.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02737-4.

Additional file 1: Figure S1. Detailed workflow of the ‘optimize_parameters’ module. Figure S2. PerSVade’s parameter
optimization requires extra resources. Figure S3. PerSVade’s parameter optimization improves the recall of SVs. Figure
S4. Global vs SV type-specific parameter optimization. Figure S5. Each sample yields a different set of optimum
parameters. Figure S6. PerSVade’s parameters optimization mostly changes the recall of SVs in simulations. Figure S7.
Coverage constrains SV calling accuracy in C. glabrata simulations. Table S1. Datasets used for the testing in simula‑
tions in C. glabrata, C. albicans, C. neoformans, A. thaliana and D. melanogaster.

Additional file 2. Review history.

Acknowledgements
The authors thank Cinta Pegueroles and Marina Lleal for the useful discussions key in the building of perSVade. In addi‑
tion, we want to thank Hrant Hovhannisyan, Valentina del Olmo, Diego Fuentes, Anna Vlasova, Maria Artigues, Matteo
Schiavinato, and Marina Marcet for beta-testing the pipeline and providing us with useful feedback.

Review history
The review history is available as Additional file 2.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team

Precision = TP/(TP+ FP)

Recall = TP/(TP+ FN)

F-value = (2× precision × recall)/(precision + recall)

https://doi.org/10.1186/s13059-022-02737-4

Page 24 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

Authors’ contributions
MAST wrote the code and performed all bioinformatic analysis. MAST and TG conceived the study, interpreted the
results, and wrote the manuscript. TG supervised the project and provided resources. Both authors read and approved
the final manuscript.

Authors’ information
Twitter handles: @MikiSchikora (Miquel Àngel Schikora-Tamarit); @Toni_Gabaldon (Toni Gabaldón)

Funding
TG group acknowledges support from the Spanish Ministry of Science and Innovation for grant PGC2018-099921-B-I00,
cofounded by European Regional Development Fund (ERDF); from the Catalan Research Agency (AGAUR) SGR423; from
the European Union’s Horizon 2020 research and innovation program (ERC-2016-724173); from the Gordon and Betty
Moore Foundation (Grant GBMF9742) and from the Instituto de Salud Carlos III (INB Grant PT17/0009/0023 - ISCIII-SGEFI/
ERDF). MAST received a Predoctoral Fellowship from “Caixa” Foundation (LCF/BQ/DR19/11740023).

Availability of data and materials
PerSVade is available at https://​github.​com/​Gabal​donlab/​perSV​ade [39] and can be installed using either conda environ‑
ments or through a docker image containing the pipeline, available at https://​hub.​docker.​com/r/​mikis​chiko​ra/​persv​ade.
The github repository is released under an open source GNU General Public License (GPL). In addition, the code can be
accessed in Zenodo through the DOI 10.5281/zenodo.6866529 [86]. The github repository contains detailed examples
on how to install and run perSVade using conda, docker, or singularity. We have tested perSVade on several Linux and
Mac architectures, and the docker image may be run in any machine in a reproducible way. All the results shown in this
paper were generated using the script https://​github.​com/​Gabal​donlab/​perSV​ade/​blob/​master/​scrip​ts/​perSV​ade.​py
from version 1.0, which is a wrapper to execute several modules with a single command. Since perSVade is an actively
used (and maintained) pipeline, we have created a few new releases since version 1.0, which include an improved
documentation, more unit tests, and the implementation of an efficient debugging of inputs. Note that these changes
do not affect the functionality of the modules as implemented in version 1.0. Hence, we recommend the usage of the
latest version (version 1.02.7 at the time of publication), which is the one with the best documentation and usability. In
addition, note that this one-liner wrapper is not recommended for broad usage. All the data used for testing perSVade
was obtained from the SRA database or public ftp servers, and is listed in Additional file 1: Table S1 and “Methods.” All the
code necessary to reproduce the results and plots shown in this paper is in https://​github.​com/​Gabal​donlab/​perSV​ade/​
tree/​master/​testi​ng.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 29 November 2021 Accepted: 22 July 2022

References
	1.	 Baker M. Structural variation: the genome’s hidden architecture. Nat Methods. 2012;9:133–7.
	2.	 Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7:85–97.
	3.	 Garsed DW, Marshall OJ, Corbin VDA, Hsu A, Di Stefano L, Schröder J, et al. The architecture and evolution of cancer

neochromosomes. Cancer Cell. 2014;26:653–67.
	4.	 Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a

single catastrophic event during cancer development. Cell. 2011;144. https://​doi.​org/​10.​1016/j.​cell.​2010.​11.​055.
	5.	 Wang W-J, Li L-Y, Cui J-W. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcino‑

genesis. Epigenetics Chromatin. 2020;13:1–17.
	6.	 Ibáñez P, Lesage S, Janin S, Lohmann E, Durif F, Destée A, et al. Alpha-synuclein gene rearrangements in dominantly inherited

parkinsonism: frequency, phenotype, and mechanisms. Arch Neurol. 2009;66. https://​doi.​org/​10.​1001/​archn​eurol.​2008.​555.
	7.	 Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Autism Consortium, Association between microdele‑

tion and microduplication at 16p11.2 and autism. N Engl J Med. 2008;358:667–75.
	8.	 Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal

drugs. Elife. 2020;9. https://​doi.​org/​10.​7554/​eLife.​58349.
	9.	 Ksiezopolska E, Schikora-Tamarit MÀ, Beyer R, Nunez-Rodriguez JC, Schüller C, Gabaldón T. Narrow mutational signa‑

tures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata. Curr Biol. 2021. https://​doi.​
org/​10.​1016/j.​cub.​2021.​09.​084.

	10.	 Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural
variation in 2,504 human genomes. Nature. 2015;526:75–81.

	11.	 Dennis MY, Eichler EE. Human adaptation and evolution by segmental duplication. Curr Opin Genet Dev.
2016;41:44–52.

https://github.com/Gabaldonlab/perSVade
https://hub.docker.com/r/mikischikora/persvade
https://github.com/Gabaldonlab/perSVade/blob/master/scripts/perSVade.py
https://github.com/Gabaldonlab/perSVade/tree/master/testing
https://github.com/Gabaldonlab/perSVade/tree/master/testing
https://doi.org/10.1016/j.cell.2010.11.055
https://doi.org/10.1001/archneurol.2008.555
https://doi.org/10.7554/eLife.58349
https://doi.org/10.1016/j.cub.2021.09.084
https://doi.org/10.1016/j.cub.2021.09.084

Page 25 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175 	

	12.	 Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med. 2010;61.
https://​doi.​org/​10.​1146/​annur​ev-​med-​100708-​204735.

	13.	 Weissensteiner MH, Bunikis I, Catalán A, Francoijs K-J, Knief U, Heim W, et al. Discovery and population genomics of
structural variation in a songbird genus. Nat Commun. 2020;11:1–11.

	14.	 Fuentes RR, Chebotarov D, Duitama J, Smith S, De la Hoz JF, Mohiyuddin M, et al. Structural variants in 3000 rice
genomes. Genome Res. 2019;29:870–80.

	15.	 Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long
and the short of it. Genome Biol. 2019;20:1–14.

	16.	 Bartenhagen C, Dugas M. Robust and exact structural variation detection with paired-end and soft-clipped align‑
ments: SoftSV compared with eight algorithms. Brief Bioinform. 2016;17:51–62.

	17.	 Fan X, Abbott TE, Larson D, Chen K. BreakDancer: identification of genomic structural variation from paired-end read
mapping. Curr Protoc Bioinformatics. 2014;45:15.6.1–11.

	18.	 Zeitouni B, Boeva V, Janoueix-Lerosey I, Loeillet S, Legoix-né P, Nicolas A, et al. SVDetect: a tool to identify genomic
structural variations from paired-end and mate-pair sequencing data. Bioinformatics. 2010;26:1895–6.

	19.	 Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome
Biol. 2014;15:R84.

	20.	 Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural vari‑
ants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.

	21.	 Cameron DL, Baber J, Shale C, Valle-Inclan JE, Besselink N, van Hoeck A, et al. GRIDSS2: comprehensive characterisa‑
tion of somatic structural variation using single breakend variants and structural variant phasing. Genome Biol.
2021;22:1–25.

	22.	 Valls-Margarit J, Galván-Femenía I, Matías-Sánchez D, Blay N, Puiggròs M, Carreras A, et al. GCAT|Panel, a comprehen‑
sive structural variant haplotype map of the Iberian population from high-coverage whole-genome sequencing.
bioRxiv. 2021:2021.07.20.453041.

	23.	 Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of structural variation detec‑
tion algorithms for whole genome sequencing. Genome Biol. 2019;20:117.

	24.	 Cameron DL, Di Stefano L, Papenfuss AT. Comprehensive evaluation and characterisation of short read general-
purpose structural variant calling software. Nat Commun. 2019;10:1–11.

	25.	 Schröder J, Wirawan A, Schmidt B, Papenfuss AT. CLOVE: classification of genomic fusions into structural variation
events. BMC Bioinformatics. 2017;18:346.

	26.	 Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, et al. 1000 Genomes Project, mapping copy number
variation by population-scale genome sequencing. Nature. 2011;470:59–65.

	27.	 Pang AW, Migita O, Macdonald JR, Feuk L, Scherer SW. Mechanisms of formation of structural variation in a fully
sequenced human genome. Hum Mutat. 2013;34. https://​doi.​org/​10.​1002/​humu.​22240.

	28.	 Todd SLS, Treangen J. Repetitive DNA and next-generation sequencing: computational challenges and solutions.
Nat Rev Genet. 2011;13:36-46.

	29.	 Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-
end and split-read analysis. Bioinformatics. 2012;28. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bts378.

	30.	 Liu Y, Huang Y, Wang G, Wang Y. A deep learning approach for filtering structural variants in short read sequencing
data. Brief Bioinform. 2020;22. https://​doi.​org/​10.​1093/​bib/​bbaa3​70.

	31.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics.
2014;30:2114–20.

	32.	 Babraham Bioinformatics - FastQC A quality control tool for high throughput sequence data. https://​www.​bioin​
forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc.

	33.	 Manual Reference Pages for bwa. http://​bio-​bwa.​sourc​eforge.​net/​bwa.​shtml.
	34.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 1000 Genome Project Data Processing Subgroup, The

Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078.
	35.	 GATK MarkDuplicatesSpark. https://​gatk.​broad​insti​tute.​org/​hc/​en-​us/​artic​les/​36003​63589​72-​MarkD​uplic​atesS​park.
	36.	 Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics.

2018;34:867–8.
	37.	 Cameron DL, Baber J, Shale C, Papenfuss AT, Valle-Inclan JE, Besselink N, et al. GRIDSS, PURPLE, LINX: Unscrambling

the tumor genome via integrated analysis of structural variation and copy number. bioRxiv. 2019:781013.
	38.	 Cameron DL, Schröder J, Penington JS, Do H, Molania R, Dobrovic A, Speed TP, Papenfuss AT. GRIDSS: sensi‑

tive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res.
2017;27:2050-60.

	39.	 Schikora-Tamarit MÀ, Gabaldón T. perSVade. Github. 2022. https://​github.​com/​Gabal​donlab/​perSV​ade.
	40.	 Bartenhagen C, Dugas M. RSVSim: an R/Bioconductor package for the simulation of structural variations. Bioinfor‑

matics. 2013;29:1679–81.
	41.	 Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for compu‑

tational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.
	42.	 Wgsim. https://​github.​com/​lh3/​wgsim.
	43.	 Seqtk. https://​docs.​csc.​fi/​apps/​seqtk/.
	44.	 Seaborn 0.11.2 documentation. https://​seabo​rn.​pydata.​org/.
	45.	 Matplotlib: visualization with Python. https://​matpl​otlib.​org/.
	46.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms

for scientific computing in Python. Nat Methods. 2020;17:261–72.
	47.	 API design for machine learning software: experiences from the scikit-learn project. https://​arxiv.​org/​abs/​1309.​0238.
	48.	 Psutil: Cross-platform lib for process and system monitoring in Python. https://​github.​com/​giamp​aolo/​psutil.
	49.	 Pandas. https://​pandas.​pydata.​org/.
	50.	 Pigz: Parallel gzip. https://​zlib.​net/​pigz/.
	51.	 Gztool. https://​github.​com/​circu​losme​os/​gztool.

https://doi.org/10.1146/annurev-med-100708-204735
https://doi.org/10.1002/humu.22240
https://doi.org/10.1093/bioinformatics/bts378
https://doi.org/10.1093/bib/bbaa370
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://bio-bwa.sourceforge.net/bwa.shtml
https://gatk.broadinstitute.org/hc/en-us/articles/360036358972-MarkDuplicatesSpark
https://github.com/Gabaldonlab/perSVade
https://github.com/lh3/wgsim
https://docs.csc.fi/apps/seqtk/
https://seaborn.pydata.org/
https://matplotlib.org/
https://arxiv.org/abs/1309.0238
https://github.com/giampaolo/psutil
https://pandas.pydata.org/
https://zlib.net/pigz/
https://github.com/circulosmeos/gztool

Page 26 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology (2022) 23:175

	52.	 Picard. Available at http://​broad​insti​tute.​github.​io/​picard/.
	53.	 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications.

BMC Bioinformatics. 2009;10:1–9.
	54.	 Newman S, Hermetz KE, Weckselblatt B, Katharine Rudd M. Next-generation sequencing of duplication CNVs reveals

that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet. 2015;96:208.
	55.	 Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic

Acids Res. 2012;40:e72.
	56.	 Abbey DA, Funt J, Lurie-Weinberger MN, Thompson DA, Regev A, Myers CL, et al. YMAP: a pipeline for visualization

of copy number variation and loss of heterozygosity in eukaryotic pathogens. Genome Med. 2014;6:1–16.
	57.	 IMH, Quinlan AR. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841.
	58.	 Pockrandt C, Alzamel M, Iliopoulos CS, Reinert K. GenMap: ultra-fast computation of genome mappability. Bioinfor‑

matics. 2020;36:3687–92.
	59.	 Cylowess. https://​github.​com/​livin​gsoci​al/​cylow​ess.
	60.	 Cython: The Best of Both Worlds. https://​ieeex​plore.​ieee.​org/​docum​ent/​55820​62.
	61.	 Wei Y-C, Huang G-H. CONY: A Bayesian procedure for detecting copy number variations from sequencing read

depths. Sci Rep. 2020;10:1–14.
	62.	 Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DCJ, de Jong TV, et al. Single-cell sequencing reveals karyo‑

type heterogeneity in murine and human malignancies. Genome Biol. 2016;17:1–15.
	63.	 Shah SP, Xuan X, DeLeeuw RJ, Khojasteh M, Lam WL, Ng R, et al. Integrating copy number polymorphisms into array

CGH analysis using a robust HMM. Bioinformatics. 2006;22. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btl238.
	64.	 McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol.

2016;17:122.
	65.	 Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, et al. BEDOPS: high-performance genomic

feature operations. Bioinformatics. 2012;28:1919–20.
	66.	 E. Garrison, G. Marth, Haplotype-based variant detection from short-read sequencing. 2012. (Available at http://​

arxiv.​org/​abs/​1207.​3907).
	67.	 Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic

variant discovery to tens of thousands of samples. bioRxiv. 2018:201178.
	68.	 The official development repository for BCFtools. https://​github.​com/​samto​ols/​bcfto​ols.
	69.	 Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, et al. RepeatModeler2 for automated genomic

discovery of transposable element families. Proc Natl Acad Sci U S A. 2020;117:9451–7.
	70.	 Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics.

2004;Chapter 4. https://​doi.​org/​10.​1002/​04712​50953.​bi041​0s05.
	71.	 Entrez Direct: E-utilities on the Unix Command Line. https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK17​9288/.
	72.	 SRA Tools. https://​github.​com/​ncbi/​sra-​tools.
	73.	 Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol.

2016;33:1635.
	74.	 Leinonen R, Sugawara H, Shumway M. The Sequence Read Archive. Nucleic Acids Res. 2011;39:D19.
	75.	 Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. a comprehensive update on curation,

resources and tools. Database. 2020;2020. https://​doi.​org/​10.​1093/​datab​ase/​baaa0​62.
	76.	 Eberle MA, Fritzilas E, Krusche P, Källberg M, Moore BL, Bekritsky MA, et al. A reference data set of 5.4 million phased

human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.
Genome Res. 2017;27. https://​doi.​org/​10.​1101/​gr.​210500.​116.

	77.	 Parikh H, Mohiyuddin M, Lam HYK, Iyer H, Chen D, Pratt M, et al. svclassify: a method to establish benchmark struc‑
tural variant calls. BMC Genomics. 2016;17:1–16.

	78.	 HG002 sequencing data. ftp://​ftptr​ace.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data/​Ashke​nazim​Trio/​HG002_​NA243​85_​son/​NIST_​
HiSeq_​HG002_​Homog​eneity-​10953​946/​NHGRI_​Illum​ina30​0X_​AJtrio_​novoa​lign_​bams/​HG002.​hs37d5.​60X.1.​bam.

	79.	 Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, et al. Discovery and genotyping of
structural variation from long-read haploid genome sequence data. Genome Res. 2017;27. https://​doi.​org/​10.​1101/​
gr.​214007.​116.

	80.	 Skrzypek MS, Binkley J, Binkley G, Miyasato SR, Simison M, Sherlock G. The Candida Genome Database (CGD): incor‑
poration of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids
Res. 2017;45:D592.

	81.	 Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. GenBank. Nucleic Acids Res. 2019;48:D84–6.
	82.	 Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, et al. Initial sequencing and analysis of the

human genome. Nature. 2001;409:860–921.
	83.	 NA12878 deletions. ftp://​ftptr​ace.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​techn​ical/​svcla​ssify_​Manus​cript/​Suppl​ement​ary_​Infor​

mation/​Perso​nalis_​1000_​Genom​es_​dedup​licat​ed_​delet​ions.​bed.
	84.	 HG002 structural variants. ftp://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data/​Ashke​nazim​Trio/​analy​sis/​NIST_​SVs_​Integ​

ration_​v0.6/​HG002_​SVs_​Tier1_​v0.6.​vcf.​gz.
	85.	 CHM1 and CHM13 structural variants. http://​eichl​erlab.​gs.​washi​ngton.​edu/​publi​catio​ns/​Huddl​eston​2016/​struc​

tural_​varia​nts/.
	86.	 Schikora-Tamarit MÀ, Gabaldón T. perSVade v1.02.7. Zenodo. 2022. https://​zenodo.​org/​record/​68665​29.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://broadinstitute.github.io/picard/
https://github.com/livingsocial/cylowess
https://ieeexplore.ieee.org/document/5582062
https://doi.org/10.1093/bioinformatics/btl238
http://arxiv.org/abs/1207.3907
http://arxiv.org/abs/1207.3907
https://github.com/samtools/bcftools
https://doi.org/10.1002/0471250953.bi0410s05
https://www.ncbi.nlm.nih.gov/books/NBK179288/
https://github.com/ncbi/sra-tools
https://doi.org/10.1093/database/baaa062
https://doi.org/10.1101/gr.210500.116
https://www.ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60X.1.bam
https://www.ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60X.1.bam
https://doi.org/10.1101/gr.214007.116
https://doi.org/10.1101/gr.214007.116
https://www.ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
https://www.ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Information/Personalis_1000_Genomes_deduplicated_deletions.bed
https://www.ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
https://www.ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz
http://eichlerlab.gs.washington.edu/publications/Huddleston2016/structural_variants/
http://eichlerlab.gs.washington.edu/publications/Huddleston2016/structural_variants/
https://zenodo.org/record/6866529

	PerSVade: personalized structural variant detection in any species of interest
	Abstract
	Background
	Results
	PerSVade: a pipeline to call and interpret structural variants in your species of interest
	PerSVade’s parameter optimization improves calling accuracy in simulated datasets
	PerSVade’s parameter optimization improves the calling accuracy in datasets with defined sets of real SVs

	Discussion
	Conclusions
	Methods
	PerSVade pipeline
	Module “trim_reads_and_QC”
	Module “align_reads”
	Module “call_SVs”
	Module “optimize_parameters”
	Module “find_knownSVs_regions”
	Module “find_homologous_regions”
	Module “call_CNVs”
	Module “integrate_SV_CNV_calls”
	Module “annotate_SVs”
	Module “call_small_variants”
	Module “annotate_small_vars”
	Module “get_cov_genes”
	Module “infer_repeats”

	Testing SV calling with perSVade on simulated structural variants
	Testing perSVade on real SVs
	Filters used by perSVade
	Calling of small variants
	Comparing sets of SVs to calculate precision and recall

	Acknowledgements
	References

