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Background
Structural variants (SVs) are large changes (typically >50 bp) in the DNA between indi-
viduals that alter genome size (duplications and deletions) or generate rearrangements 
(inversions, translocations, and interspersed insertions) [1, 2]. In eukaryotes, SVs can 
drive clinically relevant phenotypes including cancer [3–5], neurological diseases [6, 7], 
or antifungal drug resistance [8, 9]. In addition, SVs may generate significant intraspe-
cific genetic variation across many taxa like humans [10–12], songbirds [13], or rice 
plants [14]. Despite their role on human health and natural diversity, most genomic 
studies overlook SVs due to technical difficulties in calling SVs from short reads [15]. 
This means that the role of SVs remains largely unexplored across eukaryotes.

Inferring SVs from short reads is challenging because it relies mostly on indirect evi-
dence coming from de novo assembly alignment, changes in read depth, or the presence 
of discordantly paired / split reads in read mapping analysis [16–21]. Long-read-based 
SV calling may avoid some of these limitations, but short read-based SV calling remains 
a cost-effective strategy to find SVs in large cohorts [14, 15, 22]. Recent benchmarking 
studies compared the performance of different tools in human genomes and found that 
SV calling accuracy is highly dependent on the methods and filtering strategy used [15, 
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23, 24]. Such studies are useful to define “best practices” (optimal methods and filter-
ing strategies) for SV calling in human samples. However, few studies have investigated 
the accuracy of these tools on non-human genomes. It is unclear whether the human-
derived “best practices” for SV calling can be reliably used in other species. We hypoth-
esize that this may not be the case for genomes with different contents of repetitive or 
transposable elements, which constrain the short read-based SV calling accuracy [24]. In 
summary, current tools for short-read-based SV calling are often unprepared for non-
human genomes, which hinders the study of SVs in most organisms.

To overcome this limitation, we developed the personalized structural variation 
detection pipeline, or perSVade (pronounced “persuade”), which is designed to adapt a 
state-of-the-art SV calling pipeline to any sample/individual of any genome/species of 
interest. PerSVade detects breakpoints (two joined regions that exist in the sample of 
interest and not in the reference genome) from short paired-end reads and summarizes 
them into complex SVs (deletions, inversions, tandem duplications, translocations, and 
interspersed insertions). The pipeline provides automated benchmarking and parameter 
selection for these methods in any genome or sequencing run, which is useful for species 
without such recommended parameters. PerSVade provides an automated report of the 
SV calling accuracy on these simulations, which serves to estimate the confidence of the 
results on real samples. Beyond SV detection, perSVade can be used to find small vari-
ants (single-nucleotide polymorphisms (SNPs) and insertions/deletions (IN/DELs)) and 
read depth-based copy number variation (CNV), all implemented within a flexible and 
modular framework.

The following sections describe perSVade and its SV calling performance on various 
datasets of both simulated and real genomes with SVs.

Results
PerSVade: a pipeline to call and interpret structural variants in your species of interest

PerSVade identifies SVs from a paired-end WGS dataset and a reference genome as sole 
inputs. It identifies breakpoints from the aligned reads with gridss [21] and summarizes 
them into actual SVs (insertions, translocations, deletions, inversion, and tandem dupli-
cations) with clove [25]. We followed the recent recommendation of using a single, high-
performing algorithm for breakpoint calling instead of using multiple software [24]. We 
chose gridss because of its high accuracy in several benchmarking studies [23, 24]. In 
addition, our pipeline generates a functional annotation of the variants, which is use-
ful to evaluate the altered genomic regions and aid downstream analyses. In summary, 
perSVade is a pipeline to find and interpret SVs from most eukaryotic sequencing data-
sets (Fig. 1).

A key feature of perSVade is the parameter optimization step (implemented in the 
“optimize_parameters” module and shown in Additional file  1: Figure S1). There are 
no specific recommendations for filtering the outputs of gridss and clove in most spe-
cies, and it is unclear whether the parameters validated on model organisms are uni-
versal. Similarly, the performance of these algorithms on different sequencing formats 
(i.e., varying read lengths, coverage, or insert size) is not easy to predict. To solve this 
automatically, perSVade “optimize_parameters” generates simulated genomes (based 
on the reference genome and input dataset) with SVs and chooses the most accurate 
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filters (with the highest harmonic mean between precision and recall (F-value)) for these 
simulations. To account for different mechanisms of SV formation, the simulations can 
be either (1) randomly placed across the genome (“random” simulations), (2) around 
regions with previously known SVs (“known” simulations), or (3) around regions with 
homologous sequences (“homologous” simulations). We consider that “known” and 
“homologous” simulations are more realistic than the “random” ones. See “Methods” 
for further details. Regardless of the simulation type, the optimized filters can be used 
for the SV calling on real data, potentially yielding the highest possible performance. 
The accuracy of the optimized filters on different simulations is reported as a tabular 
file, which is useful to define the expected calling accuracy. We hypothesize that this 

Fig. 1  Schematic representation of the modular workflow of PerSVade. This figure shows the modules 
of perSVade (each represented in a different box and executable with a single command), which may be 
combined following the drawn arrows. The italic text describes the algorithms used at each step. The pipeline 
identifies either structural variants (SVs) (module “call_SVs”), coverage-derived copy number variants (CNVs) 
(module “call_CNVs”), small variants (module “call_small_variants”), and/or changes in the coverage per gene 
(module “get_cov_genes”) from aligned short paired-end reads (obtained with the module “align_reads”). 
The different types of SVs output by “call_SVs” are drawn at the bottom for clarity. In addition, the module 
“trim_treads_and_QC” can be used to trim the reads and perform quality control with FASTQC before read 
alignment. On another note, several modules (“call_SVs,” “find_knownSVs_regions,” “integrate_SV_CNV_calls,” 
“optimize_parameters,” and “call_small_variants”) use an annotation of genomic repeats that can be obtained 
with the module “infer_repeats” (bottom left). The most novel aspect of perSVade is the automatic parameter 
optimization for SV calling adapted to the input (implemented in the module “optimize_parameters”). This is 
achieved through simulations of SVs on the reference genome, which can be randomly placed (“random”), 
around regions with previously known SVs (“known”) or on regions with pairwise homology (“homologous”). 
The modules “find_knownSVs_regions” and “find_homologous_regions” can be used to infer these “known” 
and “homologous” regions, respectively. In addition, the variants found with “call_SVs” and “call_CNVs” can be 
combined with the module “integrate_SV_CNV_calls.” Finally, the modules “annotate_SVs” and “annotate_
small_vars” can be used to obtain a functional annotation of the variants. See “Methods” for more details. In 
addition, note that Additional file 1: Figure S1 includes a more detailed representation of how “optimize_
parameters” works
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accuracy may vary across species and/or sequencing formats, and perSVade can infer it 
on any input sample. All in all, perSVade automatically finds the best filters and reports 
the expected calling accuracy for each input sample.

We validated the usability of perSVade by running it on available sequences for six 
phylogenetically diverse eukaryotes with different genome sizes (Candida glabrata (12 
Mb), Candida albicans (14 Mb), Cryptococcus neoformans (19 Mb), Arabidopsis thali-
ana (120 Mb), Drosophila melanogaster (144 Mb), and Homo sapiens (3163 Mb)), with 
three WGS runs per species (yielding datasets with 6.75×106–1.59×109 reads, see 
“Methods”). We ran the pipeline using parameter optimization with “random,” “known,” 
or “homologous” simulations. In addition, we ran perSVade with default parameters as 
a baseline, useful to evaluate the impact of parameter optimization (the core and most 
novel feature of perSVade) on calling accuracy and resource consumption. We found 
that the computational burden (running time and memory used) was highly variable 
among datasets and correlated with genome and dataset sizes. As expected, parameter 
optimization increased resource consumption in all cases. This burden was particularly 
high for the human datasets, which may hinder the usage of perSVade on such large 
genomes if computational resources are limited (Additional file 1: Figure S2). However, 
we consider that such choices should be left to the user based on these results, since the 
increased accuracy due to parameter optimization may outweigh resource costs. Taken 
together, our analysis indicates that perSVade can be used for SV calling in a wide range 
of eukaryotes and sequencing datasets.

PerSVade’s parameter optimization improves calling accuracy in simulated datasets

In order to clarify the impact of parameter optimization on calling accuracy, we meas-
ured the performance of perSVade’s SV calling on these samples and simulations. We 
found that the F-value after parameter optimization on “random” and “known” simula-
tions was high (between 0.75 and 1.0) in most samples and SV types (with one exception 
in Drosophila melanogaster that yielded an F-value ~ 0.5). The F-value on “homologous” 
simulations was often lower (depending on the species), suggesting that SVs happening 
on regions with pairwise homology may be more difficult to resolve. As expected, the 
accuracy on “random” SVs was higher than on more realistic simulations (“known” and 
“homologous”), suggesting that it may overestimate real data accuracy. In general, the 
F-value was higher than the “default” setting in most species (except in C. neoformans), 
and the improvement was dramatic in some SV types (i.e., the F-value went from <0.1 to 
>0.95 in C. glabrata’s deletions or insertions) (Fig. 2). In addition, we found that param-
eter optimization increases recall rather than precision, which is >0.95 in most simula-
tions and SV types (Additional file 1: Figure S3). We also found that using a single set of 
(global) parameters optimized for all SV types in a given sample yields an accuracy that 
is as high as using a set of parameters specifically for each SV type (Additional file 1: 
Figure S4). This validates our approach of running SV calling once (with a single set of 
parameters) for each sample. Taken together, our results suggest that parameter opti-
mization yields maximum performance by improving the recall of SVs as compared to 
default parameters.
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We next explored whether different runs of perSVade (i.e., in different species or 
simulation types) yield similar parameters, which may clarify how necessary this opti-
mization is. We hypothesized that each sample and simulation type combination may 
require specific parameters that would not necessarily work for other samples. To test 
this, we first compared the chosen parameters across different runs, which appeared 
to be sample-specific (Additional file  1: Figure S5A). This suggests that there is not 
a universal recipe (i.e., filtering parameters) for SV calling with perSVade. However, 
another (null) hypothesis could be that different parameter sets have similar out-
comes, without changing the SV calling accuracy. This question was highly important 
to us. If perSVade’s optimization converges to equivalent parameter sets in different 
samples we would not need the optimization on every sample (i.e., we could re-define 
one of these parameters as default). In order to sort this out, we evaluated how dif-
ferent parameter sets (either “default” ones or those that are defined as “optimum” 
for a given sample) work on simulated genomes related to other samples. The results 
of this analysis are shown in Fig. 3 and Additional file 1: Figure S6. As hypothesized, 
not all the parameter sets yield accurate results on all samples, with large differences 
between species (Fig.  3A). However, we found that parameters optimized for one 

Fig. 2  PerSVade’s parameter optimization improves the SV calling accuracy on simulations. We ran perSVade’s 
SV calling on three samples / species for six eukaryotes (see “Methods”) using either “random,” “known,” or 
“homologous” simulations. These plots show the F-value of either default (gray) or optimized (red) parameters 
(for each sample and simulation type) on these simulations. The x axis represents the type of SV (deletions 
(del), tandem duplications (tan), inversions (inv), insertions (ins), translocations (tra), and the average of all 
SVs (all)). Note that Additional file 1: Figure S3 shows the corresponding precision and recall, from which the 
F-value is calculated
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sample are mostly accurate on samples of the same species, regardless of the simu-
lation type (Fig. 3B). Of note, the parameters yielded by “random” simulations were 
accurate on “homologous” and “real” simulations (Fig. 3). This indicates that running 
perSVade on “random” simulations (the cheapest setting in terms of resources) yields 
accurate parameters for more realistic simulations and possibly real SVs. On another 
line, we found that the different parameters changed mostly the SV calling recall, and 
not the precision (Additional file 1: Figure S6).

Fig. 3  There is no universal recipe for SV calling across all species. A In order to assess whether perSVade’s 
parameter optimization is necessary for a given combination of sample and simulation (mentioned in Fig. 2), 
we measured the SV calling accuracy of each optimized parameter set on the other combinations. Each row 
indicates a different “training” parameter set optimized for each sample and simulation type in all species. 
In addition, the first row refers to the default parameters. Each column represents a simulation from a given 
sample / simulation type to be “tested.” The heatmap shows the F-value of each parameter set on each tested 
simulation (hereafter referred to as “testing instance”). Note that the species are ordered alike in rows and 
columns. In addition, note that each sample (from a given species and simulation type) yielded one set of 
training parameters and two simulated genomes tested here, which explains why there are two columns 
for each row. The colored boxes indicate testing instances where the training and testing species are equal. 
The asterisks refer to instances where both the sample and type of simulation are equal in the training and 
testing (equivalent to the “optimized” parameters from Fig. 2). Note that Additional file 1: Figure S6 shows the 
corresponding precision and recall, from which the F-value is calculated. B We summarized the data shown 
in A to compare how similar types of training parameters performed on each species (in the rows) and type 
of simulations (in the columns). Each point corresponds to a testing instance, matching one cell from the 
heatmap in A. The “default” and “same sample” reflect testing instances where the training parameters were 
either un-optimized or optimized specifically for each sample, respectively. The “different spp” group includes 
instances where the training parameters were from different species. The “same spp” group shows testing 
instances with both training parameters and tested simulations from a different sample of the same species. 
The “same simulation” reflects instances with the same training and testing sample, but different simulation 
types. For clarity, the right box shows how the training parameters are grouped for a set of “homologous” 
simulations based on one example C. glabrata sample (which corresponds to the first two columns in A)
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To understand why certain parameter choices impact SV calling accuracy, we tested 
how changing each parameter in isolation (keeping all others with default values) affects 
accuracy in these different species and simulations (Additional file 1: Figure S5). We first 
used these data to assess whether the change of single parameters drives the optimiza-
tion process. We measured, for each parameter and sample, the ratio between the sin-
gle-parameter-change F-value (where only one parameter has the optimal value) and the 
maximum F-value (obtained with the set of parameters where all parameters are opti-
mized). We find that 78.05% of these parameter-sample instances have an F-value ratio 
below 0.75 (Additional file 1: Figure S5B), suggesting that the optimal accuracy is mostly 
reached by a complex interplay between different (at least 2) parameters, rather than 
being driven by a single-parameter change.

This analysis also serves to evaluate the impact of different parameters on SV calling 
accuracy. For example, we find that the set of vcf “FILTER” tags defining accepted break-
points (wrong_FILTERtags parameter) drastically affects the accuracy in C. glabrata, 
in a way that requiring de novo assembly support for breakpoints (default behavior) is 
too conservative. A similar (but smaller) effect is observed in C. albicans, but not in the 
other species, which could be due to unique genomic features and/or technical proper-
ties in the Candida samples driving worse assembly performance. In addition, the cov-
erage thresholds that define tandem duplications and deletions (min_rel_coverage_dup 
and max_rel_coverage_del, respectively) determine accuracy in a way that is dependent 
on ploidy, likely because diploid species (C. albicans, D. melanogaster, and H. sapiens) 
require a less conservative threshold to accept heterozygous variants. Importantly, these 
three parameters (wrong_FILTERtags, min_rel_coverage_dup and max_rel_coverage_del) 
explain why default parameters are suboptimal in most cases, as the default values can 
be too conservative in different species. On another line, the minimum number of sup-
porting reads per variant (min_Nfragments) changes accuracy, with sample-specific 
effects (see D. melanogaster and A. thaliana), which we attribute to varying cover-
age, read lengths, or sequencing quality. Finally, filtering out variants that overlap any 
repetitive elements (filter_overlappingRepeats) generally reduces accuracy for realistic 
simulations (“homologous” and “known”), likely due to the fact that real variants could 
appear around such repeats. Conversely, there are other parameters that have minimal 
effects on accuracy (dif_between_insert_and_del, filter_noReadPairs, max_to_be_con-
sidered_small_event, maximum_length_inexactHomology, maximum_microhomology, 
maximum_strand_bias, min_QUAL, min_af, min_length_inversions, range_filt_DEL_
breakpoints) (Additional file  1: Figure S5B). However, these parameters can have an 
impact in some samples and, since perSVade only considers parameter values that can 
change the filtering in each sample (see “Methods”), we consider that they should not be 
removed from the “optimize_parameters” module.

Our analysis also showed that the need for parameter optimization is different for each 
species. An illustrative example is the dramatic difference between C. neoformans and 
C. glabrata (Fig. 3A), which provides further insights on the role of various parameters. 
We found that the parameter choice is irrelevant in C. neoformans, while C. glabrata 
samples required specific optimization (Fig. 3A). We consider that this is unlikely driven 
by intrinsic genomic differences between the two species, as both have small (<20Mb) 
haploid genomes with low content of simple repeats (0.98% in C. glabrata and 0.80% in 
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C. neoformans) or low-complexity regions (0.16% in C. glabrata and 0.21% in C. neo-
formans). We hypothesized that C. glabrata samples have an excessively high cover-
age (>300×, while C. neoformans samples have a 30×–40× coverage (Additional file 1: 
Table S1)) which may constrain SV calling accuracy and require optimized parameters. 
To test this, we measured the accuracy of different parameter sets on the C. glabrata 
simulations with randomly downsampled coverages. As hypothesized, we find that most 
parameters are accurate on the C. glabrata with 30× coverage, while simulations with 
lower (10×) and higher (100×–500×) coverage require specific parameters (Additional 
file 1: Figure S7). These results suggest that 30×–40× could be the optimal coverage for 
perSVade, which is reasonable given that gridss was developed for human datasets with 
similar coverage. However, there are still differences between the C. neoformans and the 
downsampled (30×) C. glabrata samples. For example, there are two parameter sets 
optimized for the high-coverage C. glabrata samples (both requiring at least 30 support-
ing reads per SV) which are accurate on all C. neoformans simulations (Fig. 3A), but not 
on the C. glabrata 30× (Additional file 1: Figure S7). This suggests that there are differ-
ent genomic features between these species (i.e., content of simple repeats) constraining 
the accuracy. These findings indicate that both technical variation (i.e., changes in cover-
age) and different genomic features underlie the observed differences in SV calling accu-
racy between species. Importantly, this also illustrates that perSVade can adapt to each 
sample and yield optimal results.

In summary, our results suggest that parameter optimization is necessary for maxi-
mum performance in each species and dataset and that there is a complex interplay 
between parameters.

PerSVade’s parameter optimization improves the calling accuracy in datasets with defined 

sets of real SVs

The performance of SV calling on simulations may not be equivalent on real data, as 
SVs often appear around repetitive or low-complexity regions which hamper their 
detection [24, 26–28]. It is thus possible that we overestimated the real accuracy in our 
simulations. We partially addressed this with our analysis based on “realistic” simula-
tions (“known” and “homologous”), where the inferred accuracy was lower (Fig. 2) and 
potentially closer to the real one. To further validate the usage of perSVade for real SV 
calling, we tested it on datasets with known SVs, which were available for the human 
samples tested above (i.e., Fig.  3). We ran perSVade (using different simulation types) 
on the same three datasets, which had previously defined deletions and inversions (see 
“Methods” for details).

We used these data to assess the accuracy of perSVade on real datasets, using different 
sets of parameters (optimal for each simulation and sample from the six species tested 
above, shown in Fig. 3). As expected, we found a lower F-value on real datasets (Fig. 4) 
as compared to the simulated genomes (Figs.  2 and 3), with high precision and lower 
recall (Fig. 4B). In addition, parameter optimization improved the F-value modulating 
both precision and recall (Fig.  4B). However, the other results described in the simu-
lations’ analysis (related to the performance of the pipeline and the universality of the 
parameters) are qualitatively equivalent in these real datasets (Fig.  4). Taken together, 
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Fig. 4  PerSVade’s parameter optimization improves the SV calling accuracy on datasets with known real 
SVs. A To test perSVade’s performance on real SVs, we measured how the parameters optimized for several 
simulations in different species (see Fig. 3) work on three human samples (CHM, HG002, and NA12878) 
with defined sets of real SVs. Each row indicates one of these different “training” parameters optimized for 
each sample and simulation type. In addition, the first row refers to the default parameters. Each column 
represents a sample with defined real SVs to be “tested.” The heatmap shows the F-value of each parameter 
set on each tested real sample (hereafter referred to as “testing instance”). In addition, we divide the testing 
instances into different groups (“default,” “different spp,” “same spp,” and “same sample”), which are relevant to 
understand the B panel. The “different spp” group refers to instances where the training and testing species 
were different. The “~” (same spp) refers to instances where the training and testing samples were different, 
but from the same species. Finally, the “*” (same sample) refers to instances where the training and testing 
samples were the same. B We summarized the data shown in A to compare how similar types of training 
parameters performed on each testing sample (each represented by a different color). Each row corresponds 
to a different accuracy measure. Each point corresponds to a testing instance (matching one cell from the 
heatmap in A in the bottom “F-value” plots). The “default” and “same sample” reflect testing instances where 
the training parameters were either un-optimized or optimized specifically for each sample, respectively. The 
“different spp” group includes instances where the training parameters were from a different, non-human, 
species. The “same spp” group shows testing instances with both training parameters and tested simulations 
from different samples of the same species. In addition, each column represents testing instances where 
the training parameters were based on “random” or “known” simulations, respectively. Note that the different 
groups of “training parameters” are equivalent to those shown in A 
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our analysis indicates that perSVade improves SV calling in real datasets (similarly to 
simulated genomes).

Discussion
Despite large variation of genomic features across taxa, SV detection approaches in 
non-model organisms tend to rely on tools and parameters developed for other species 
(generally human). We hypothesized that this “one size fits all” approach is suboptimal, 
and likely biased towards certain species. To test this idea and overcome the problem, 
we developed perSVade, a flexible pipeline that automatizes the calling and filtering of 
structural variants (SV) across eukaryotes. PerSVade is a modular method to automati-
cally adapt a state-of-the-art SV calling pipeline to any sample/species of interest. PerS-
Vade uses simulations to choose the optimal filters for each sample and report the calling 
accuracy, which can inform about the reliability of the results. This will allow users to be 
aware of the accuracy in their datasets (i.e., perSVade may be inaccurate in some data-
sets due to low coverage, short read lengths, or excessive repeats in the genome) and 
make informed choices.

We validated the broad usability of perSVade by testing it on simulations and real data-
sets for a wide range of eukaryotes (with genomes of 12–3000 Mb and datasets includ-
ing 107–109 reads). We found that there is a significant computational burden related to 
parameter optimization, which may hinder its usage on large genomes. This means that 
perSVade may be particularly cost-effective for small genomes (i.e., <200 Mb). However, 
the chosen settings will likely depend on the available resources, and some users may 
consider that the resources spent (see Additional file 1: Figure S2) are worth it given that 
parameter optimization yields improved accuracy (see below).

This testing also revealed that, as we hypothesized, parameter optimization improves 
the calling accuracy on both simulations and datasets with real, previously defined SVs. 
We found that the optimization mostly improves the recall rather than precision (which 
is generally high regardless of the used parameters). However, there are some exceptions 
(mostly in the testing on real SVs), suggesting that optimization can be necessary for 
reaching both high recall and precision in some samples. In addition, perSVade’s opti-
mization yielded unique parameter sets for each sample, which were often inaccurate on 
other datasets. This means that there is no universal set of parameters that work well for 
all samples, which justifies the need for parameter optimization and a tool like perSVade 
to automate such a task. Conversely, we found some trends that can be useful to skip 
parameter optimization in some cases. For instance, parameter sets were often accurate 
across datasets of the same species (which could be due to differences in coverage and/
or intrinsic genomic features). In addition, parameters resulting from “random” simula-
tions performed well in more realistic (“known” and “homologous”) simulations as well 
as in real SV datasets of the same species, indicating that they can be used for maximum 
performance. Based on these findings, we propose the following recommendations for a 
cost-effective usage of perSVade:

–	 For SV calling on many datasets of one species with similar properties (similar 
coverage, read length, and insert size), run perSVade using “random” simulations 
on one sample, and use the optimized parameters for the other samples (skip-
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ping optimization). The reported calling accuracy may be overestimated since the 
simulations are not realistic, but the chosen parameters are expected to be opti-
mal. This strategy may be particularly suited to large genomes, where users would 
avoid the computational burden of optimizing parameters for each sample.

–	 For approximating the real SV calling accuracy, run perSVade on realistic simula-
tions (“homologous” or “known”), which may report an accuracy that is closer to 
the real one.

–	 For SV calling on large datasets, consider the following options to speed up 
the process. First, rationally design the parameters (based on parameters opti-
mized for similar samples (see first point) and/or the benchmarking shown 
in this work) instead of inferring them with the “optimize_parameters” mod-
ule for every new sample. Second, skip marking duplicates in read alignment, 
which can be very costly. Third, limit the simulations to a subset of chromo-
somes in the “optimize_parameters” module. Fourth, randomly downsample 
your reads (i.e., to 30×), which may improve both performance and accuracy 
(see Additional file 1: Figure S7).

We note that perSVade is not a fundamentally new algorithm for SV detection but 
rather a pipeline implementing existing algorithms. This is why we did not compare 
it with other such methods (like manta [20] or delly [29]). The novelty of our pipe-
line lies in the automatic parameter selection feature, which is unique (to the best of 
our knowledge) for short read-based SV calling. We thus centered our testing on the 
accuracy of different parameters on SV calling. In fact, some recent approaches spe-
cifically developed for human genomes [22, 30] may outcompete perSVade in human 
samples. However, such methods rely on previously defined sets of known SVs, which 
are not available in most taxa. We thus consider that our pipeline will be mostly use-
ful in species without such specific methods available. For example, perSVade was 
used in a recent study to find SVs associated with antifungal drug resistance in the 
non-model yeast Candida glabrata [9], which successfully validated all (8/8) the pre-
dicted variants using PCR.

An open question is whether a similar parameter optimization strategy can be 
applied to SV calling pipelines based on other algorithms. Several studies have shown 
that the filtering strategies (considering parameters like read coverage, variant qual-
ity and vcf “FILTER” tags) largely affect the calling accuracy in various algorithms 
[23, 24]. This suggests that most SV callers could be boosted with a parameter opti-
mization strategy such as the one described here for gridss and clove. However, due 
to high heterogeneity in SV callers, each algorithm may require a custom pipeline to 
deal with caller-specific parameters, outputs, and SV types.

Finally, perSVade also includes modules for CNV identification and SNP/INDEL 
calling, as a way to automate the finding of other broadly used genomic variants. In 
addition, it includes variant annotation features to ease the functional interpretation 
of these variants for downstream analyses. In summary, perSVade is a Swiss-knife-like 
framework to identify many types of variants with a few bash commands. We con-
sider that this tool will be useful to understand the role SVs in different phenotypes 
and organisms, particularly those with no specific recommendations.
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Conclusions

–	 perSVade can identify SVs from short reads with sample-optimized parameters using 
a few bash commands.

–	 perSVade can predict the SV calling accuracy on simulated genomes, which informs 
about the reliability of the calling process in an automatic manner.

–	 perSVade’s parameter optimization improves the SV calling accuracy on simulated 
variants for five eukaryotic organisms, and on a reference dataset of validated human 
variants.

–	 We found no universal set of “optimal” parameters, which underscores the need for 
species-specific parameter optimization for SV calling.

Methods
PerSVade pipeline

PerSVade has several modules that can be executed independently (each with a single 
command) and/or combined to obtain different types of variant calls and functional 
annotations. The following sections describe how each of these modules work, and Fig. 1 
shows how they can be combined.

Module “trim_reads_and_QC”

This module runs trimmomatic [31] (v0.38) with default parameters for the input reads 
followed by fastqc [32] (v0.11.9) on the trimmed reads. These trimmed reads may be 
used for downstream analysis after checking that they are reliable according to the out-
put of fastqc.

Module “align_reads”

This module runs bwa mem [33] (v0.7.17) to align the short reads, generating a sorted 
.bam file (using samtools [34] (v1.9) with marked duplicates (through GATK MarkDupli-
catesSpark [35] (v4.1.2.0)), that is the core input of several downstream modules (“call_
SVs,” “optimize_parameters,” “call_CNVs,” “call_small_variants,” and “get_cov_genes”). If 
--skip_marking_duplicates is specified, this module skips the marking of duplicate reads 
(default behavior), which may be useful to speed up the process in large datasets.

Module “call_SVs”

This module uses gridss [21] to infer a list of breakpoints (two regions of the genome—
two breakends—that are joined in the sample of interest and not in the reference 
genome) from discordant read pairs, split reads, and de novo assembly signatures. The 
breakpoints are summarized into SVs with clove [25] (v 0.7). Importantly, this mod-
ule (and others) runs clove without the default coverage filter to classify deletion-like 
(DEL-like) and tandem duplication-like (TAN-like) breakpoints into actual deletions 
and tandem duplications. Instead, perSVade “call_SVs” calculates the relative coverage 
of the regions spanned by such breakpoints (using mosdepth [36]). This information is 
used to define the final set of deletions (DEL-like breakpoints with a coverage below a 
“max_rel_coverage_to_consider_del” threshold) and tandem duplications (TAN-like 
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breakpoints with a coverage above a “min_rel_coverage_to_consider_dup” threshold). 
This setting allows a separate thresholding for the classification of DEL and TAN-like 
breakpoints, which is a novel feature of perSVade as compared to the current implemen-
tation of clove. Note that this module requires as an input a set of parameters to filter the 
gridss and clove outputs. These parameters may be inferred using the module “optimize_
parameters” (described below) or rationally designed based on the benchmarking shown 
here (which can be useful to speed up the process). In addition, the user can use a set of 
default parameters, described in the section “Filters used by perSVade” below. Note that 
these default parameters are inspired by previous filtering strategies from [21, 37, 38].

The final output of this module is a set of files with the called variants (one file for each 
variant type), which belong to these types:

–	 Simple SVs: deletions, inversions, and tandem duplications (duplication of a region 
which gets inserted next to the affected region). This module outputs one .tab file for 
each of these SV types.

–	 Translocations: whole-arm balanced translocations between two chromosomes, 
which can be inverted or not. There is one .tab file for translocations.

–	 Insertions: a region of the genome is copied or cut and inserted into another region. 
Note that these are not de novo insertions (i.e., of DNA not present in the reference), 
which are actually not called in this module. There is one .tab file for insertions.

–	 Unclassified SVs: One .tab file reports all the variants that are called by clove and can-
not be assigned to any of the above SV types. These include clove’s unclassified break-
points (which could be part of unresolved/unknown complex variants) and complex 
inverted SVs (which are non-standard SVs). These types of SVs are not included in 
the simulations performed by “optimized parameters” (see below), so that their accu-
racy is unknown. This is why we group them together into a single file.

These separate files have a tabular format, where each variant is represented in a single 
line. In addition, the module “integrate_SV_CNV_calls” (see below) generates a single 
.vcf file with all the variants together, represented in a way that is focused on how each 
SV affects particular regions of the genome (useful for functional annotation). PerS-
Vade’s github wiki [39] includes further information on the output formats.

On another line, note that gridss does report de novo insertions, but the usage of short 
reads limits the calling to small events, which may miss many real de novo insertions. 
This is why we decided to not consider such variants as a trustful output in this module 
or the “optimize_parameters.” However, “call_SVs” saves the raw gridss output, and the 
unfiltered small de novo insertions can be obtained (although these should be treated 
with caution). In addition, note that these de novo insertions are different from non-tem-
plate insertions happening around the breakends of actual SVs. Non-template insertions 
are likely the product of DNA repair after the rearrangement, and they are considered in 
the “integrate_SV_CNV_calls” (see below).

Module “optimize_parameters”

To find optimal parameters for running “call_SVs” in a given input dataset, this mod-
ule generates two template (haploid) simulated genomes (the number can be customized 
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with --nsimulations) with up to 50 SVs of each of five types (insertions, transloca-
tions, deletions, inversion, and tandem duplications) with RSVsim [40] (v1.28) and cus-
tom python (v3.6) scripts (which use biopython [41] (v1.73)). By default, this template 
genome contains all chromosomes in the reference, but this can be customized with the 
--simulation_chromosomes argument to only simulate a subset of chromosomes and 
speed up the process. For each template genome, the module simulates reads with wgsim 
[42] (v1.0) and seqtk [43] (v1.3) with a read length, insert size, and coverage matching 
that of the input dataset. Note that the read simulation is performed according to a user-
defined zygosity and ploidy (through the mandatory argument “--simulation_ploidies”) 
to resemble various organisms. For example, if “--simulation_ploidies diploid_hetero” 
is specified, this module simulates reads with heterozygous SVs by merging reads from 
both the reference genome and the simulated genome with SVs in a 1:1 manner. Impor-
tantly, --simulation_ploidies can have multiple values, so that for each template simu-
lated genome and simulation ploidy this module generates unique simulated reads with 
the specified ploidy and zygosity. For example, if “--nsimulations 2 --simulation_ploidies 
diploid_hetero,diploid_homo” is set, this module generates four simulated reads. First 
it generates two template genomes, and for each of them it simulates reads with either 
heterozygous or homozygous SVs. Note that “--simulation_ploidies” can include any 
combination of “haploid,” “diploid_homo,” “diploid_hetero,” and “ref:<nref>_var:<nvar>” 
(where <nref> / <nvar> are the number of reference / alternative chromosomal copies, 
respectively). For example, setting “--simulation_ploidies ref:3_var:1” simulates reads 
assuming a tetraploid genome, where three chromosomes are like the reference and one 
has the SVs. This flexibility in setting ploidies / zygosity allows adapting this module to 
polyploid genomes or complex samples (i.e., pools of different samples of a population).

For each set of simulated reads (from one template genome with a specific ploidy 
and zygosity), perSVade “optimize_parameters” then tries several combinations 
(>278,000,000,000 by default, although this can be user-defined with the argument --range_
filtering_benchmark) of parameters to run gridss and clove and filter their outputs. The 
detailed explanation about the used filters can be found in the section “Filters used by perS-
Vade” below. To reduce the number of parameter combinations to be optimized, the pipe-
line discards parameter values that do not change breakpoint filtering as compared to an 
unconservative set of parameters. This means that the set of parameters to be optimized 
are limited to those that can be relevant, and these could be different in any run. One of 
these possible filters includes removing SVs that overlap repetitive elements, which may be 
inferred with the module “infer_repeats” (see below). This module selects the combination 
of filters that yield the highest F-value (the harmonic mean between precision and recall) 
for each SV type in each template simulated genome and ploidy/zygosity (see the section 
“Comparing sets of SVs to calculate precision and recall” below for more information on 
how accuracy is calculated). These filters are optimized for each simulation, and thus may 
not be accurate on independent sets of SVs (due to overfitting). In order to reduce this 
effect, perSVade “optimize_parameters” selects a final set of “best parameters” that work 
well for all simulations, ploidies/zygosities, and SV types. This set of best parameters may be 
used in the “call_SVs” module. The accuracy (F-value, precision, recall) of these parameters 
on each simulation and SV type is reported in a tabular file, which serves to evaluate the 
expected calling accuracy. Note that we default the number of template simulated genomes 
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to two in order to have a meaningful evaluation of overfitting (which likely requires more 
than one template genome). In addition, note that setting several simulation ploidies can be 
useful to select parameters that work well for different ploidies/zygosities.

All plots are generated using python (v3.6) and the libraries seaborn [44] (v0.9.0) and 
matplotlib [45] (v3.3.0). In addition, the python packages scipy [46] (v1.4.1), scikit-learn 
[47] (v0.21.3), psutil [48] (v5.7.2), and pandas [49] (v0.24.2) are used for scripting and 
various statistical calculations. On another line, pigz [50] (v2.4) and gztool [51] (v0.11.5) 
are used for fast compression steps. Finally, perSVade “optimize_parameters” uses picard 
[52] (v2.18.26) to construct a sequence dictionary for the provided reference genome.

By default, the simulated events are placed randomly across the genome. However, real 
SVs often appear around repetitive elements or regions of the genome with high similar-
ity (e.g., transposable elements insertions) [24, 26–28]. This means that random simu-
lations may not be realistic, potentially leading to overestimated calling accuracy and 
a parameter selection inaccurate for real SVs [24]. To circumvent this, perSVade “opti-
mize_parameters” can generate more realistic simulations occurring around some user-
defined regions (i.e., with previously known SVs or homologous regions) provided with 
the --regions_SVsimulations argument. Importantly, perSVade provides an automatic 
way to infer such regions through the modules “find_knownSVs_regions” and “find_
homologous_regions” (described below). Beyond setting custom regions, users may 
want to tune the number of simulated SVs (through the --nvars argument) to be realistic 
in the samples/species of interest. In addition, note that the variant size is proportional 
to genome length, which ensures that long genomes have larger sections under SV.

Finally, note that Additional file 1: Figure S1 includes a detailed graphical representa-
tion which can be useful to understand how this module works.

Module “find_knownSVs_regions”

This module finds regions with known SVs using a provided list of sequencing datasets 
(with the option --close_shortReads_table) from species close to the reference genome. 
These datasets are processed with perSVade’s modules “trim_reads_and_QC,” “align_
reads,” and “call_SVs” (using default parameters) to find SVs. This module then outputs 
a .bedpe file with the ±100bp regions around the breakends from these SVs. This .bedpe 
file can be input to the module “optimize_parameters” through the --regions_SVsimula-
tions argument in order to perform “known” realistic simulations.

Module “find_homologous_regions”

This module infers homologous regions by defining genomic windows (from the refer-
ence genome) of 500 bp as a query for a blastn [53] (v2.10.0+) against the same ref-
erence genome. Hits with an e-value <10−5 that cover >50% of the query regions are 
defined as pairs of homologous regions, which are written as a .bedpe file. This .bedpe 
file can be input to the module “optimize_parameters” through the --regions_SVsimula-
tions argument in order to perform “homologous” realistic simulations.

Module “call_CNVs”

Copy number variants (CNVs) are a type of SVs in which the genomic content varies 
(deletions or duplications). The “call_SVs” module (see previous section) identifies some 
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CNVs (insertions, tandem duplications, deletions, and complex inverted SVs) but it can 
miss others (i.e., whole-chromosome duplications or regions with unknown types of 
rearrangements yielding CNVs [8, 54]). PerSVade uses this “call_CNVs” module to call 
CNVs from read-depth alterations. For example, regions with 0× or 2× read depth as 
compared to the mean of the genome can be called deletions or duplications, respec-
tively. A straightforward implementation of this concept to find CNVs is challenging 
because many genomic features drive variability in read depth independently of CNV 
[55, 56]. In order to solve this, perSVade “call_CNVs” calculates the relative coverage for 
windows of the genome (using bedtools [57] (v2.29.0) and mosdepth [36] (v0.2.6)) and 
corrects the effect of the GC content, mappability (calculated with genmap [58] (v1.3.0)), 
and distance to the telomere (using cylowess [59] for nonparametric regression as in 
[56]). Note that cylowess uses the library cython [60] (v0.29.21). This corrected coverage 
is used by CONY [61] (v1.0), AneuFinder [62] (v1.18.0), and/or HMMcopy [63] (v1.32.0) 
to call CNVs across the genome. Note that we modified the R code of CONY to be com-
patible with the input corrected coverage. The corrected code (used in the pipeline) is 
available in “scripts/CONY_package_debugged.R” from [39]. PerSVade “call_CNVs” 
generates consensus CNV calls from the (up to) three programs taking always the most 
conservative copy number for each bin of the genome. For example, if the used pro-
grams disagree on the copy number of a region the closest to 1 will be taken as the best 
estimate. Note that the parameters obtained in the module “optimize_parameters” can-
not be used for this module, since the SV and CNV calling methods are fundamentally 
different.

Module “integrate_SV_CNV_calls”

This module generates a vcf file showing how SVs (called by the modules “call_SVs” and/
or “call_CNVs”) alter specific genomic regions. We designed this vcf to be compatible 
with the Ensembl Variant Effect Predictor [64] (VEP) tool for functional annotation, 
which can interpret tandem duplication (TDUP) duplication (DUP), deletion (DEL), and 
breakend-like (BND) events. This requires the decomposition of each variant into such 
TDUP, DUP, DEL, and BND events (one event in each row of the vcf ). For example, each 
inversion is decomposed into two BND events (two rows in the vcf ), one for each end 
of the inversion. The rationale behind this is that, in terms of functional annotation for 
inversions, we are interested in genomic features that are around the ends of the inver-
sion, where the rearrangement happens. Each SV can thus be split across multiple rows 
when it affects more than one region of the genome. All rows related to the same SV are 
identified by the field variantID in INFO. On top of this, each row has a unique identifier 
indicated by the field ID. Some SVs generate non-template inserted sequences around 
the breakends (likely the product of DNA repair after a rearrangement), and each of 
these is represented in a single row. Note that each of the rows may indicate a region 
under CNV (with the SVTYPE in INFO as DEL, DUP, or TDUP), a region with some 
breakend (with the SVTYPE in INFO as BND) or a region with a non-template insertion 
(with the SVTYPE in INFO as insertionBND) around the breakend. Such non-template 
insertions are included here because they may modulate the impact of SVs on genomic 
features, and thus they are relevant for functional annotation. Note that this module 
also removes redundant calls between the CNVs identified with “call_SVs” (tandem 



Page 17 of 26Schikora‑Tamarit and Gabaldón ﻿Genome Biology          (2022) 23:175 	

duplications, deletions and insertions) and those derived from “call_CNVs.” To remove 
redundancy, this module skips any CNV called by “call_CNVs” that overlaps reciprocally 
(by at least an 80% of the region) a CNV called by “call_SVs” using bedmap from the 
bedops tool [65] (v2.4.39). See the FAQ “What is in SV_and_CNV_variant_calling.vcf?” 
from [39] for more information about the format of this .vcf file.

Module “annotate_SVs”

This module runs the Ensembl Variant Effect Predictor [64] (v100.2) on the vcf output of 
the module “integrate_SV_CNV_calls” to get the functional annotation of each SV. This 
requires a .gff file from the user.

Module “call_small_variants”

This module performs small variant (SNPs and small IN/DELs) calling with either free-
bayes [66] (v1.3.1), GATK HaplotypeCaller [67] (v4.1.2.0), and/or bcftools call [68] (v1.9) 
and integrates the results into .tab and .vcf files. The section “Calling of small variants” 
below provides further information on how this calling is performed.

Module “annotate_small_vars”

This module runs the Ensembl Variant Effect Predictor [64] (v100.2) on the vcf output 
of the module “call_small_variants” to obtain the functional annotation of each variant. 
This requires a .gff file from the user.

Module “get_cov_genes”

This module runs mosdepth [36] (v0.2.6) to obtain the coverage for each gene, which 
requires a .gff file from the user.

Module “infer_repeats”

This module annotates repetitive elements in a genome, which can be used for the mod-
ules “call_SVs,” “find_knownSVs_regions,” “integrate_SV_CNV_calls,” “optimize_param-
eters,” and “call_small_variants.” These repeats are inferred with RepeatModeler [69] 
(v2.0.1) and RepeatMasker [70] (v4.0.9). The user can input these repeats to several 
modules (with --repeats_file), which will have the following effects:

–	 If repeats are provided, “optimize_parameters” will assess whether removing SV 
calls overlapping repeats increases the overall accuracy. If so, the resulting optimized 
parameters will include a “filter_overlappingRepeats : True.” If you use these opti-
mized parameters in “call_SVs,” any breakpoint overlapping repeats will be removed.

–	 If repeats are provided, “call_SVs” may filter out SVs that overlap repeats if the SV 
filtering parameters include a “filter_overlappingRepeats : True.”

–	 If repeats are provided, “find_known_SVs” will pass them to the “call_SVs” module.
–	 If repeats are provided, “integrate_SV_CNV_calls” will add a field in the INFO which 

indicates whether the SVs overlap repeats.
–	 If repeats are provided, “call_small_variants” will add a field in the tabular variant 

calling file which indicates whether the SVs overlap repeats.
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Alternatively, the user can specify “--repeats_file skip” to avoid the consideration of 
repeats in all these modules.

Testing SV calling with perSVade on simulated structural variants

To test perSVade’s performance on different species, we ran it on paired-end WGS data-
sets for six eukaryotes (Candida glabrata, Candida albicans, Cryptococcus neoformans, 
Arabidopsis thaliana, Drosophila melanogaster, and Homo sapiens). To obtain a high 
number of SVs, we gathered three samples for each species with enough genetic diver-
gence to the reference genome. For this, we first used an automatic pipeline to find these 
samples running the custom script “scripts/perSVade.py” from [39] with the options 
--close_shortReads_table auto --n_close_samples 3 --nruns_per_sample 1 --target_taxID 
<species_taxID>. This used entrez-direct [71] (v13.3), SRA Tools [72] (v2.10.9), and ete3 
[73] (v3.1.2) to query the SRA database [74] and find three WGS datasets of close tax-
IDs (to each <species_taxID> according to the NCBI taxonomy species tree [75]) with a 
coverage >30× and >40% of mapped reads to the reference genome. We could find three 
such datasets for C. albicans, C. neoformans, A. thaliana, and D. melanogaster, which 
included samples from the same species or genera as the target species, with >65% of the 
reads mapping to the reference genome. We randomly downsampled the A. thaliana and 
D. melanogaster runs to 30× coverage (using samtools [34] (v1.9)) for faster computa-
tion (using the option --max_coverage_sra_reads 30). For C. glabrata, we used datasets 
generated in our lab from three divergent strains (BG2, CST34, and M12, from [9]). All 
these datasets are listed in Additional file 1: Table S1. Finally, we tested perSVade on three 
H. sapiens datasets previously used for benchmarking SV callers [23, 24]. These included 
NA12878 (a Genome in a Bottle (GIAB) cell line related to the Ceph family [76, 77]), 
HG002 (another GIAB project with reads available at [78]), and CHM1/CHM13 (two 
haploid cell lines sequenced independently [79], for which we merged the raw reads to 
generate synthetic diploid data). Note that we chose testing datasets with various read 
lengths and coverages (see Additional file 1: Table S1) to evaluate how perSVade works on 
realistic diverse scenarios. The reference genomes were taken from the Candida Genome 
Database [80] (version s02-m07-r35 for C. glabrata and “haplotype A” from version A22-
s07-m01-r110 for C. albicans), GenBank [81] (accession GCA_000149245.3 for C. neofor-
mans, GCA_000001735.2 for A. thaliana and GCA_000001215.4 for D. melanogaster), 
and UCSC [82] (the latest version of genome hg38 at 06/04/2021 for H. sapiens, keeping 
only chromosomes 1-22, X,Y and the mitochondrial DNA). In addition, we performed 
quality control of the reads with fastqc [32] (v0.11.9) and trimming with trimmomatic 
[31] (v0.38).

We ran the SV calling pipeline of perSVade (using the modules “align_reads,” “call_
SVs,” and “integrate_SV_CNV_calls”) on all these datasets using either “default” or opti-
mized parameters (based on “random,” “known,” or “homologous” simulations using 
the modules “optimize_parameters,” “find_homologous_regions,” and “find_knownSVs_
regions”). Note that the default parameters were designed as a baseline to understand 
the need for parameter optimization. We thus pre-defined these parameters based on 
standard author recommendations (from previous filtering strategies designed by the 
gridss authors [21, 37, 38]). By comparing the results of such parameters (designed 
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based on previous usage) and the optimized ones, we could assess the gain in SV call-
ing accuracy associated with parameter optimization. In addition, note that we used 
the module “infer_repeats” to find repetitive elements in each genome. These were 
provided to “optimize_parameters” to assess whether filtering out repeats improved 
SV calling accuracy. In addition, we simulated diploid heterozygous SVs for the diploid 
genomes (C. albicans, A. thaliana, D. melanogaster, and H. sapiens) and haploid SVs 
for the haploid genomes (C. glabrata, C. neoformans). Note that we decided to only 
simulate heterozygous variants in the diploid genomes to create the most challenging 
scenario for SV calling (since homozygous variants are expected to be easier to find 
due to higher coverage), as previously done [24]. In addition, the output of the “infer_
repeats” module was used to calculate the fraction of the genome with simple repeats 
or low-complexity regions of C. glabrata and C. neoformans. We used computational 
nodes in an LSF cluster (https://​www.​ibm.​com/​suppo​rt/​pages/​what-​lsf-​clust​er) with 
16 cores and either 32 Gb (for C. glabrata, C. albicans, C. neoformans), 64 Gb (for A. 
thaliana and D. melanogaster), and 96 Gb (for H. sapiens) of RAM for the testing. We 
first ran the read alignment step (module “align_reads”) for all samples, and then used 
the resulting .bam files as inputs for the other perSVade modules. We calculated the 
resource consumption (running time and maximum RAM used) for each of these perS-
Vade runs, thus ignoring the resources related to read alignment. Of note, perSVade 
was run with different parameters for the human datasets to avoid excessive resource 
consumption and match our computational infrastructure. First, we skipped the mark-
ing of duplicate reads on the .bam files (default behavior) with perSVade’s --skip_mark-
ing_duplicates option on the module “align_reads.” Second, we ran the simulations on 
a subset of the genome (only chromosomes 2, 7, 9, X, Y and mitochondrial), by using 
the --simulation_chromosomes argument of the “optimize_parameters” module. Third, 
we skipped the “homologous” simulations in human samples because we could not fin-
ish the inference of pairs of homologous regions (see previous section) due to excessive 
memory consumption. By running this inference on a few chromosomes, we realized 
that there are millions of such regions, generating excessively large files. Note that this 
strategy may be used in general to speed up parameter optimization.

Finally, we tested the accuracy of all the optimized parameters (for each sample / 
simulation) on the other samples / simulations using the script “testing/get_accuracy_
parameters_on_sorted_bam.py” from [39]. In addition, to test the impact of changing 
each parameter in isolation, we generated sets of parameters where only one parameter 
is changed to a non-default value. We then used this same script (“testing/get_accuracy_
parameters_on_sorted_bam.py” from [39]) to measure the accuracy of each parameter 
set on each sample / simulation. On another line, to assess whether the high coverage 
of C. glabrata samples (>300×, see Additional file 1: Table S1) constrained SV calling, 
we measured the accuracy of each parameter set (optimized for each species / simula-
tions) on the C. glabrata simulations with varying coverage. For each simulation (based 
on a sample and a type of simulation (homologous / known / uniform)), we subsampled 
randomly the reads to get a coverage of 10×, 30×, 50×, 100×, 200×, or 300× using 
samtools [34] and mosdepth [36] on the aligned simulated reads. We then used our cus-
tom script “testing/get_accuracy_parameters_on_sorted_bam.py” from [39] to test the 
SV calling accuracy on each downsampled simulation. The section “Comparing sets of 

https://www.ibm.com/support/pages/what-lsf-cluster
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SVs to calculate precision and recall” below provides further information on how accu-
racy is calculated.

Testing perSVade on real SVs

To validate the usage of perSVade on real data, we focused on public datasets with avail-
able short reads and independently defined sets of known SVs. We could find such SVs 
in the human samples (also used in the testing mentioned above), for which SV callsets 
of deletions or inversions exist (as done in [24]). We defined as “true SVs” the deletions 
of NA12878 (defined in [77], available at [83]), the high-confidence deletions of HG002 
(available at [84]) and the union of all deletions and inversions found in either CHM1 or 
CHM13 lines (defined by [79], available at [85]).

We then tested the accuracy of the “training” parameters optimized for each sam-
ple and simulation of the six eukaryotes mentioned above (in the section “Testing 
SV calling with perSVade on simulated structural variants”) on these human sam-
ples using our custom script “testing/get_accuracy_parameters_on_sorted_bam.py” 
from [39]. In addition, we removed SVs overlapping simple repeats or low-complexity 
regions (as inferred by the module “infer_repeats”) from this analysis. Note that each 
of these “true SV” datasets were defined on different reference genomes: the NA12878 
and HG002 callsets were based on hg19 and the CHM1/CHM13 was relative to hg38. 
This means that we could not directly use the optimized training parameters from 
the human samples from the previous section, since they were all based on hg38. We 
thus ran perSVade’s SV calling and parameter optimization modules on NA12878 
and HG002 using the hg19 reference, and used the resulting optimum parameters as 
“training” for these two samples. For this, we obtained the latest version of hg19 and 
hg38 genomes at 06/04/2021 from UCSC [82], keeping only chromosomes 1-22, X,Y, 
and the mitochondrial DNA.

Filters used by perSVade

These are the filters used in the module “call_SVs,” whose values may vary across param-
eter optimization in perSVade (note that most of the gridss filters were inspired by the 
filtering strategy used to generate the somatic call set from [21, 37] and the original 
gridss paper [37, 38])):

–	 min_Nfragments: Minimum number of reads supporting a breakend in gridss to be 
accepted (default is 5).

–	 min_af: Minimum variant allele frequency of a breakend in gridss to be accepted 
(default is 0.25).

–	 min_af_EitherSmallOrLargeEvent: Minimum variant allele frequency (VAF) of a 
breakend in gridss to be accepted, regardless of how VAF is calculated (default is 0.25). 
Note that VAF is calculated differently depending on if the breakend spans a region 
longer than the insert size or not (see https://​github.​com/​Papen​fussL​ab/​gridss/​issues/​
234#​issue​comme​nt-​52148​9484). We regularly (i.e., for the min_af filter) calculate a 
VAF assuming that the breakend is a small event (vaf_small) or a large event (vaf_
large). If the length of the breakpoint is above a certain threshold, related to the insert 
size (“median insert size + median absolute deviation of the insert size”), perSVade 

https://github.com/PapenfussLab/gridss/issues/234#issuecomment-521489484
https://github.com/PapenfussLab/gridss/issues/234#issuecomment-521489484
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sets VAF to be “vaf_large” and vice versa. Note that our distinction between small and 
large breakends could be error prone in some cases, and min_af_EitherSmallOrLar-
geEvent allows the filtering based on VAF independently of the size of the event. If 
min_af_EitherSmallOrLargeEvent is above 0, breakends that have both “vaf_small” 
and “vaf_large” below the set min_af_EitherSmallOrLargeEvent will be discarded.

–	 min_QUAL: Minimum quality (QUAL field of the vcf file) of a breakend in gridss to 
be accepted (default is 0).

–	 max_to_be_considered_small_event: Maximum length of a breakpoint in gridss to 
be considered a small event (default is 1000). Events shorter than this value are con-
sidered as “small events,” which are treated particularly by other filtering steps.

–	 min_length_inversions: Minimum length of inversion-like breakends in gridss to be 
accepted (default is 40).

–	 maximum_lenght_inexactHomology: Maximum length of the inexact homology 
region around a breakend in gridss to be accepted (default is 50). This filter is not 
applied to “small events,” as defined by “max_to_be_considered_small_event.”

–	 maximum_microhomology: Maximum length of the exact homology (microhomol-
ogy) region around a breakend in gridss to be accepted (default is 50).

–	 maximum_strand_bias: Maximum strand bias of a breakend in gridss to be accepted 
(default is 0.99). This filter is only applied to “small events,” as defined by “max_to_
be_considered_small_event.”

–	 filter_noReadPairs: Discards gridss breakends without discordant read pair support 
(default is false). This filter is not applied to “small events,” as defined by “max_to_be_
considered_small_event.”

–	 filter_noSplitReads: Discards gridss breakends without split-read evidence (default is false). This 
filter is only applied to “small events,” as defined by “max_to_be_considered_small_event.”

–	 filter_overlappingRepeats: Discards gridss breakends overlapping repetitive elements 
(default is false). This will only have an effect if you provide a repeats file as inferred 
by the module “infer_repeats.”

–	 filter_polyGC: Discards gridss breakends with long inserted G or C sequences 
(>15bp) (default is true).

–	 wrong_FILTERtags: A set of values in the FILTER field of the gridss vcf which flag 
discarded breakends (default is [“NO_ASSEMBLY”]).

–	 range_filt_DEL_breakpoints: A range of lengths in which DEL-like breakends (as defined 
by gridss) are discarded if the breakend has a region with inexact homology above 5bp 
(default is [0, 1]). For example, if set to [500, 1000], DEL-like breakends whose length is 
between 500 and 1000bp with an inexact homology sequence >5 bp would be discarded.

–	 dif_between_insert_and_del: The margin given for comparing the length of the 
inserted sequence (len_seq) on a gridss DEL-like breakend and the length of the 
actual event (len_event) (default is 5). If len_seq > (len_event - dif_between_insert_
and_del), the breakend is filtered out. This filter is only applied to “small events,” as 
defined by “max_to_be_considered_small_event.”

–	 max_rel_coverage_to_consider_del: The maximum relative coverage that a region 
spanning a DEL-like breakpoint (as defined by clove) can have to be classified as an 
actual deletion (default is 0.1). Note that the default is a conservative filter adapted to 
haploid genomes or homozygous variants.
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–	 min_rel_coverage_to_consider_dup: The minimum relative coverage that a region 
spanning a TAN-like breakpoint (as defined by clove) can have to be classified as an 
actual tandem duplication (default is 1.8). Note that the default is a conservative filter 
adapted to haploid genomes or homozygous variants.

Note that all the breakpoints that have at least one breakend that does not pass the 
filters are discarded by perSVade.

Calling of small variants

PerSVade’s small variant calling pipeline (module “call_small_variants”) uses three alter-
native methods (GATK Haplotype Caller (HC) [67] (v4.1.2), freebayes (FB) [66] (v1.3.1), 
and / or bcftools (BT) [68] (v1.9)) to call and filter single-nucleotide polymorphisms 
(SNP) and small insertions/deletions (IN/DEL) in haploid or diploid configuration 
(specified with the -p option). The input is the bam file generated by the “align_reads” 
module. This module defines as high-confidence (PASS) variants those that are in posi-
tions with a read depth above the value provided with --min_coverage, with extra filters 
for HC and FB. For HC, it keeps as PASS variants those where (1) there are <4 addi-
tional variants within 20 bases; (2) the mapping quality is >40; (3) the confidence based 
on depth is >2; (4) the phred-scaled p-value is <60; (5) the MQRankSum is >−12.5, 
and (6) the ReadPosRankSum is >−8. For FB, perSVade “call_small_variants” keeps as 
PASS variants those where (1) quality is > 1 or alternate allele observation count is > 10, 
(2) strand balance probability of the alternate is > 0, (3) number of observations in the 
reverse strand is > 0, and (4) number of reads placed to the right/left of the allele are 
> 1. Then, bcftools (v1.10) and custom python code are used to normalize and merge 
the variants called by each software into a consensus variant set, which includes only 
those variants called with high-confidence by N or more algorithms This results in one 
.vcf file with the high-confidence variants for each N. Note that this .vcf file only keeps 
variants for which the fraction of reads covering the alternative allele is above the value 
provided with --min_AF (which may be 0.9 for haploids or 0.25 for diploids). For dip-
loid calls, it defines the genotype with the strongest support (the one called by most 
programs). In addition, the quality of each variant is calculated from the mean of the 
three algorithms. Beyond the filtered variant calls, this module writes a tabular file with 
all the raw variants with various metadata columns (i.e., the programs that called the 
variant), which can be used to apply a custom filtering of the variants.

Comparing sets of SVs to calculate precision and recall

To measure accuracy in different sets of “called SVs” (in perSVade’s simulations and also 
the testing of the pipeline (related to Figs. 2, 3, and 4 and Additional file 1: Figures S1, S3, 
S4, S5, S6, S7)), we compared them against the corresponding sets of “known SVs” and 
calculated the following estimates:
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where true positives (TP) are those in the “called SVs” that match at least one variant 
from the “known SVs,” false positives (FP) are those in the “called SVs” that do not match 
any from the “known SVs,” and false negatives (FN) are those in the “known SVs” that are 
not matched by any variant from the “called SVs.” We define that two SVs are “matching” 
using a different approach for each type of SV:

–	 Inversions, tandem duplications, and deletions: both SVs are in the same chromo-
some, their altered regions are overlapping by 75% and their breakends are <50bp 
apart.

–	 Insertions: both SVs have the same origin and destination chromosomes and are 
both either cut-and-paste or copy-and-paste. In addition, the regions of the origin 
chromosome are overlapping by 75% and the breakends are <50bp apart. Finally, 
the starts of the destination chromosomes (insertion sites) in both SVs are <50bp 
apart.

–	 Translocations: both SVs have the same origin and destination chromosomes and 
are both either inverted or not. In addition, the breakpoint positions in both SVs are 
<50bp apart.

In addition, we calculated “integrated” precision and recall measures (related to Figs. 3 
and 4 and Additional file 1: Figure S6) merging all the variants together into single sets 
of “called SVs” and “known SVs.” We used custom python (v3.6) code and bedmap from 
the bedops tool [65] (v2.4.39) to calculate all these overlaps. See the section “PerSVade 
pipeline” above for further information on the meaning of each type of SV.
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