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Trajectory inference on the integrated latent space

scDART outputs latent space representations of the integrated data, and then any trajec-
tory inference algorithm that takes the reduced dimensional space representation can be
used to infer the cell trajectories, such as diffusion pseudotime (DPT) [15], Slingshot [37],
and Monocle [38]. In our tests, we apply DPT [15] on the latent embedding to infer the
pseudotime for cells from both modalities jointly. Our backbone inference procedure is
similar to the procedure used in PAGA [39]. When inferring the trajectory backbone from
the latent embedding, we first run Leiden clustering [40] on the latent embedding, then
construct a fully connected graph on the cluster centroids with the pairwise Euclidean
distance between cluster centroids as the weights of the edges between them, and run
minimum spanning tree to infer the trajectory backbone on the cluster centroids.

Differential expression analysis

We find differentially expressed genes and accessible motifs along the trajectory by testing
the significance of their changes depending on the pseudotime. We use likelihood ratio
test as the significant test.

The alternative hypothesis assumes that the change of gene or motif depends on the
pseudotime. We use a generalized additive model to fit their expression or accessibility
values with pseudotime:

x � P(f (t)) (15)

wheref (t) is build with degree-4 spline functions. For the link functionP(•), we assume
that the log-transformed gene expression and motif follow Gaussian distribution:

xgene/motif � Gaussian(f (t)) (16)

The null hypothesis assumes that:

x � P(c) (17)

wherec is a constant.
We then compare the two nested models using likelihood ratio test. We conduct the

test for every gene and motif, and sort them separately according to their p-values. The
significant genes and motifs are selected based on both their p-values and their relative
ordering. We select the genes withp-values smaller than 0.05 and total number 100 cut-
off and select the motifs withp-values smaller than 0.05 and total number 50 cut-off.

Data simulation

The simulated scRNA-seq and scATAC-seq data are generated with an extended version
of SymSim [41] which simulates scRNA-seq data. In SymSim, a kinetic model is used to
model the mRNA counts in cells, where a gene is considered to be either in anon state or
in an off state [42]. When a gene is in theonstate, its transcripts are synthesized with rate
s, and synthesized mRNAs degrade with a rated. A parameterkon represents the rate at
which a gene enters theon state, andkoff represents the rate of the gene entering theoff
state. To generate multiple discrete or continuous cell types, SymSim defines an •identity
vectorŽ for each cell, and the identity vectors can evolve along a user-provided tree which
represents the trajectory backbone.
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In this work, we extended SymSim so that it also generates scATAC-seq data. Additional
file 1: Fig. S5a shows the process of generatingN cells which have both scRNA-seq and
scATAC-seq data. Denote the number of genes byG and the number of regions byR. A
binary R × G GAM is provided to represent which regions affect which genes. As the
scRNA-seq data depends on the scATAC-seq data, we first generate the scATAC-seq data.
Similar to how SymSim generates scRNA-seq data along a continuous trajectory, we start
with a •cell chromatin accessibility identity vectorŽ of lengthv for the root cell and let it
evolve along the given trajectory structure through a Brownian motion process to gener-
ate the •cell chromatin accessibility identity vectorsŽ of cells along the tree. Each region
has a •region identity vectorŽ which is of the same lengthv. Multiplying the •cell chro-
matin accessibility identity matrixŽ and the •region identity vector matrixŽ we obtain an
N × R matrix, where entries with larger values correspond to higher chromatin accessi-
bility. We call this matrix •non-realistic scATAC-seq dataŽ as its distribution is not the
same as the distribution in real data. We then map the data in this matrix to a distribution
obtained from a real scATAC-seq dataset [30] to get the realistic scATAC-seq data.

The scRNA-seq data is affected by both the input trajectory tree and the scATAC-seq
data. We first generate the kinetic parameters for generating scRNA-seq data in the same
way as in SymSim and obtain the •realistic kinetic parameter matrixŽ shown in Additional
file 1: Fig. S5a. We now use the scATAC-seq data and the GAM to adjustkon, as we con-
sider that the accessibility of the associated regions of a gene affects the rate that the gene
is switched on, which is whatkon corresponds to. Now among the three kinetic parame-
ters of scRNA-seq data,kon is affected by scATAC-seq data, andkoff andsare affected by
the input trajectory; thus, we have combined both the effects of chromatin accessibility
and cell differentiation process into the final scRNA-seq data. We then add technical noise
to the scRNA-seq data and divide all cells into two batches while adding batch effects. To
mimic the unmatched data, for one batch we keep only the scRNA-seq data and for the
other batch we keep only the scATAC-seq data.

Evaluation metrics

When ground truth cell-cell correspondence information is available, we use the fol-
lowing metrics to evaluate the latent embedding learned byscDART and the trajectories
inferred based on it: neighborhood overlap score, cosine similarity score, F1 score [25],
Kendall-τ score [43], and ARI (adjusted Rand Index) score. With simulated data, we also
evaluate the gene activity module learned byscDART. Given scATAC-seq data of a cell,
we use the gene activity module ofscDART to generate its pseudo-scRNA-seq data, and
measure the normalized mean square error (MSE) between pseudo-scRNA-seq data and
the ground truth scRNA-seq data of the cell.

Neighborhood overlap score [7, 12] can be used to measure how well datasets are
integrated when there exists cell-cell correspondence across data modalities. Given a
neighborhood sizek, it constructs a k-nearest neighbor graph on the latent embed-
ding of cells from both scRNA-seq and scATAC-seq data, and calculates the proportion
of cells that have their corresponding cells in the other modality included within its
neighborhood.

We further measure the recovery of cell-cell correspondence using cosine similarity
score. For each cell, we calculate the cosine similarity score using its latent embedding
from different modalities (Eq.18for score of celli). Then, we average the cosine similarity
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score over all cells within the dataset, which correspond to the final cosine similarity
score. A higher cosine similarity score shows a better recovery of cell-cell correspondence.

cos(ZRNA(i),ZATAC (i)) =
ZRNA(i) • ZATAC (i)

�ZRNA(i)��ZATAC (i)�
(18)

The latent embedding of the integrated data is evaluated through both visualization
and the quantitative accuracy of the inferred trajectories. The accuracy of trajectory is
measured from two different aspects: the accuracy of cell branch assignment, and the
accuracy of cell pseudotime assignment. We measure cell branch assignment using F1
score which was used in [25]. Here we briefly describe the calculation of F1 score. Given
the ground truth and inferred cell branch assignment, we first calculate the Jaccard sim-
ilarity between every pair of inferred and ground truth cell branches. For every two cell
branches, the Jaccard similarity is calculated as the size of their intersection cell sets over
the size of their union cell sets. For every branch in ground truth or inferred trajectory, we
calculate its •maximum Jaccard similarityŽ as the maximum value out of its Jacaard sim-
ilarities with all branches in the inferred/ground truth trajectory. Then, we can calculate
the recoveryas the average maximum Jaccard similarity for every branch in ground truth
and therelevanceas the average maximum Jaccard similarity for every branch in inferred
branches. The F1 score is then calculated as

F1 = 2/
(

1
recovery

+
1

relevance

)
(19)

F1 score lies within the range between 0 and 1. The higher the score is, the better cell
branches are assigned. We measure cell pseudotime assignment using Kendall-τ score
[43], which is a rank-based correlation measurement that is commonly used to measure
pseudotime inference accuracy [37, 44]. Kendall-τ score lies within the range between� 1
and 1. A higher Kendall-τ score means a better pseudotime inference accuracy.

We use an additional metric, ARI score, to measure the matching of latent embedding
from scRNA-seq and scATAC-seq data given the ground truth cell-cell correspondence.
First we run k-means clustering algorithm on the latent embedding of scRNA-seq data
and scATAC-seq data separately, which will generate two cluster identity labels for each
cell (one from the clustering of scRNA-seq, the other from clustering of scATAC-Seq). We
measure the consistency between the two clustering results using Adjusted Rand Index
(ARI) [45]. The number of clusters in k-means algorithm is set to be the number of ground
truth cell types in the dataset.

In simulated datasets, we can retrieve the ground truth gene expression data for cells
in the scATAC-seq batch. Then, we can measure how well the pseudo-scRNA-seq data
learned from the gene activity module matches the ground truth scRNA-seq data using
normalized MSE. Denoting the pseudo-scRNA-seq data of celli as �Xi , and the ground
truth scRNA-seq data asXi , the normalized MSE is calculated as

MSEnorm =
1
N

N∑

i=1

∥∥∥∥∥
Xi

�Xi�2
�

�Xi

� �Xi�2

∥∥∥∥∥

2

2

(20)

whereN is the total number of cells.
When evaluating the latent embedding of datasets with discrete cell type clusters, we

use ARI score and graph connectivity score [31]. When calculating the ARI score, we first
run Leiden clustering algorithm on the latent embedding with different cluster resolutions
(from 0.1 to 1 with stepsize 0.5) and calculate the ARI scores using the ground truth cell
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type labels and the cluster labels under different resolutions. For each method, we select
the highest ARI score as the final ARI score among all ARI scores obtained under differ-
ent cluster resolutions. The final score is between 0 and 1. A higher score corresponds to a
result with better cell type separation. We calculate the graph connectivity score following
the procedures in [31]: we first construct a k-nearest neighbor graph from all cells using
their latent embedding; Then, we extract the sub-graph for the cells from each cell type;
We calculated the size of the largest connected component for each sub-graph; We nor-
malize the largest connected component size and average it over all sub-graphs. The final
score (between 0 and 1) quantifies the mixing of cell batches … a higher score corresponds
to a better mixing result.

Settings of scDART and baseline methods

Setting of scDART

Before runningscDART, we first filter genes and regions in the data matrix. For real
datasets, we select first 500 or 1000 highly variable genes using SCANPY [46] and select
the regions in scATAC-seq datasets that lie within the gene body or 2000 base-pairs
upstream of the selected genes on the genome. For simulated datasets, we do not conduct
feature filtering step. We further conduct library size normalization and log-transform on
scRNA-seq data and binarize scATAC-seq data before feeding the data intoscDART.

The hyper-parameters inscDART (scDART-anchor) include the latent dimension
d and the weights of loss termsλg and λmmd. We usedd = 4 for all real datasets and
d = 8 for simulated continuous datasets as simulated datasets include bifurcating and
trifurcating structures. Regardingλg, we used the default valueλg = 1 in all results we
presented in this manuscript. Regardingλmmd, in most of our test results we used the
default valueλmmd = 1, and only on the mouse neonatal brain cortex dataset we set
λmmd = 10 for a stronger merging effect. We trainscDART using Adam optimizer and
ran the algorithm for 500 epochs. The parameter of network architecture is shown in
Table1, where Leaky ReLU with negative slop 0.2 is used as the activation function, and
batch normalization is also used between layers.

Settings of baseline methods

We run Seurat following the pipeline in the online tutorial (https://satijalab.org/seurat/
archive/v3.0/atacseq_integration_vignette.html) for the PBMC dataset, and use the same
parameter setting as the one used in the tutorial. We used the default value of the number
of principle components in functionFindTransferAnchors() which is 30.

The key parameter inLiger is the latent space dimension. We set the latent space
dimension to be the same as the ground truth number of cell types in real datasets. For
simulated datasets, we set the latent space dimension ofLiger to be 8.

We run UnionCom using the default hyper-parameters of the model and set the num-
ber of epochs to be 10000. The number of latent dimensions in the default setting is 32.

Table 1 Number of neurons at each layer ofscDART, wherenregions, ngenes, andnlatent refer to
number of regions, genes, and latent dimensions respectively

Input dimension Layer 1 Layer 2 Output dimensions

Gene activity module nregions 1024 512 ngenes

Projection module ngenes 512 128 nlatent

https://satijalab.org/seurat/archive/v3.0/atacseq_integration_vignette.html
https://satijalab.org/seurat/archive/v3.0/atacseq_integration_vignette.html
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scJoint takes as input the scRNA-seq count matrix, gene activity score matrix
transformed from the scATAC-seq count matrix, and the cell type label of scRNA-
seq data. We generate gene activity score matrix using the function inSeurat and
select only the overlapped genes between raw scRNA-seq and gene activity score matrix.
Then, we use the cell type label generated in the original data paper as the input
for scJoint. We ran scJoint using different parameter settings (center_weight={1,
20, 50, 100}, with_crossentropy={True, False}, and embedding_size={64, 32}) and chose
the results which look best according to the visualizations. The results shown used
embedding_size=64.

When running MMD-MA, we calculate the similarity matrix by first reducing the fea-
ture dimension of scRNA-seq and scATAC-seq to 100 using PCA, and then calculating
the inner product between cells using the reduced feature dimensions. We further set the
λ1 = 10�6 andλ2 = 10�2, the latent dimension to be 2 in MMD-MA for visualization.

We ran Signac on mouse neonatal brain cortex dataset following the same pipeline
in its online tutorial (https://satijalab.org/signac/articles/mouse_brain_vignette.html).
We use the count matrix generated by •GeneActivity()Ž function with parameter
•extend.upstreamŽ equal to 2000 and •extend.downstreamŽ equal to 0.
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