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Background
Peach (Prunus persica) is among the most widely consumed fruit crops in the world. 
Its production ranks the fourth after apple, pear, and grape, contributing to a $4.6 bil-
lion industry annually (https://​www.​fao.​org/​faost​at/). Peach fruit and its products pro-
vide many of the essential and beneficial nutrients in the human diet. Consumption of 
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decreasing accompanied by the reduced bitter flavor during both domestication and 
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in fruit from these two regions. Based on the identified key genes regulating flavonoid 
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of the linkage of genes related to bitterness and acid taste, antioxidant and potential 
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fruits and vegetables has been associated with reduced risk of some chronic diseases 
such as cardiovascular disease and cancer [1, 2]. It is well known that flavor and nutri-
tional values of food crops are ultimately determined by their chemical compositions 
[3]. Tracking metabolic patterns during domestication and improvement is an impor-
tant approach to explore the interaction among nature, human, and plants. For example, 
wheat domestication was first characterized by a reduction in unsaturated fatty acids 
and then altered amino acid content at different stages [4]. Different with field crops, the 
domestication of fruit crops tend to reduce bitterness [5] and acidity [6], while increase 
sweetness [7] and attractive color [8]. However, how artificial selection has reshaped the 
metabolite profiles of fruit crops remains largely unknown.

As sessile beings, plants have evolved a unique and sophisticated response to envi-
ronmental stresses through regulating metabolism to escape from adverse conditions 
[9]. In rice, the accumulation of low temperature upregulates the enzymes involved in 
starch degradation, sucrose metabolism, and the glyoxylate cycle and enhances absci-
sic acid (ABA) signaling while represses cytokinin signaling [10]. Increased ABA level 
has also been found in response to water-deficit stress through affecting the accumula-
tion of various amino acids and sugars [11]. In peaches, some reports have documented 
the change of metabolite levels in fruits under cold storage and UV-B irradiation [12, 
13]. However, effects of external environments and human selections on metabolites are 
poorly understood.

Peach has served as a model species for genomic research of Rosaceae, making a com-
prehensive metabolomic study of this species imperative. Metabolic quantitative trait 
loci (mQTLs) have been identified in peach based on linkage maps using the SNP array 
[14, 15]. However, the underlying genes remain elusive because of the relatively low 
resolution of the genetic maps. In recent years, genome-wide association studies cou-
pled with targeted metabolome analysis (or mGWAS) make it possible to simultaneously 
screen a large number of accessions to understand the genetic basis of metabolic diver-
sity and their relevance to complex traits. Such studies have been carried out in some 
important crops and model plant species, including rice, tomato, Arabidopsis, and maize 
[16–19]. Results from these studies provide an essential reference to help understand the 
genetic basis of natural variation of the metabolomes and to facilitate the breeding of 
elite varieties with increased resistance to detrimental stresses and enhanced nutritional 
values.

In this study, through comprehensive metabolic profiling, mGWAS, and expres-
sion quantitative trait loci (eQTL) analyses, we provide the genetic basis of metabolite 
changes in the process of peach evolution. A total of 28 and 32 hotspots in the peach 
genome that regulate the metabolite variations in 252 diverse peach accessions were 
identified in two seasons, 2015 and 2016, respectively. We discovered several novel 
metabolites that are involved in peach adaptation to different environments. In addition, 
we identified footprints of artificial selection associated with fruit flavor and nutrition. 
This study demonstrates that the high-resolution mapping of a large number of metab-
olites might significantly improve the efficiency of important gene identification and 
pathway elucidation, providing insights into genetic and biochemical basis of peach fruit 
metabolomes and also valuable resources for crop improvement through metabolomics-
assisted breeding.
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Results
Metabolic profiling of peach fruits

The overall experimental design and the data obtained in this study are shown in Fig. 1a. 
Firstly, to determine the metabolic profiles of peach fruits, mature fruits harvested in 
two seasons (2015 and 2016) from a diverse panel comprised of 252 accessions (Fig. 1b; 
Additional file 2: Table S1) were analyzed using a targeted high-throughput LC-MS/MS 
approach, which detected a total of 1858 distinct metabolite features (Additional file 3: 
Table  S2). Of the detected metabolites, 257 could be annotated. We found that 33.4% 
and 27.5% of the metabolites displayed broad-sense heritability greater than 0.5 in 2015 
and 2016, respectively (Additional file 1: Fig. S1a), and 71.04 and 71.83% of the metabo-
lites had the coefficient of variations (CVs) greater than 50% (Additional file 1: Fig. S1b), 
suggesting great variations of metabolites in different peach fruits. Flavonoids in fruit 
showed the highest CVs with an average of 207.91%, ranging from 25.02% (Quercetin 
4’-O-glucoside) to 731.01% (rutin), while saccharides and alcohols showed the low-
est CVs with an average of 46.35%. Among the 257 annotated substances, 232 showed 

Fig. 1  Metabolome profiles of peach accessions. a Summary of the experimental pipelines and data 
presented in this study. b Geographic distribution of peach accessions sampled in this study. Wild peaches, 
landraces, eastern improved varieties, and western improved varieties are indicated by pink, blue, green, 
and purple circles, respectively. c Principal component analysis of 252 peach accessions according to their 
metabolome profiles. d Heatmap of the relative levels of all annotated metabolites in four peach populations, 
wild (W), landraces (L), eastern improved varieties (EI), and western improved varieties (WI). Different classes 
of metabolites are plotted in the left column and shown in different colors. e Boxplots of representative 
metabolites in W, L, EI, and WI groups
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significant (r > 0.18 and p ≤ 0.01) (Additional file 1: Fig. S2a) and 89 showed extremely 
significant (r > 0.62, Additional file 1: Fig. S2b) correlations between seasons 2015 and 
2016, suggesting a stable repeatability.

Based on the levels of all detected metabolites, principal components analysis (PCA) 
was performed (Fig. 1c), which largely separated the accessions into four distinct clus-
ters: wild and ornamental peaches (W), landraces (L), and improved varieties (I) that can 
be further categorized into eastern (EI) and western (WI) improved varieties, indicat-
ing dynamic changes of metabolite profiles during the evolution from wild peaches to 
improved varieties. This is consistent with our previous studies based on SNPs identified 
from genome resequencing [20, 21].

To reveal a possible reshaping of the peach metabolome during evolution, the spe-
cific annotated metabolic components in a peach group were examined. The results 
showed that the W group had the most specific components (44), followed by L (15), 
WI (14), and EI (3) (Fig.  1d; Additional file  4: Table  S3). We further identified differ-
ential metabolites between each of the above two peach groups (Additional file 1: Fig. 
S3-S5) according to FC (fold change) ≥ 1.5 or ≤ 0.67 and variable importance in the 
projection (VIP) ≥ 1. A total of 502 and 620 metabolites were identified when compar-
ing wild peaches and landraces in seasons 2015 and 2016, respectively, including mainly 
flavonoids and organic acids and derivatives (Additional file 5: Table S4). For example, 
some oxyflavonoids (isorhamnetin O-hexoside and rutin) were decreased by 90% from 
wild peaches to landraces in both seasons. In contrast, 347 and 321 differed significantly 
between landraces and improved varieties in 2015 and 2016, respectively (Additional 
file 6: Table S5), and these continued to be mainly flavonoids and organic acids. Metabo-
lites with the most significant declines in both seasons were cyanidin 3-O-rutinoside, 
pelargonidin 3-glucoside, and rutin. Using season 2016 as an example, we found that 24 
metabolites have continuously decreased over the evolutionary history of peach, includ-
ing mainly 11 organic acids and 8 flavonoids. The changes of some representative metab-
olites are shown in Fig. 1e.

Generally, among the 10 classes of annotated metabolites, flavonoids and organic 
acids are obviously selected during peach domestication and improvement. Our results 
suggest that the combined selection pressure by nature and human has continuously 
reshaped the metabolome of peach. In addition, a total of 22 metabolites were identified 
that differed between the EI and WI in both seasons (Additional file 7: Tables S6; Addi-
tional file 8: Table S7), including 12 with higher levels in EI and 10 in WI, suggesting the 
regional influence of human selection on fruit metabolites.

Multi‑omics analyses to dissect the genetic basis of peach metabolome

To reveal the molecular mechanism of metabolite changes during evolution, a total 
of 486,009 high-quality SNPs identified from the previous studies (Additional file 2: 
Table S1) [21, 22] were used for mGWAS analysis. We identified 8685 and 10,412 lead 
SNPs corresponding to 582 and 628 metabolites in seasons 2015 and 2016 (Table 1; 
Fig.  2a), respectively, with an average of 14.0% and 13.7% explained variations (R2) 
(Additional file  9: Table  S8; Additional file  1: Fig. S6). Of these metabolites, 81.1% 
and 80.7% had multiple lead SNPs in 2015 and 2016, respectively, with 298 and 337 
metabolites having more than five lead SNPs (Additional file  10: Table  S9). Few 
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metabolites were controlled by only one primary locus that explained over 10% of the 
natural variation, such as L-phenylalanine (mr262) and L-leucine (mr1325). Among 
all association signals, we identified 25 (threshold = 50 associated lead SNPs per Mb) 
and 23 (threshold = 59 associated lead SNPs per Mb) potential “hotspots” associated 
with metabolites in 2015 and 2016, respectively (Additional file 1: Fig. S7; Additional 
file  11: Table  S10), including four principal hotspots located on Chr. 2: 23–26 Mb, 
Chr. 4: 1–2 Mb, Chr. 5: 0–3 Mb, and Chr. 8: 3–5 Mb (Fig. 2a). Enrichment analysis 
of the metabolites associated with the above four hotspots revealed that the target 
metabolites were mainly flavonoids (such as malvidin-3-O-glucoside, methylChrysoe-
riol 5-O-hexoside, quercetin 3-O-glucoside, and chrysoeriol 5-O-hexoside), followed 
by organic acids (such as syringetin O-hexoside, citric acid, methylcitric acid, and 
3-O-feruloylquinic acid), amino acids (such as 3-hydroxykynurenine and histidinol), 
and nucleotides (such as hypoxanthine).

To assist in the identification of candidate genes underlying the natural variation of 
the metabolome, we collected fruits at 15 days prior to ripening of 185 accessions in 
2016 for transcriptome sequencing (Additional file 12: Table S11). A total of 14,800 
genes were detected using this RNA sequencing (RNA-seq) dataset (Additional file 1: 
Fig. S8). We found that a total of 1222 genes were differentially expressed between dif-
ferent peach groups (Additional file 1: Fig. S9), including 920 in the comparison of W/
(L+I), 207 in L/I, and 218 in EI/WI (fold change ≥ 2 or ≤ 0.5, p ≤ 0.05) (Additional 
file 13: Table S12; Additional file 1: Fig. S10). KEGG enrichment analysis revealed that 
differentially expressed genes (DEGs) in W/(L+I) and EI/WI were mainly involved in 
indole alkaloid biosynthesis, and those in L/I were involved in flavonoid biosynthesis 
(Additional file 1: Fig. S11).

Correlation analysis between transcriptome and metabolome in 2016 identified a 
total of 12,691 expression-metabolite correlations (r > 0.4, p < 2.23 × 10−6) involving 
564 chemicals and 1815 genes (Additional file 14: Table S13), with 204 (36.2%) of the 
metabolites correlated with more than ten genes and 143 (25.4%) correlated with only 
one gene (Additional file 1: Fig. S12). For example, a lipid substance, palmitaldehyde, 
was correlated with Prupe.6G307900, which encodes an esterase/lipase. Finally, we 
identified 85 candidate genes for 220 SNP loci of 77 metabolites in 2016, which were 
located in the flanking regions of lead SNPs and showed a high correlation (r > 0.4, p 
< 2.23 × 10−6) between their expression profiles and metabolite contents (Additional 

Table 1  Summary of genome-wide significant associations identified in mGWAS

a SNP with the lowest P-value in a defined region

Associated lead 
SNPs identified in 
2015

Associated lead 
SNPs identified in 
2016

Associated lead SNPs 
identified in both 2015 and 
2016

Number of the traits with obvious 
associated lead SNPs

582 628 202

Number of associated lead SNPsa 8685 10,412 1045

SNPs above 20% of the variation 359 656 108

Maximum explained variations 48.4% 51.5% 46.8%

Explained variation per SNP 14.0% 13.7% 15.0%
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file 15: Table S14). We also conducted a weighted gene co-expression network anal-
ysis (WGCNA) and identified 47 modules of highly correlated genes (Additional 
file 16: Table S15; Additional file 1: Fig. S13), some of which were involved in specific 
pathways (Additional file 17: Table S16). For example, modules 28 enriched in flavo-
noid biosynthesis was also found to be related to 61 substances, including 8 annotated 
metabolites belonging to flavonoids (Additional file 18: Table S17).

Fig. 2  Genomic distribution of mGWAS and eQTL signals. a mGWAS signals of different classes of 
metabolites. I, II, and III indicate chromosome, unannotated metabolites, and annotated metabolites, 
respectively. b Correlation network of 94 annotated metabolites and 1144 expressed genes. c Genome-wide 
mapping of eQTLs. The upper figure indicates cis-eQTLs (brown points) and trans-eQTLs (green points) in 
the peach genome. The lower figure indicates the distribution of eQTL density (number of eQTLs per 1-Mb 
windows) along the chromosome
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To identify genetic variants involved in regulating gene expression, we next performed 
eQTL analysis using the aforementioned 486,009 SNPs (MAF > 0.02 and missing rate < 
20%) and 13,050 genes (FPKM > 1 in > 80% accessions). As previously reported, the lead 
SNP within a 30-kb interval was selected and defined as an eQTL (Zhu et al., 2018). A 
total of 9255 cis-eQTLs (Additional file 19: Table S18) and 285,421 trans-eQTLs (Addi-
tional file 20: Table S19) were identified for 1792 and 1257 genes (Fig. 2c), respectively. 
A total of 36 trans-eQTL hotspots (Fig.  2c; Additional file  21: Table  S20; threshold = 
1355 trans-eQTLs per Mb) was identified at the whole genome level. A high consist-
ency between eQTLs (Fig. 2c) and mGWAS (Additional file 1: Fig. S7) on some chromo-
somes was found. For example, among the 36 eQTL hotspots, 13 were overlapped with 
the mGWAS hotspots. The result showed an inherent connection among genomic varia-
tion, gene expression, and metabolome. The abundant resources help us build a network 
between the three datasets and facilitate to identify key genes of targeted metabolites 
and analyze their regulatory mechanisms.

Evolution and regulation of flavonoids

Among all metabolites, flavonoids were the most critical because they had the larg-
est CVs in all samples, indicating a complex function. Of the 39 annotated flavonoids, 
33 had lower levels in improved varieties than in wild peaches or landraces, indicating 
strong negative selection for flavonoids during peach breeding (Fig. 3a). These metabo-
lites included several bitter taste components such as catechin, prunin, and rutin.

Interestingly, flavonoids were also reported to be key nutrients in peaches [23]. To ver-
ify this relationship, we measured the browning degree of 186 of 252 accessions in 2016 
to represent the antioxidant activity of their mature fruits (Additional file 22: Table S21). 
The result showed that among the 1858 detected metabolites, 165 were positively corre-
lated with the antioxidant activity of peaches (Additional file 23: Table S22). Among the 
33 flavonoids mentioned above, most of them had a high correlation with antioxidant 
activity (Fig.  3b), such as quercetin O-acetylhexoside, eriodictyol-7-O-glucoside, and 
quercetin 3-O-glucoside.

To confirm that the selection of these flavonoids are reliable, we identified 95 genomic 
regions related to domestication (wild and ornamental groups versus landraces), 110 
related to improvement (landraces versus improved varieties), and 89 related to the dif-
ferentiation between EI and WI groups (Additional file 24: Table S23). We found that 
1653 of the identified lead SNPs in 2016 were located in domestication regions, 1735 
in improvement regions, and 1377 in differentiation regions, accounting for 15.9, 16.7, 
and 13.2%, respectively, of the total identified associated signals and corresponding to 
368, 358, and 313 metabolites (Additional file 25: Table S24). Among the 82 lead SNPs 
associated with 11 flavonoid metabolites (Additional file 9: Table S8), most were located 
in the principal hotspots on chromosomes 2 and 5, which were selected by improve-
ment and differentiation, respectively (Additional file 1: Fig. S14). Lead SNPs of flavo-
noids related to bitterness, such as rutin, were found to be selected continuously during 
the process of domestication and improvement, and some nutrition-related metabolites, 
such as quercetin 3-O-glucoside, were mainly selected during the improvement stage 
(Additional file 1: Fig. S14).
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To rewire the nutrition of improved varieties, we attempted to identify key regu-
latory genes of these nutritional flavonoids. Interestingly, among the abovemen-
tioned nutritional flavonoids (Additional file  23: Table  S22), association signals for 
two major metabolites (quercetin 3-O-glucoside and chrysoeriol 5-O-hexoside) 
were mainly mapped on the hotspots at the top of chromosome 5 (Additional file 9: 
Table S8; Fig. 3c). In detail, the lead SNPs associated with chrysoeriol 5-O-hexoside 
and quercetin 3-O-glucoside were all located at Chr. 5: 1,129,225 bp in 2015 and 2016. 
Within this region (Chr. 5: 0–3 Mb), a hub gene in the correlation network (Fig. 2b), 
PpBL (Prupe. 5G006200), showed an obvious correlation between its expression 
profile and the contents of apigenin-5-O-glucoside, quercetin O-acetylhexoside, 
quercetin 3-O-glucoside, naringenin-7-O-glucoside, isorhamnetin O-hexoside, erio-
dictyol-7-O-glucoside, and chrysoeriol 5-O-hexoside (Additional file  14: Table  S13). 
PpBL was reported to be involved in the synthesis of anthocyanins by regulating the 
PpMYB10 gene [24]. However, the contents of chrysoeriol 5-O-hexoside and querce-
tin 3-O-glucoside had a weak correlation (r = 0.19 and 0.13) with the expression of 
PpBL in peach cultivar “Zheng Bai 5-6” throughout the entire fruit development pro-
cess (Fig.  3d). Prupe.5G032800, close to the hotspots (Chr. 5: 3,729,774-3,733,907 
bp), encoding a dihydroflavonol-4-reductase (DFR), which mediates the first step of 
the anthocyanin biosynthesis [25], was among the most likely candidates (Additional 

Fig. 3  Identification of candidate genes in the lead SNP hotspots associated with flavonoids. a Heatmap 
of profiles of all flavonoids detected in this study. The relative flavonoid contents in wild peaches (W) 
and landraces (L) were scaled to the improved varieties (I) group for each metabolite. Numbers 1 to 39 
correspond to the 1st to 39th flavonoids in Additional file 2: Table S2. b Correlation index between metabolite 
contents and their antioxidant activities in the sampling panel. c Manhattan plots of mGWAS of quercetin 
3-O-glucoside in 2016. d Contents of chrysoeriol 5-O-hexoside and quercetin 3-O-glucoside and expression 
of Prupe. 5G006200 and Prupe.5G032800 in peach variety “Zheng Bai 5-6#” during fruit development. e Network 
between candidate genes regulated by a trans-eQTL (Chr. 7: 18,797,533 bp) and corresponding metabolites. 
Blue lines indicate the regulations between eQTLs (green circle on Chr. 7) and target genes (purple boxes on 
Chr. 5). The gray dotted lines indicate the correlations between gene and metabolites
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file  26: Table  S25) that showed high correlations (r = 0.70 and 0.88) with the con-
tents of both chrysoeriol 5-O-hexoside and quercetin 3-O-glucoside during fruit 
development (Fig.  3d). Meanwhile, combined with the eQTL results, we found that 
Prupe.5G032800 might be regulated by a trans-eQTL (Chr. 7: 18,797,533 bp) which 
was located between Prupe. 7G201700 encoding an anthocyanin regulatory C1 pro-
tein and Prupe. 7G201800 encoding a transcription factor TT2 (Fig. 3e). These genes 
were reported to be involved in phenylpropanoid biosynthesis [26, 27], suggesting 
the potential role of the trans-eQTL in future breeding project for highly nutritional 
peaches.

Amino acid contributed to the environmental adaptation of peach landraces

Growth of plants is continuously affected by all kinds of abiotic and biotic stresses, such 
as extreme temperatures, drought, pest, and pathogen attack [28–32]. Moreover, accu-
mulations of secondary metabolites are most likely to be modified as crops spread into 
new environments or have been bred for new or improved traits [33].

To verify the speculation, the annual average temperature and rainfall in the habitats of 
76 landraces were analyzed to identify 515 differential metabolites (fold change ≥ 1.5 or 
≤ 0.67, VIP ≥ 1) that were associated with temperature, including 68 annotated metabo-
lites (Additional file  27: Table  S26; Additional file  1: Fig. S15) and 423 (66 annotated) 
associated with rainfall (Additional file  28: Table  S27; Additional file  1: Fig. S16). The 
main classes of metabolites associated with temperature were amino acids and nucleo-
tide metabolites, which have been reported to be involved in plant resistance to low tem-
perature [33–35]. We next treated mature trees bearing fruits with low temperature (4 
°C) for 6 days to analyze the short-term effects of cold stress on fruit metabolites (Addi-
tional file 1: Fig. S17). A total of 25 annotated metabolites were identified (fold change 
≥ 1.5 or ≤ 0.67, VIP ≥ 1; Additional file 29: Table S28), also dominated by amino acids 
and nucleotide metabolites. Among them, four were repeatedly found in the differen-
tial substances of various geographic groups (Additional file 1: Fig. S17c), including two 
compounds of amino acid and derivatives (L-leucine and L-valine), one compound of 
nucleotide and derivatives (N2,N2-dimethylguanosine), and one alkaloid (betaine). The 
main classes of metabolites associated with rainfall were amino acids and derivatives, 
which have been reported to play a role in plant resistance to drought [31, 36–38]. We 
also performed wide-targeted metabolic profiling for peach plants under drought stress 
(Additional file  1: Fig. S18). In total, 73 annotated metabolites were found to respond 
to this short-term drought treatment (Additional file  30: Table  S29), including flavo-
noids, lipids, and nucleotides. The common metabolites identified by these two methods 
(Additional file 1: Fig. S18c) included an amino acid and derivative (DL-homocysteine), 
three flavonoids (genistein, isorhamnetin-3-o-rutinoside, and nicotiflorin), an organic 
acid and derivative (eudesmoyl quinic acid) and one nucleotide and derivative (guano-
sine 3’,5’-cyclic monophosphate). Interestingly, we found that 21 metabolites responded 
to both the long-term low temperature and little rainfall (Additional file 31: Table S30), 
most of which were amino acids such as L-valine, followed by nucleotides and alka-
loids such as betaine, which have been reported to be associated with stress [31, 33, 36, 



Page 10 of 25Cao et al. Genome Biology          (2022) 23:146 

38–42]. Spraying the L-valine onto the young peach trees also confirmed the function of 
L-valine in low temperature resistance (Additional file 1: Fig. S19).

We further analyzed the evolutionary mechanisms of the elite alleles using L-valine 
as an example. We found that mGWAS peak signals of L-valine were on chromosomes 
3, 4, and 6 (Fig. 4a), and all these three potential association signals were under selec-
tion by domestication and improvement (Fig. 4b). We focused on the mQTL regions on 
chromosome 4 and found 17 of 53 expressed genes in this region showed a similar trend 
with the L-valine content during fruit development (Additional file 1: Fig. S20). Among 
the 17 genes, Prupe.4G174300, encoding a branched-chain amino acid aminotransferase 
responsible for catalyzing the conversion of 3-methyl-2-oxobutanoate to valine, was the 
most possible candidate for L-valine biosynthesis. Both Prupe.4G174300 and L-valine 
showed similar changes under short-term cold induction (Fig.  4c). Overexpression of 
Prupe.4G174300 in peach flesh resulted in a higher accumulation of L-valine (Fig. 4d), 
which strongly suggests Prupe.4G174300 is involved in L-valine biosynthesis. Analyzing 
the changes of MAF of the lead SNP in different geographic groups again confirmed the 
role of this metabolite in coping with low temperature and drought stress (Fig. 4e).

Regional selection of flavor leads to the variation of anti‑cancer activity in peach

In addition to flavonoids (such as rutin), some primary metabolites related to flavor, such 
as malic acid, citric acid, fructose, and glucose, were also subject to human selection 
(Fig. 1e). However, mGWAS did not detect any association signals for glucose but identi-
fied one for sorbitol (Chr. 4: 11,212,067 bp in 2015; Additional file 9: Table S8), which is 
same as that reported in our previous study [21]. As sorbitol is not the main sugar com-
ponent in fruits, acid content was selected to analyze the changes in peach flavor during 

Fig. 4  Discovery of key genes regulating L-valine contents. a Manhattan plots of mGWAS of L-valine in 2016. 
b Distribution of FST values related to domestication (green), improvement (orange), and differentiation (blue) 
on chromosomes 3, 4, and 6. Association signals detected in 2016 for L-valine are highlighted and pointed 
by red arrows. c Contents of L-valine and expression of Prupe.4G174300 in fruits treated with low temperature 
(4 °C). d L-valine contents in peach fruits transiently overexpressing Prupe.4G174300 (OE) and control (CK). e 
Monthly average temperature and precipitation over 30 years and minor allele frequency (MAF) of landraces 
belonging to different geographic groups. NWC, NEC, YGC, NC, MLCJ, and SC indicate northwest China, 
northeast China, Yungui plateau, northern China, the middle and lower reaches of the Yangtze River, and 
southern China, respectively, as described in Additional file 2: Table S1
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peach breeding. Among the different acid components, metabolomics analysis indicated 
that the content of malic acid was significantly reduced during improvement, while citric 
acid presented at higher levels in improved varieties than in landraces. Further analysis 
showed that both malic acid and citric acid were accumulated at a much higher level in 
western peaches than in eastern varieties (Additional file 4: Table S3), possibly related to 
the preference of more acidic fruits of breeders and consumers in Europe or America.

Since the association signal of malic acid was not ideal, we focused on the mGWAS 
results of citric acid. Lead SNPs for the citric acid content were located at chromo-
some 5: 661,951 bp and 661,855 bp in 2015 and 2016, respectively (Fig. 5a), which were 

Fig. 5  Identification of anti-cancer metabolites and their regulatory genes. a Manhattan plots of mGWAS 
for citric acid in 2016. b Expression of Prupe.5G005700 and Prupe.5G006500 during fruit development of 
acid and non-acid varieties. c Acid contents in peach fruits transiently overexpressing Prupe.5G006500 
(OE-Prupe.5G006500) and control (CK). Data shown are means ± SD of three biological replicates. d Relative 
contents of malic acid in accessions with different genotypes of Prupe.5G006500. e Inhibition of cancer 
cell proliferation by fruit extracts from four groups of peaches, landraces (L), peaches bred in China (C), 
peaches bred in Japan and South Korea (JSK) and western improved varieties (WI). Four cancer cell lines, 
HepG2 (liver cancer), BGC-823 (gastric cancer), A549 (lung cancer), and SW480 (colon cancer), were used. f 
Correlation between inhibition rates of SW480 cell lines by fruit extracts of different peach accessions and 
the contents of citric acid in these accessions. g Inhibition of SW480 cell lines by citric acid, malic acid, and 
citrate sodium with a concentration of 2000 μg/ml, after treated for 24, 48, and 72 h. h Regional Manhattan 
plots of mGWAS for methylcitric acid (qk109140-2), 2-thiophenecarboxylic acid (qk004847-2), citric acid 
(mws0281-3), histidinol (qk017487-2), nicotinic acid (mr799), and D-erythro-dihydrosphingosine (mr211) 
and their overlapping with sweeps related to differentiation, improvement, and domestication at the top of 
chromosome 5
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different from the PpALMT1 locus on chromosome 6 that was recently reported to be 
related to the differentiation between eastern and western peaches [43]. The associa-
tion interval (Chr. 5: 636,855-686,951 bp) contained three genes, of which two had no 
functional annotations, and one, Prupe.5G005700, encoded a NAD(P)-binding Ross-
mann-fold superfamily protein with the dehydrogenase/reductase activity. Another gene 
within the neighboring association region, Prupe.5G006500, encoding a V-type proton 
ATPase subunit F, should also be considered because its homologous genes in apple and 
orange have been reported to regulate citric acid content [44, 45]. Expression profile of 
Prupe.5G006500 in an acid variety and a non-acid variety had a higher correlation with 
the citric acid content [46] than that of Prupe.5G005700 (Fig. 5b). We then constructed 
overexpression vectors for Prupe.5G005700 and Prupe.5G006500 and transiently 
transformed them into tobacco plants. The results showed that Prupe.5G006500 had a 
stronger regulatory effect on citric acid content than Prupe.5G005700 (Additional file 1: 
Fig. S21). Transient expression in peach flesh also indicated that Prupe.5G006500 had a 
positive effect on malic acid and quinic acid contents (Fig. 5c). A 6-bp deletion located 
in the intron of Prupe.5G006500 that was strongly associated with the citric acid content 
in the nature population (p < 0.01, Fig. 5d) could be adopted in marker-assisted breeding 
programs. A SNP in the promoter region of Prupe.5G006500 may explain the differences 
in gene expression (Additional file 1: Fig. S22) and citric acid content (Additional file 1: 
Fig. S23) in peach fruits.

In addition to citric acid, 16 other substances also showed significant differences 
between eastern and western improved varieties in 2015 and 2016 (Additional file  8: 
Table S7). Some of them have been reported to have the anti-cancer activity [47–51]. We 
therefore selected the crude extracts of 176 samples in 2016 for anti-cancer activity eval-
uation. The results confirmed that inhibition rates of four cancer cells by fruit extracts 
showed no difference among L, varieties bred in China (C) and Japan and South Korea 
(JSK), but were significantly higher in the WI group (Fig. 5e). To identify specific anti-
cancer substances in the crude extracts, we performed correlation analysis between the 
cancer cell inhibition rates and the metabolite contents in the 176 accessions. Among 
the top 100 metabolites with high inhibition activities of the four cancer cells, 49 were 
constantly detected, including eight annotated metabolites (Additional file 1: Fig. S24; 
Additional file  32: Table  S31). Histidinol showed the highest anti-cancer activity, fol-
lowed by citric acid, 2-thiophenecarboxylic acid, nicotinic acid, nicotinic acid, and so on. 
The anti-cancer effect of histidinol has been previously reported [49, 50] and it can also 
be used as an auxiliary drug to reduce side effects of some anti-cancer drugs [52–54]. 
The anti-cancer effect of citric acid has also been reported [47, 51] and confirmed by our 
experiment (Fig.  5f, g). We found that all eight anti-cancer substances showed higher 
contents in WI than in EI, indicating that varieties from Europe and America could pro-
vide higher resistance to these cancer cells. Interestingly, we found that lead SNPs of six 
substances were located close to each other in a small region on chromosome 5, which 
overlapped with a differentiation sweep between EI and WI (Fig. 5h). Considering acid 
content is a major component determining fruit flavor, we speculated that the differ-
entiation of the genome in this associated interval could cause the difference in flavor 
between the eastern and western improved peach varieties, which could indirectly result 
in the difference in their anti-cancer activities.
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Discussion
Peach is a delicious and healthy summer fruit in most temperate regions of the world 
[55]. However, very few reports about its nutritional components and related regulatory 
genes are available. The emergence of omics technologies, including genome, transcrip-
tome, and metabolome, makes it possible to identify genes related to metabolites in a 
broader and deeper scope [56, 57]. In this study, we identified 8685 and 10,412 lead SNPs 
for 582 and 628 metabolites in two seasons, 2015 and 2016, respectively, 12,691 expres-
sion-metabolite correlations between 567 metabolites and 1826 expressed genes, and 
1792 genes regulated by 9255 cis-eQTLs and 1257 regulated by 285,421 trans-eQTLs 
(Fig.  1a). Using multi-omics technology, we discovered a regulatory network involved 
in flavonoid metabolism including eQTLs and hub genes (Fig.  2c). In addition, these 
rich mGWAS datasets provide useful tools for identifying key genes related to essential 
metabolites, such as L-valine, quercetin 3-O-glucoside, and citric acid (Figs.  3, 4, and 
5). However, we should also understand that although the multi-omics method provides 
a lot of data, most of them are currently hard to utilize. For example, of the 1858 dis-
tinct metabolites identified, only 257 (13.8%) could be annotated. Therefore, mGWAS 
results of the unannotated substances are difficult to be analyzed more deeply for candi-
date gene identification. Therefore, characterizing these substances through biochemical 
approaches and then identifying the underlying candidate genes will be possible to con-
struct novel key biological pathways of peach in the future.

Peach originated in China with a wide territory. After a long period of local adaptation, 
peaches have formed different ecological types with obvious difference in geographi-
cal environments. It is well known that plants can adjust the contents of metabolites in 
response to climate change. For example, Sun et al. [58] found that maize could adapt 
to temperature variations through the interrelation of plastic responses in the metabo-
lomes and functional traits, such as biomass allocation and carbon and nitrogen status. 
Kim et al. [59] reported an essential drought-responsive network in which plants trigger 
a dynamic metabolic flux conversion from glycolysis into acetate synthesis to stimulate 
the jasmonate (JA) signaling pathway conferring drought tolerance. Therefore, peach 
landraces represent good materials for studying the roles of metabolites in peach adapta-
tion to different environments. In this study, by analyzing metabolite profiles of different 
peach landraces, we identified a number of metabolites responsive to low temperature 
and/or drought stresses. A comparative analysis showed that 25 known metabolites 
were involved in responses to both low temperature and drought (Additional file  31: 
Table S30), including betaine and L-valine that have reported roles in stress responses, 
indicating peach fruits share some common metabolic adaptation to different stress 
responses. However, different from low temperature response, some primary metabo-
lites, such as malic acid, citric acid, glucose, and sorbitol, were found to be related to 
drought response. More importantly, some metabolites with no functional annotation 
but responding strongly to temperature or drought should be focused in future func-
tional and biochemical characterizations to develop corresponding products to regulate 
the adaptation of plants to different stresses.

In recent years, consumers often complain that most fruits lack rich flavor. It has 
resulted from the pursuit of increases in yield and storage properties at the expense of 
flavor and aroma in breeding programs [60]. Based on the analysis of the metabolite 
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contents in different groups of peaches, we revealed the effects of human selection on 
metabolite classes and their contents in peach fruits. Firstly, we found that contrary 
to the increase in sugar content, there is a significant decrease in acid content (mainly 
including malic acid and critic acid), which may result in a more monotonous taste of 
peach fruit. Secondly, the contents of volatile substances may have indeed decreased, 
as reported in our previous study [61]. In this study, we found a hotspot of unknown 
metabolites (Fig. 2a) which was located at the top of chromosome 4 (around 1.4 Mb). 
After comparing the genetic locations, we found that this genome region contained key 
QTLs for terpenoid volatiles in our previous research [61]. Therefore, we speculate that 
these unknown metabolites could be precursors of the terpenoid volatile substances. 
Analyzing these unknown metabolites, such as pe35270-2, pe37200-1, pe60924-1 (Addi-
tional file 6: Table S5), showed that their contents were significantly reduced in improved 
varieties than landraces. In addition, affected by the breeding object to select low-bitter 
and low acid fruit [62], the decrease of flavonoid contents in improved varieties also 
leads to other adverse effects on human health, such as the reduction in antioxidant and 
anti-cancer activities found in this study. Our study showed that it is feasible to reintro-
duce the lost nutritional metabolites into elite varieties with the help of metabolomics 
techniques and carry out more precise molecular design breeding or use genome editing 
technologies for improvement in future.

Regarding the influence of human selection on the levels of metabolites in peach, 
in addition to the association signals on chromosome 5 associated with the differ-
entiation between eastern and western peaches analyzed in this study, co-selection 
among different targets was universal in other regions. This phenomenon has been 
termed direct and indirect selection of metabolites in tomato [63]. We took the other 
three obvious hotspots in Fig. 2a as examples and found that the hotspot on chro-
mosome 2 (Chr. 2: 25 Mb) overlapped with the differentiation interval, the hotspot 
on chromosome 4 (Chr. 4: 11–13 Mb) was under domestication, and the hotspot on 
chromosome 8 (Chr. 8: 3–5 Mb) was located in the domestication and differentia-
tion interval. In previous studies, QTLs for malic acid were found to be located in 
the first and third hotspots [64], and the second locus contains a key gene involved 
in fruit maturity [65]. Thus, in addition to the direct human selection of metabolites 
for some important breeding objects, a large number of other metabolites are sub-
ject to indirect selection.

Conclusions
In summary, our results represent a comprehensive metabolomic analysis of fruit 
crops and have improved our understanding of the metabolic response to environ-
mental change and human selection. Our findings emphasize that plant metabolites 
are crucial not only for plant growth but also for human health. In combination with 
the genome and transcriptome information, valuable genes and genomic variations 
associated with metabolites have been identified. The hotspots of leading SNPs asso-
ciated with beneficial and adverse metabolites for human health have led us to envis-
age that more precise and targeted breeding technologies should be used in future 
improvements.
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Methods
Plant material, growth condition, and sequencing

A diverse worldwide collection of 252 peach accessions, including five wild peaches, four 
ornamental lines, 77 landraces, and 166 improved varieties maintained at the National 
Fruit Tree Germplasm Repository (Zhengzhou Fruit Research Institute, Chinese Acad-
emy of Agricultural Sciences, China) were used in this study. All fruits were collected in 
two seasons, 2015 and 2016. During the growing period, all peach cultivars were equally 
managed. Ripening fruits were randomly collected and pooled for metabolic profiling. 
Considering the huge alternation/transition occurred in the fruits in 2 weeks before fully 
maturation, immature fruits (15 days before ripening) from 185 accessions were used for 
transcriptome sequencing. To determine the optimal maturity period of each variety, we 
first estimated their maturity period based on previous evaluation results. Fruits were 
then picked in 20 days before the estimated date with a 5-day interval. All the fruits were 
stored under −80 °C. Meanwhile, the firmness of fruits was measured to draw a change 
pattern at different sampling stages. The date with the highest firmness was defined as 
the suitable ripening time of the varieties in this year. Finally, samples which were picked 
in 15 days before maturity were selected for transcriptome sequencing. For metabolic 
responses of peach fruits under drought and cold stresses, the peach variety “Zhong 
Nong Jin Hui” of 3 years old was used for the stress treatment at 60 days after bloom-
ing. After treatment, fruits were sampled and immediately frozen in liquid nitrogen and 
stored at −70 °C until vacuum freeze-drying. At least five fruits from each treatment 
were pooled together into one sample. Two independent biological replicates were met-
abolically profiled and used for transcriptome analysis. To investigate expression pat-
terns of related genes and the metabolite contents related to stress during peach fruit 
development, fruit samples were taken at five stages (45, 60, 80, 100, and 120 days after 
full blooming) from peach varieties “Zheng Bai 5-6”. Three biological replicates were col-
lected for each stage. In addition, to identify genes related to acid contents, fruit samples 
were taken at four stages (30, 60, 75, and 90 days after full blooming) from peach varie-
ties “Zhong You Tao 4#” (non-acid) and “NJC83” (acid).

The peach variety “Dong Xue Mi Tao” and Nicotiana benthamiana were used for the 
transient expression of target genes. Plants were grown in a growth chamber under nor-
mal conditions: 22 °C, 16 h light and 8 h dark, 60% relative humidity.

Metabolite profiling

A previously described relative quantification method of widely targeted metabolites 
was used to analyze samples [16]. The freeze-dried peach flesh was crushed using a 
mixer mill (MM 400, Retsch) with zirconia beads for 1 min at 30 Hz. Sixty to eighty mil-
ligrams of powder was extracted overnight at 4 °C with 1 ml of 70% aqueous methanol. 
Following centrifugation at 12,000 rpm for 10 min at 4 °C, the extracts were absorbed 
(CNWBOND Carbon-GCB SPE Cartridge, 250 mg, 3 ml; ANPEL, Shanghai, China, 
www.​anpel.​com.​cn) and filtrated (SCAA-104, 0.22 μm pore size; ANPEL, Shanghai, 
China, www.​anpel.​com.​cn), and then analyzed using an LC-ESI-MS/MS system (HPLC, 
Shim-pack UFLC Shimadzu CBM30A system, www.​shima​dzu.​com.​cn; MS, Applied Bio-
systems 4500 QTRAP, www.​appli​edbio​syste​ms.​com.​cn/). The analytical conditions were 

http://www.anpel.com.cn
http://www.anpel.com.cn
http://www.shimadzu.com.cn
http://www.appliedbiosystems.com.cn/
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as follows: HPLC column, Waters ACQUITY UPLC HSS T3 C18 (1.8 μm, 2.1 mm × 100 
mm); solvent system, water (0.04% acetic acid): acetonitrile (0.04% acetic acid); gradient 
program, 95:5 V/V at 0 min, 5:95 v/v at 11.0 min, 5:95 v/v at 12.0 min, 95:5 v/v at 12.1 
min, 95:5 v/v at 15.0 min; flow rate, 0.35 ml/min; temperature, 40 °C; injection volume, 
2 μl. The effluent was alternatively connected to an ESI-triple quadrupole-linear ion trap 
(QTRAP) MS.

Linear ion trap (LIT) and triple quadrupole (QQQ) scans were acquired on a triple 
quadrupole-linear ion trap MS (QTRAP) using an API 4500 QTRAP LC/MS/MS Sys-
tem, which was equipped with an ESI Turbo Ionspray interface operated in positive ion 
mode and controlled by Analyst 1.6.2 software (ABSciex). The ESI source operation 
parameters were as follows: ion source, turbo spray; source temperature, 550 °C; nega-
tive ion spray voltage (IS), 4500 V; ion source gas I (GSI), gas II (GSII), and curtain gas 
(CUR) were set at 55, 60, and 25 (35) psi, respectively; and the collision gas (CAD) was 
high (medium). Instrument tuning and mass calibration were performed with 10 and 
100 mmol/l polypropylene glycol solutions in QQQ and LIT modes. The QQQ scans 
were acquired as multiple reaction monitoring (MRM) experiments with the collision 
gas (nitrogen) set to 5 psi. The declustering potential (DP) and collision energy (CE) for 
individual MRM transitions were performed with further DP and CE optimization. A 
specific set of MRM transitions was monitored for each period according to the metabo-
lites that were eluted within this period.

Using the above method, a total of 70 representative samples (35 in 2015 and 35 in 
2016 years) were selected and carried out metabolome library construction. The result 
showed that 2151 substances could be identified. After performing quality control, a 
total of 1858 metabolites were found to be stable. These 1858 metabolites were used as 
the references to identify metabolites in the 252 samples over 2 years.

Browning degree

Samples collected in 2015 were ground thoroughly and treated with 90 °C for 60 s. Then 
0.1% pectase was added to the mixture for incubation for 40 min under 50 °C. The mix-
ture was then centrifuged at 5000×g for 10 min, and 5 mL supernatant was taken and 
diluted to 10 ml with 95% ethanol. The solution was centrifuged at 7800×g for 10 min. 
The absorbance of the supernatant was measured with a spectrophotometer at 420 nm 
(A0). The supernatant was then heated at 80 °C for 8 h. The absorbance was measured 
again when the supernatant became cool (A1). The browning degree was evaluated as 
the difference between the two values (A1-A0).

Measurement of inhibition activities on four cancer cell proliferation

A total of 176 out of 252 peach accessions were selected to analyze the inhibition 
activities of fruit extracts on four cancer cell lines. For each accession, a total of 10 
mature fruits were picked, and the mesocarp of the fruit was frozen and ground into 
powder in liquid nitrogen. The flesh powder was then extracted with deionized water 
and methanol with a ratio of 1:3 (m/v). During the extraction, ultrasound was used 
to increase the extraction effects for 12 min. The extracts were centrifuged at 4000 
rpm for 10 min at 4 °C to collect supernatants. The methanol extracts were treated 
by rotary evaporation at 45 °C until no methanol was retained. The obtained solution 
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was stored at −20 °C for cell line experiments. The concentration of the solution was 
calculated at about 320 g·L−1.

Human liver cancer cells (HepG2), gastric cancer cells (BGC823), lung cancer cells 
(A549), and colon cancer cells (SW480) were purchased from the Chinese Acad-
emy of Sciences, Shanghai, China. HepG2 was cultivated in the RPMI-1640 medium 
(Thermo Fisher Scientific, Waltham, MA), and BGC823, A549, and SW480 were cul-
tivated in the DMEM medium (Thermo Fisher Scientific, Waltham, MA). All cells 
were supplemented with 10% (v/v) fetal bovine serum and 1% penicillin-streptomycin 
antibiotic mix (Beyotime, Shanghai, China) and maintained at 37 °C, 100% humidity, 
and 5% CO2 incubator over the entire evaluation period.

The anti-cancer activities of different peach extracts were compared by testing their 
capacities to inhibit the proliferation of four cell lines using the CKK-8 assay. After 
100 μL of each cell culture was placed in a 96-well plate at a concentration of 1 × 105 
cells/mL, cells were cultivated in a 5% CO2 incubator at 37 °C for 4 h. Extracted sam-
ples of peach fruit were added to the cell cultures. Each culture was incubated for 48 
h in a 5% CO2 incubator at 37 °C, and 10 μL of CKK-8 (Beyotime, Shanghai, China) 
was then added to the wells. After 3 h of incubation, cell proliferation was determined 
by its absorbance at 450 nm. Control cultures received the extraction solution minus 
the fruit extracts, and blank wells contained 100 μL of growth medium with no cells. 
At least three replications for each sample were used to determine cell proliferation. 
Finally, cell proliferation inhibition rate was expressed using the following formula: % 
inhibition rate = [(Mean absorbance of control − Mean absorbance of treated cells)/
(Mean absorbance of control − Mean absorbance of blank)] × 100%. In addition, cit-
ric acid, malic acid, and citrate sodium were also used with different concentrations 
to evaluate their inhibition activity.

Environmental classification

To understand the influence of the environment on metabolite profiles in peach fruit, 
rainfall, and temperature records in the origins of 76 landrace varieties were obtained 
from China Meteorological Data Service Center (http://​data.​cma.​cn/). In a few cases, 
the nearest meteorological station data were considered if the meteorological data of 
the original place is missing. The average values of rainfall and temperature in differ-
ent origins in the peach growing season (from April to October) from 1961 to 2010 
(50 years) were used for subsequent classification. The rainfall level in the specific 
region was classified into five categories: Level 1, average annual rainfall between 
1 and 370 mm; Level 2, average annual rainfall between 370 and 740 mm; Level 3, 
average annual rainfall between 740 and 1110 mm; Level 4, average annual rainfall 
between 1110 and 1,480 mm; Level 5, average annual rainfall between 1480 and 1850 
mm. Similarly, five categories were used to evaluate the temperature in the specific 
region: Level 1, the annual average temperature between 7 and 10 °C; Level 2, the 
annual average temperature between 10 and 13 °C; Level 3, the annual average tem-
perature between 13 and 16 °C; Level 4, the annual average temperature between 16 
and 19 °C; Level 5, the annual average temperature between 19 and 23 °C (Additional 
file 2: Table S1).

http://data.cma.cn/
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SNP identification

Genome resequencing was performed for the 252 peach accessions used in this study. 
Total genomic DNA was extracted from young leaves using the CTAB method [66]. 
Library construction and sequencing were same as in the previous report [21]. Raw data 
were cleaned and aligned to the peach reference genome v2.0 [67] for SNP calling using 
the GATK software [68]. The called 2,685,327 SNPs were filtered by removing those with 
MAF < 0.05, missing rate > 0.2, and Hardy-Weinberg equilibrium (HWE) p-value < 1.0 
× 10−6. Finally, a total of 486,009 SNPs were retained.

Metabolome data analysis

Principal component analysis (PCA) was performed with metabolite data of 252 peach 
accessions. Identification of differential accumulation of metabolites between different 
varieties was determined by partial least squares discriminate analysis (PLS-DA) with 
VIP values (variable importance for the projection) ≥ 1. PCA and PLS-DA were per-
formed with SIMCA-P version 14.0.

RNA‑Seq data analysis

Total RNA of peach fruit flesh was extracted by an RNA Extraction Kit (Aidlab, Beijing, 
China). First- and second-strand complementary DNA (cDNA) was synthesized using a 
cDNA Synthesis System kit (Takara, Dalian, China), following the manufacturer’s pro-
tocol. The resulting double-strand cDNA was purified, and adapters were ligated to the 
short fragments. The constructed RNA-Seq libraries were sequenced on the Illumina 
HiSeq 2500 platform in paired-end 150-bp mode. Low-quality reads were filtered from 
the raw reads, and an average of 46.78 million cleaned reads were obtained for each 
library. Cleaned reads were mapped to the peach reference genome (Version 2.1) using 
TopHat v2.1.0 [69] with default parameters, and Cufflinks v2.1.1 [70] was used to quan-
tify expression (FPKM) values for each gene among samples.

Genome‑wide association study

A total of 486,009 SNPs were used for the genome-wide association study. Population 
structure was modeled by admixture (Version 1.2.3) [71], and TASSEL (version 3.0) [72] 
was used to calculate the kinship value. mGWAS was performed using the LMM (linear 
mixed model) implemented in TASSEL. The genome-wide significance thresholds was 
determined using the Bonferroni test threshold (p = 3.19 × 10−7), and the lead SNP 
within the 100-kb window for each metabolite was extracted as one signal.

The hotspots of mGWAS were detected according to previous study [73]. Firstly, we 
investigated the distribution of lead SNPs of different metabolites in 1-Mb windows 
along the genome. Then, a permutation test was used to calculate the threshold of hot-
spot identification. The results of 1000 permutations showed that, with p < 0.05, the cut-
off number of significant lead SNPs per Mb would be 50 in 2015 and 59 in 2016.

eQTL analysis

A total of 13,050 genes expressed in at least 80% of the accessions (FPKM ≥ 1) were 
selected to perform eQTL analysis with the 486,009 SNPs. The association between 
SNPs and the gene expression was calculated using the Matrix eQTL software [74] at 
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a rigorous Bonferroni-corrected α = 0.05 for identification of trans-eQTLs (P = 1.99 
× 10−6) and cis-eQTLs (P = 1.99 × 10−3). The identified eQTLs were categorized into 
cis-eQTLs (located within 30 kb from the transcription start site of the target genes) 
and trans-eQTLs. We also identified the hotspots of eQTLs using permutation test and 
Bonferroni correction. The window size and the P values were set to 1 Mb and 0.05, 
respectively.

Correlation analysis between metabolome and transcriptome profiles

Metabolome and transcriptome profiles from 185 peach accessions were used to identify 
genes whose expression profiles were significantly correlated with the metabolite con-
tents. Significant correlations between contents of 1858 metabolites and expression lev-
els of 22,374 genes in the population were identified, with a threshold of p ≤ 2.23 × 10−6 
(corresponding to a Bonferroni-corrected α level less than 0.05).

Co‑expression modules identification

A gene co-expression network was constructed using the Weighted Correlation Network 
Analysis (WGCNA) R package (v1.70-3), with a correlation matrix soft-thresholding 
power β of 8 [75]. A total of 22,374 genes were screened using the goodSamplesGenes 
function, and the resulting 22,030 genes were used for the WGCNA analysis. Finally, a 
total of 14,476 genes were assigned to 47 modules.

Detection of domestication, improvement, and differentiation sweeps

To identify genomic regions affected by domestication, improvement, and differentia-
tion, we compared the FST in 100-kb windows with a step size of 10 kb using VCFtools 
(version 0.1.12b) [76]. For domestication, FST values of wild and ornamental groups 
in contrast to landraces were calculated. For improvement, FST values were calculated 
between landraces and improved varieties. For differentiation, FST values were calculated 
between eastern and western improved varieties. The top 5% of windows or regions with 
the highest FST values were defined as selective sweeps.

Transient expression of peach genes in N. benthamiana and peach

Transient overexpression vectors were constructed by directionally inserting the full-
length cDNAs into the entry vector pSAK277 according to Zhou et  al. [77]. The con-
structs were then transformed into Agrobacterium tumefaciens (EHA105). Positive 
clones were selected and grown to optimal density of 1.6 at 600 nm (OD600nm) in 50 ml 
of LB medium (5 g/l yeast extract, 10 g/l tryptone, 10 g/l NaCl), washed with washing 
buffer (10 mM 2-(N-morpholino) ethanesulfonic acid [MES] [pH 5.6]), and resuspended 
in MMA buffer (10 mM MES [pH 5.6], 10 mM MgCl2, 100 mM acetosyringone) to an 
OD600 of 0.8. The culture was incubated for 2 h at room temperature, and 1 ml of cul-
ture was infiltrated into the underside of 6-week-old N. benthamiana leaves or immature 
peach fruits. The samples were then rinsed three times with sterile water and cultured 
on MS medium. The metabolite contents and gene expression levels were measured after 
3 days of injection. Transient expression treatments were repeated three times with six 
tobacco leaves and five peach fruits in each replicate. Measurements of valine and citric 
acid contents were conducted by targeted high-throughput LC-MS/MS approach and 
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the methods described in our previous study [21], respectively. In this study, the tran-
sient system was used in tobacco to verify the functions of key genes regulating critic 
acid content in flesh. Meanwhile, the system was used in peach to verify the functions of 
gene involved in valine and critic acid biosynthesis.

Drought and cold treatments

The drought and cold treatment experiments were carried out on peach seedlings of 3 
years old. The water content was maintained in optimal conditions for all plants prior to 
drought stress treatment. During the treatment period, stressed plants had no water sup-
ply, whereas control plants were watered every 3 days to field capacity under the green-
house. Fruit samples used for metabolite analysis were collected at 0, 1, 3, and 6 days of 
the drought stress. For cold treatment, control plants were grown in a growth chamber 
under normal conditions (22 °C with 16 h light and 8 h dark, 60% relative humidity), 
and treated plants were transferred to 4 °C with the abovementioned photoperiod. Fruit 
samples used for metabolite and RNA-seq analyses were collected at 0, 3, and 6 days 
after treatment. All collected samples were immediately frozen in liquid nitrogen and 
then stored at −80 °C till use. Each treatment consisted of two biological replicates and 
each replicate contained five plants grown in the same conditions.

Statistical analysis

The coefficient of variation values were calculated for each metabolite in the population 
as follows: s/m, where s and m are the standard deviation and mean of each metabolite 
in the population, respectively. Broad-sense heritability (H2) was estimated using the fol-
lowing formula: H2= var(G)/var(G)+var(E), where var(G) and var(E) are the variances 
derived from genetic and environmental effects, respectively.
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