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Abstract

The COVID-19 pandemic has emphasized the importance of accurate detection of
known and emerging pathogens. However, robust characterization of pathogenic
sequences remains an open challenge. To address this need we developed
SeqScreen, which accurately characterizes short nucleotide sequences using
taxonomic and functional labels and a customized set of curated Functions of
Sequences of Concern (FunSoCs) specific to microbial pathogenesis. We show our
ensemble machine learning model can label protein-coding sequences with
FunSoCs with high recall and precision. SeqScreen is a step towards a novel
paradigm of functionally informed synthetic DNA screening and pathogen
characterization, available for download at www.gitlab.com/treangenlab/seqscreen.

Introduction
Rapid advancements in synthesis and sequencing of genomic sequences and nu-

cleic acids have ushered in a new era of synthetic biology and pathogen surveil-

lance. While the democratization of reading and writing DNA has greatly

enhanced our understanding of large-scale biological processes [1], it has also in-

troduced new challenges [2]. Accurate characterization of genetically engineered or

de novo synthesized pathogens has never been more relevant, and the importance

of detecting and tracking pathogenic sequences from the environment cannot be

overstated. Open challenges that represent barriers to accurate detection include,

but are not limited to, (i) the role of abiotic and environmental stress response

genes in virulence, (ii) the presence of seemingly pathogenic sequences in com-

mensals, (iii) host-specific pathogen virulence, and (iv) interplay of different genes

to generate pathology [3]. Accurate and sensitive detection of pathogenic markers

has also been confounded by the difficulty of characterizing multifactorial micro-

bial virulence factors in the context of the biology of the host [4]. The limited
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number of publicly available databases to identify specific pathogenic elements within

sequencing datasets further exacerbates the problem. Furthermore, due to difficulties with

automated annotations and the lag between experimental results and sequence annota-

tions, identifying sequences involved in pathogenesis is, and threatens to remain, an on-

going challenge [5, 6]. Except for approximately 250 terms related to viral pathogenesis,

Gene Ontology (GO) terms were not designed to capture the activities of pathogen se-

quences acting in a host organism. The GO term “pathogenesis” (GO:0009405), which is

tagged in more than 275K UniProt accessions, was made obsolete in 2021 (https://github.

com/geneontology/go-annotation/issues/3452). Thus, there exists an urgent need in the

community for a tool that can accurately characterize gene sequences in the context of

functional pathogen detection and identification, thereby sensitively capturing sequences

of concern (SoCs) in each sample [3].

With respect to computational approaches for pathogen characterization, much

recent progress has been made specific to predicting antibiotic resistance [7–10].

Other computational tools incorporating statistical frameworks for predicting

markers of pathogenicity from sequencing data include PathoScope [11, 12] and

SURPI [13]. The former utilizes sequence quality and mapping quality as parts of a

Bayesian model to rapidly compute posterior probabilities of matches against a

database of known biological agents, while the latter uses either Scalable Nucleo-

tide Alignment Program (SNAP) [14] alignments to bacterial or viral databases and

in some cases RAPSearch [15] for more sensitive identification. Both tools also had

separate releases, Clinical PathoScope [16] and SURPI+ [17], specifically focused on

pathogen characterization from clinical samples. Another k-mer based tool by Cos-

mosID [18], precomputes reference databases (reference genomes as well as viru-

lence and antimicrobial resistance markers) to create a phylogeny tree of microbes

as well as variable-length k-mer fingerprint sets for each branch and leaf of the

tree. Sequencing reads are then scanned against these unique fingerprint sets for

detection and taxonomic classification. The statistics derived are then refined using

predefined internal thresholds and statistical scores to exclude false positives and

fine grain taxonomic and relative abundance estimates. Evaluations of this approach

have shown that CosmosID achieves a high level of sensitivity in antibiotic resist-

ance gene detection for predicting staphylococcal antibacterial susceptibility [19];

however, this is not an open-source tool and was not further evaluated in this

study.

In spite of recent progress, nearly all methods either (i) assume the presence of the

entire genome, (ii) ignore functional information, or (iii) are ill-equipped to analyze in-

dividual short sequence lengths typical of synthesized oligonucleotides. Previous bench-

marking studies on microbial identification from metagenomes have shown that there

exists a crucial tradeoff between taxonomic resolution and accuracy given the current

state-of-the-art tools [20–23]. Furthermore, a taxonomic identifier is often a poor proxy

for pathogenicity. While modern computational methods have tackled aspects of this

problem by focusing of various types of pathogenic markers, there exists a gap in com-

putational tools able to accurately identify known and emerging pathogens from envir-

onmental samples [24]. It is this gap that we aimed to fill with SeqScreen. Previously,

we introduced a proof-of-concept framework [25] for sensitive taxonomic and func-

tional characterization of nucleotide sequences of interest. Here, we build upon the
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earlier work and present a robust and comprehensive tool based on ensemble machine

learning and functions of sequences of concern (FunSoCs) [26] for pathogen identifica-

tion and detection. Our system, SeqScreen [27], combines alignment-based tools, en-

semble machine learning classifiers, curated databases, and curation-based labelling of

protein sequences with custom pathogenic functions, to identify sequences of concern

in high throughput sequencing data. Through careful, manual assignment of patho-

genic functions based on published investigations of each sequence, SeqScreen depends

on high quality training data to predict FunSoCs accurately. The SeqScreen FunSoC

database has been pre-computed with our ensemble machine learning classifiers, so the

SeqScreen software does not train the machine learning classifier or run machine learn-

ing in real time, making the analysis more streamlined and the results consistently re-

producible and reviewable. SeqScreen aspires to be the first tool to combine human

interpretability and machine learning-based classification in a human-in-the-loop con-

struct to provide a solution towards characterizing pathogens and offers a different ap-

proach to pathogen identification in contrast to existing tools.

Results
Comparison of FunSoCs to previous pathogen detection frameworks

Previous pathogen detection methods have relied on the Virulence Factor Database (VFDB)

as a training and validation dataset to detect markers of pathogenicity from Next Gener-

ation Sequencing (NGS) data [28, 29]. VFDB contains a set of more than 3400 core se-

quences that aim to capture virulence factors (VFs) from 30 different genera of medically

relevant bacterial pathogens [30]. There have been five updates describing VFDB since the

original announcement published in 2005, with the latest being in 2019 [30–34]. A detailed

inspection of the VFDB sequences revealed some shortcomings that precluded us from

using this resource in our work. Most notably, there was no clear justification for inclusion

of sequences in the VFDB, such as Gene Ontology terms or other functional annotations to

label individual sequences. VFDB also contains many proteins that contribute to flagellar

production. Flagellar components are recognized by pattern recognition receptors of the in-

nate immune system and can thus precipitate an inflammatory reaction, but they are found

in both pathogenic and non-pathogenic species. In any case, the flagellar synthases could

only remotely be considered pathogenic. To address these limitations, our curation team

formulated “functions of sequences of concern” (FunSoCs) that capture the specific roles

that sequences play in pathogenesis. These were used to find and tag a set of 1433 training

sequences that contained different GO terms used to infer FunSoCs, where each sequence

had at least one FunSoC annotation. Figure 1 A shows the overlap between the distinct GO

terms from the VFDB core sequences and the training set used in our study. The SeqScreen

training dataset contained 12,086 GO terms compared to just 657 retrieved from the VFDB

sequences. The lack of functional information in VFDB was also shown by comparing the

annotation scores (Fig. 1B) of sequences as specified in UniProt. The annotation score of

VFDB core sequences was overwhelmingly the lowest possible score (1 out of 5), whereas

the sequences in our training dataset were chosen to include proteins with annotation

scores above 3 with a median score of 4, indicating a higher degree of confidence in its func-

tional annotation within UniProt. Choosing sequences based on FunSoCs inferred from GO

terms provided a higher quality curated training dataset with a wider variety of functional
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annotations that did a better job of capturing different mechanisms of microbial

pathogenesis.

Pipeline overview and module descriptions

The SeqScreen pipeline was built using Nextflow [35], a domain-specific language for

creating scalable and portable workflows. SeqScreen combines various stages in

Fig. 1 Comparison of VFDB to SeqScreen Biocurator Database. A Venn-diagram shows the number of GO terms
captured by VFDB Core sequences, the SeqScreen training dataset labeled by biocurators, and their overlap. B Box-
plot showing the comparison of annotation scores (1-5) of the associated UniProt/UniParc IDs between VFDB Core
sequences and SeqScreen training data. The p-value was calculated using the Mann-Whitney U test
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separate Nextflow modules and is available as an open-source tool on bioconda

(https://anaconda.org/bioconda/seqscreen). Figure 2 illustrates the various modules and

five main workflows in SeqScreen. SeqScreen can be run in two different modes -de-

fault (i.e., fast) mode and -sensitive mode. The default fast mode runs a limited set of

pipelines that are tuned to rapidly annotate sequences in an efficient performance-

centric approach. The sensitive mode (using the --sensitive flag) uses much more accur-

ate and sensitive BLASTN-based alignments [36] and outlier detection [37] steps for

taxonomic characterization in addition to BLASTX which is used to identify best hit

proteins. The outlier detection uses a multiple-alignment scoring function, modified

Bayesian Integral Log-Odds, to define the outliers within a subset of top BLAST

(https://github.com/marbl/ATLAS) and further details can be found in Shah et al.

(2018) [37]. Further, for sensitive functional annotations it uses BLASTX to identify hits

to the curated UniRef100 database. The modular nature of the pipeline offers advan-

tages in terms of ease of updating or replacing specific software modules in the future

versions of new bioinformatics tools and databases are shown to outperform its current

modules and workflows. SeqScreen accepts nucleotide FASTA files as input, assuming

one protein-coding sequence is present within each query sequence of the FASTA file.

Each input file is verified for the correctness of the FASTA format and then passed on

to the initialization workflow in sensitive mode, which first converts ambiguous nucleo-

tides to their corresponding unambiguous options and performs six-frame translations

Fig. 2 SeqScreen overview. A SeqScreen Workflow: this figure outlines the various modules and workflows
of the SeqScreen pipeline. Boxes in green indicate that these modules are only run in the sensitive mode.
The boxes in yellow are run in the fast mode, while the ones in blue are common to both modes. In
addition to the two different modes, SeqScreen also contains optional modules that can be run based on
the parameters provided by the user. B SeqScreen Human-in-the-loop Framework: includes initial
annotation and curation of training data by manual curation. The data is used to train Ensemble ML
models. The results obtained and selected feature weights are passed on back to biocurators to fine tune
features and UniProt queries which form a new set of refined training data for the Ensemble model
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of nucleotide to amino acid sequences for input into downstream modules like RAP-

Search2 [15], which accepts amino acid sequence as input. After initialization, the se-

quences pass through various downstream modules that add taxonomic and functional

annotations to the sequences that inform its FunSoC assignment. The downstream

modules depend on the mode the user runs SeqScreen in -default (DIAMOND [38]

and Centrifuge [39]) or -sensitive (BLASTX, MUMmer [40] + REBASE [41] and

MEGARes [42]). FunSoC assignment of query sequences is carried out by transferring

the FunSoC labels of the target proteins in our database identified during functional an-

notation. This database containing mappings from individual UniProt Ids to FunSoCs

to is precomputed from the predictions of the ensemble machine learning classifier.

Training data for the classifier was obtained from manual curations of literature and

databases by our team of expert biocurators. The precomputed FunSoC database obvi-

ates the need to run the classifier in real-time thereby increasing the efficiency of the

SeqScreen pipeline. All analyses in this study were performed with SeqScreen -default

mode, other than the SeqMapper-focused analysis that was run in sensitive mode. Each

of the individual workflows of the SeqScreen pipeline are discussed in more detail

below.

SeqScreen workflow #1: Initialize

Each run is initialized by first checking the input fasta file and verifying it to be error

free. Some common errors that are screened for include headers with empty sequences,

duplicate headers, and invalid or ambiguous bases. SeqScreen also checks for suspi-

ciously long sequences depending on a user-controlled parameter (--max_seq_size). In

addition to quality control for input sequences, the sensitive mode also contains the

six-frame translation module to convert the nucleotide sequence into amino acids to

input to the SeqMapper module.

SeqScreen workflow #2: SeqMapper

The SeqMapper workflow is part of the sensitive mode of SeqScreen and includes

additional features, such as detecting Biological Select Agents and Toxins (BSAT)

sequences through efficient sequence alignment methods. Since the BSAT data-

base is the industry standard for triaging sequences of concern, we use this as

baseline screening tool for the users to compare SeqScreen results alongside the

simplistic SeqMapper results. We use a two-pronged approach by analyzing both

the nucleotide and amino acid sequence alignments to BSAT reference genomes

using Bowtie 2 [43] and RAPSearch 2 [15], respectively. While this workflow is

only limited to reporting hits to BSAT genes and proteins, downstream workflows

are used to capture and collate whether a gene is of interest at a functional level

(e.g., functional differentiation between BSAT housekeeping and toxin hits are not

delineated at this step). This workflow is sensitive to detect BSAT sequences, but

not precise in differentiating BSAT sequences from their near neighbors. The

BSAT sequences were primarily derived from the following website: https://www.

selectagents.gov/sat/list.htm and the full contents of the BSAT Bowtie2 database is

available at: https://osf.io/adhvt/. In addition to the above databases, users can

also optionally obtain other features of interest, such as HMMs identified by
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HMMER [44] from Pfam [45] proteins by using the optional HMMER module in

SeqScreen.

SeqScreen workflow #3: Protein and Taxonomic Identification

In the taxonomic classification workflows for both fast and sensitive modes we

rely on widely used state-of-the-art alignment-based tools to classify sequences.

SeqScreen obtains alignments to both DNA and amino acid databases. While

aligning to amino acid databases provides taxonomic information as well as func-

tional information, aligning to nucleotide databases provides additional sensitivity,

especially for non-coding regions. The taxonomic classification module for fast

mode is an ensemble of DIAMOND and Centrifuge, two established and widely

used tools for protein alignment and taxonomic classification. First, DIAMOND

is used to align the input sequences to a reduced version of the UniRef100 data-

base. DIAMOND is an open-source software that is designed for aligning short

sequence reads and performs at approximately 20,000 times the speed of

BLASTX with similar sensitivity. Our reduced version of the UniRef100 database

[46] only contains proteins with a high annotation score. Not including poorly

annotated proteins both decreases the runtime and increases the specificity of

SeqScreen functional annotations. SeqScreen then runs Centrifuge, a novel tool

for quick and accurate taxonomic classification of large metagenomic datasets.

Centrifuge classifications are given higher weights and are always assigned a con-

fidence score of 1.0. SeqScreen always picks the taxonomic rank with the highest

score for Centrifuge and assigns it to the sequence. In the case where Centrifuge

fails to assign a taxonomic rank to a particular sequence, we assign DIAMOND’s

predictions to it. To incorporate DIAMOND’s predictions, we consider all taxo-

nomic ids that are within 1% of the highest bit-score as the taxonomy labels for

a sequence (Fig. S1). The sensitive taxonomic classification workflow uses

BLASTX and BLASTN for aligning to amino acid and nucleotide databases, re-

spectively. For BLASTX, we again use our reduced version of the UniRef100 data-

base (Supplementary Data SD1). BLASTN results are processed through outlier

detection to identify which of the top hits are significantly relevant to the query

sequence. The sensitive mode parameters are set so that if a cut is made, all hits

above the cut line are returned; otherwise, all hits are returned. All hits within

the outlier detection cutoff (BLASTN) or within 1% (sensitive parameter cutoff =

1) of the top bitscore will be saved as the top hits for a given query sequence.

Next, all hits reported by BLASTN and BLASTX are sorted by bitscore and listed

for a query. Taxonomic IDs are ordered so that BLASTN are reported first,

followed by BLASTX. Order-dependent taxonomic assignments will then be based

on the first taxonomic ID reported (typically BLASTN hit). Default E-values

(--evalue) and max target seqs (--max_target_seqs) for BLASTN and BLASTX are

set to 10 and 500, respectively. Since both parameters limit the number of

matches to the query sequence, modification of these parameters may be neces-

sary for short and ubiquitous sequences. For BLASTN and BLASTX, the reported

confidence values are based on bitscores (bitscore/max bitscore), as inspired by

orthology estimation [47].
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SeqScreen workflow #4: Functional Annotation

Using the predicted UniProt IDs and their bit scores from DIAMOND, SeqScreen ob-

tains a list of all predicted UniProt IDs whose bit score is at most 5% less than the

highest bit score and compiles all the associated GO terms for each UniProt ID. To as-

sign FunSoCs to each input sequence, we have developed a database which contains a

mapping of all UniProt IDs to FunSoCs. The construction of SeqScreen database is de-

scribed in detail in Supplementary Data SD1.

SeqScreen workflow #5: SeqScreen Reports

Following the computational workflows, SeqScreen produces a tab-separated report file

with the predictions of each input sequence as well as an interactive HTML report.

The HTML report allows users to search and filter the results based on a variety of cri-

teria such as FunSoC presence, GO term presence, and sequence length. The HTML

report is a convenient way to browse the results of large inputs as it loads results in

small chunks so that arbitrarily large results can be viewed (Fig. 3 and Fig. S2).

Ensemble machine learning for FunSoC predictions

FunSoCs encompass sequences involved in the mechanisms of microbial pathogenesis,

antibiotic resistance, and eukaryotic toxins (e.g., arachnids, cnidarians, insects, plants,

serpents) threatening to humans, livestock, or crops. We identified 32 groups of se-

quences that could be categorized under the FunSoC framework (Table S1) that each

protein could potentially be assigned to, thereby indicating pathogenicity. As seen in

the table ST1, although many FunSoCs were geared towards identifying bacterial or

viral markers of pathogenicity, certain FunSoCs contained proteins that were derived

from eukaryotes. We decided to formulate this as a multi-class, multi-label (i.e., each

protein/sequence can be associated with one or more of the 32 FunSoCs) ML

Fig. 3 HTML report output from SeqScreen. This is a screenshot of the interactive HTML page that outputs
each query sequence in the file, the length, the gene name (if found), and GO terms associated with it. It
also outputs the presence (or absence) of each of the 32 FunSoCs by denoting a 1 (or 0) in the given field
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classification problem. In order to annotate potentially large numbers of query se-

quences with FunSoCs, we reasoned that utilizing a lookup table containing pre-

predicted FunSoC labels (obtained from the ML models) for the proteins in the Uni-

Prot database would enable efficient extraction of labels for corresponding hits from

the query to the table. Towards this, we tested 11 ML models (Table S2) based on three

different strategies that use different feature selection criteria as well as a two-step pipe-

line that aims to filter proteins that are not associated with any FunSoCs. These models

were trained on proteins manually curated and labeled with FunSoCs. For the purposes

of our discussion, we show the top three performing models as visualized in Fig. 4. To

gain a more nuanced understanding of the models’ performances, we considered the

average precision and recall of the models on the positive labels specifically, i.e., pro-

teins that were labeled with a “1” (minority class) for a particular FunSoC. This is an

important measure to understand how well they learn to predict the minority positive

class given the data imbalance which mirrors a practical application of SeqScreen where

Fig. 4 Majority Voting Ensemble Classifier used to create FunSoC Database. The top three models
combined are Bl. SVC + NN(OS), balanced linear support vector classifier + neural networks (oversampled);
TS NN, two-stage neural network; and TS Bl.SVC, two-stage balanced linear support vector classifier. The
binary predictions of each of the classifiers over each FunSoC are combined in a majority voting scheme to
predict the final labels for the SeqScreen FunSoC database which is then used to annotate query
sequences. Training data is split into train (56.75%), validation (18.25%), and test (25%). The two-stage
methods first detect presence of at least one FunSoC and then carry out the multi-class multi-label
predictions. Dropouts (neural networks) and L1-regularization (support vector classifier) are used to control
for overfitting. Two of the models use random oversampling (Bl. SVC + NN(OS), after feature selection), and
class weights (TS Bl. SVC) to deal with class imbalance in the training data
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the expected number of non-pathogenic sequences in a sample is larger than specific

pathogenic markers. Our test splits were reflective of this imbalance, for example, the

test split for the FunSoC virulence activity had 23292 samples labeled “0” and 29 sam-

ples labeled “1.” Table 1 shows the results of different models for each of the metrics.

Although the accuracy of the methods is similar, we observed significant differences in

the positive label precision and recall. Two-stage detection + classification neural net-

works (TS NN) and two-stage detection + classification balanced support vector classi-

fier (TS Bl.SVC) represented two different ends of the spectrum of precision and recall,

the former being more precise (P: 0.88, R: 0.69) and the latter being more sensitive (P:

0.73, R:0.88). We also found that Balanced Support Vector Classifier + Neural Network

Classification using Oversampling (Bl. SVC + NN (OS)) represented an intermediate

version of the other two models with precision and recall being more balanced (P: 0.87,

R: 0.81). The majority vote classifier built on these three classifiers to provide a further

improvement in the specificity with a slight loss in terms of recall (P: 0.90, R: 0.82). To

get a more detailed perspective of the performance of the models on each of the Fun-

SoCs, we plotted the positive label precision and recall per FunSoC. As seen in Fig. 5,

the Majority Voting classifier combined the strengths of these individual classifiers to

balance precision and recall across these FunSoCs.

Use case #1: Screening for known pathogens

We now present a use case with three pairs of hard-to-distinguish bacteria that often

confound current metagenomic classification tools to show how SeqScreen analyzes

and distinguishes hard-to-classify pathogens. The motivation of the following use-case

underscored the advantages of FunSoC-based identification of pathogenic markers over

using canonical taxonomic approaches. Note here that SeqScreen specifically reports

on pathogenic functions of sequences and is not built for the task of bacterial species

or strain-level typing. Thus, SeqScreen can help distinguish pathogenic sequences in

near-neighbor microbes, which is beyond the capabilities of existing taxonomic classifi-

cation methods.

Table 1 The accuracy, exact match ratio, micro and macro F1 score, macro recall, and precision of
the different ML models. The models we considered were balanced SVC (feature selection) +
neural network classification using oversampling (Bl. SVC + NN (OS)), two-stage detection +
classification neural networks (TS NN), two-stage detection + classification balanced support vector
classifier (TS Bl. SVC), and the majority vote ensemble classifier (MV ensemble). TS NN had the
highest positive label (PL) precision and TS Bl.SVC had the highest positive label (PL) recall, while
Bl. SVC + NN (OS) had the best balance between precision and recall. Majority vote ensemble
improved on the results of the three classifiers as conveyed by both the high precision and recall
the method achieves

Model Accuracy Exact
match
ratio

Micro F1
score

Macro F1
score

Macro
recall

Macro
precision

Mean PL
precision

Mean PL
recall

Bl. SVC +
NN (OS)

0.9997 0.9924 0.9859 0.8210 0.8039 0.8716 0.8759 0.8180

TS NN 0.9997 0.9924 0.9359 0.6934 0.6445 0.8011 0.8893 0.6988

TS Bl.SVC 0.9996 0.9893 0.8692 0.7047 0.8310 0.6492 0.7382 0.8869

MV
ensemble

0.9997 0.9934 0.9424 0.7998 0.8016 0.8453 0.9003 0.8273
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Fig. 5 Positive label precision and recall per FunSoC for the four ML models Bl. SVC + NN (OS) (in blue), TS
NN (in green), TS Bl. SVC (in yellow), and MV ensemble (in brown). Precision is in solid lines and recall is in
dotted lines. TS Bl. SVC shows the best overall recall, whereas TS NN consistently has the highest precision
across most of the 32 FunSoCs. In hard-to-classify FunSoCs like nonviral invasion and bacterial counter
signaling, TS NN performs poorly indicating a model with a high degree of variance. Similarly, TS Bl. SVC
suffers from poor precision in most cases. The majority vote classifier improves on the Bl. SVC + NN (OS)
and finds an optimal balance between precision and recall across all FunSoCs

Fig. 6 Pathogen identification of hard-to-classify pathogens: FunSoCs assigned to genes by SeqScreen.
Abbreviated gene names are listed in pink cells if at least one read from the gene had a UniProt e-value <
0.0001 was assigned a FunSoC and was from the expected genus (i.e., Escherichia or Shigella, Clostridium,
Streptococcus, Lactobacillus). FunSoCs with at least one gene that met the criteria for detection in at least
one isolate were included in the table. The removal of genes from genera that were not expected in these
bacterial isolates allowed for removal of genes that were likely derived from likely contaminating organisms
(e.g., PhiX Illumina sequencing control). An expanded table for cells denoted by (*) and complete gene
names are listed within each cell in Table S3. (a and b) E. coli O157:H7 is shown to have presence of the
shiga toxin (stxB) as seen in the cytotoxicity FunSoC, as well as an additional hit to the secreted effector
protein (espF(U)), labeled with secreted effector and virulence regulator FunSoCs, compared to E. coli K12
MG1655. (c and d) C. botulinum showed four distinct FunSoCs (disable organ, cytotoxicity, degrade ecm and
virulence regulator) and presence of the botA and orf-X2 genes compared to C. sporogenes. (e and f) S.
pyogenes showed presence of the induce inflammation FunSoC in contrast to the near neighbor pathogen
S. dysgalactiae with the counter immunoglobulin FunSoC. (g and h). S. salivarius and L. gasseri are well-
known commensals that are generally considered harmless. Both show presence of antibiotic resistance
genes, while S. salivarius also contains some genes associated with secretion. The commensals have hits to
the least number of FunSoCs
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Figure 6 describes the FunSoCs associated with Illumina sequences from eight bacter-

ial isolate genomes. All had antibiotic resistance genes. In Fig. 6a, b, we show a com-

parison of the commensal strain of E. coli K-12 MG1655 versus the pathogenic strain

E. coli O157:H7. Both strains reported the following four FunSoCs: cytotoxicity, secreted

effector, secretion, and antibiotic resistance. SeqScreen reports the additional presence

of Shiga toxin subunit B (stxB) [48] in pathogenic E. coli O157:H7 that differentiates it

from E. coli K-12 MG1655. In addition, E. coli O157:H7 also showed the presence of

the secreted effector protein EspF(U), which was labeled with the secreted effector and

virulence regulator FunSoCs. Another example is shown in Fig. 6c, d where Clostridium

botulinum and Clostridium sporogenes are shown to be differentiated by four specific

FunSoCs associated with C. botulinum. Though the organisms have a high degree of

overall sequence similarity, C. botulinum contains the BotA toxin which is absent from

C. sporogenes. We observed the presence of four FunSoCs associated with C. botu-

linum, which included disable organ, cytotoxicity, degrade ecm, and secreted effector

associated with hits to the BotA and neurotoxin accessory protein (orf-X2) genes, indi-

cating the presence of pathogenic sequences in C. botulinum. In contrast, C. sporogenes

showed a unique hit to the secretion FunSoC, while both organisms were marked with

a hit to the bacterial counter signaling and antibiotic resistance FunSoCs. Figure 6e,f

shows that FunSoCs can also be used to differentiate between Streptococcus pyogenes

(group A Streptococcus, causative agent of strep throat) and Streptococcus dysgalactiae

(group C/G Streptococcus), a near neighbor with pathogenic potential. S. pyogenes had

the streptopain (speB) and exotoxin type H (speH) genes associated with the induce in-

flammation FunSoC, whereas S. dysgalactiae had the immunoglobulin G-binding pro-

tein (spg) gene with the counter immunoglobulin FunSoC, thereby differentiating it

from S. pyogenes. Both bacteria showed presence of cytotoxicity, secretion, and antibiotic

resistance. In addition to pathogens, we show in Fig. 6g,h that the FunSoC based frame-

work can also capture well-characterized commensals like Streptococcus salivarius and

Lactobacillus gasseri. We see that both these bacteria reported the least number of

FunSoCs, validating the negative control experiment. S. salivarius contained a hit to

the secretion FunSoC from genes encoding competence proteins. In differentiating near

neighbor pathogens, SeqScreen selectively annotated regions in genomes that contrib-

uted to pathogenicity across various categories.

In addition to FunSoCs assignments, we evaluated how existing alignment ap-

proaches handle the identification of pathogen near neighbors. To motivate our experi-

ments, we initially considered the widely used BSAT list to triage isolates (see the

“Methods” section on SeqMapper), as it is representative of a current strategy for

pathogen screening approaches in the DNA synthesis industry. We mapped C. sporo-

genes (SRR8758382) reads against the BSAT database using the Bowtie2 module of the

SeqMapper workflow, and 98.28% of the reads hit to C. botulinum. The high percent-

age of hits to C. botulinum underlines the shortcoming of simplistic triaging methods

to accurately differentiate between near neighbors and pathogens. To simulate its utility

for synthetic biology, we also tested SeqScreen on two datasets. The first contained four

eukaryotic toxins from different organisms and two non-pathogenic proteins from the

Vaccinia virus. We found that current BSAT-based screening pipelines overlooked the

eukaryotic toxins and flagged the two viral sequences as dangerous. This is consistent

with current best practice guidelines for screening synthetic sequences, but the current
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method focuses on flagging sequences that map to a short list of taxa of concern and

lacks resolution to classify sequences at a functional level. SeqScreen was able to anno-

tate each of the toxins with the disable organ FunSoC and had no FunSoCs associated

with the two non-pathogenic sequences from the Vaccinia virus (Table S4). As a nega-

tive control, we also tested SeqScreen against 10 K reads, simulated using wgsim [49],

from 16S sequences of three BSAT agents Bacillus anthracis, Brucella melitensis, and

Burkholderia pseudomallei. This resulted in several false positive calls to the BSAT

database (mapped using Bowtie2), whereas SeqScreen had no false positives for any

bacteria (Table S5).

We further considered popular taxonomic classifiers to analyze how accurately near

neighbor pathogens were separated. We compared the results of six different tools,

Mash dist [50], Sourmash [51], PathoScope [11], Kraken2 [52], MetaPhlAn3 [53], Krake-

nUniq [54], and Kaiju [55], with the following three pairs of near-neighbors and patho-

gens: E. coli K-12 MG1655 and E. coli O157:H7, C. sporogenes and C. botulinum, and S.

dysgalactiae and S. pyogenes. Table 2 shows the results of running the taxonomic tool

on these bacteria with their complete databases and the top hits for each are reported.

Table 2 Pathogen and near neighbor classification. SRA represents the SRA id of the sample, True
Organism represents the actual bacterial strain or species, and the remaining columns indicate the
results for the indicated method using the parameters detailed in the “Methods” section. Green
cells indicate that the tool assigned a correct strain-level call, yellow indicates a correct species-
level call, and red indicates an incorrect species-level call. The following tools and databases were
run: Mash dist (RefSeq 10 k), Sourmash (RefSeq + GenBank), PathoScope (PathoScope DB), Kraken 2
(Mini and full Kraken2 DB produced the same results), KrakenUniq (MiniKraken 8GB), MetaPhlAn3
(default), and Kaiju (index of NCBI nr + euk). The E. coli strains were challenging for most tools. The
pathogenic E. coli O157:H7 was correctly called by Mash dist, Sourmash, PathoScope, Kraken2, and
KrakenUniq. MetaPhlAn and Kaiju could only make a species level assignment. In contrast, the
commensal E. coli K12 MG1655 was the most challenging as only Mash dist and Sourmash got the
strain level assignment correct. MetaPhlAn3 and Kaiju could make only species level assignments,
and PathoScope, Kraken2, and KrakenUniq called it as strains E. coli BW2952, E. coli O157:H7, and E.
coli O145:H28, respectively. Even with a complete database, C. sporogenes was wrongly classified as
C. botulinum by PathoScope, Kraken2, and KrakenUniq. Mash dist, Sourmash, and Kaiju predicted C.
sporogenes correctly while MetaPhlAn3 was ambiguous. C. botulinum was incorrectly classified as C.
sporogenes by Mash dist, Sourmash, and S. dysgalactiae was predicted as S. pyogenes by
PathoScope. All tools correctly called S. pyogenes
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Strain level differences between the two E. coli near neighbor was hard for almost all the

tools to distinguish. Kaiju and MetaPhlAn3 could only predict E. coli at species level for

both strains, and since those tools were designed to only report down to the species

level, strain-level pathogenicity will always be missed. Kraken2 incorrectly predicted

non-pathogenic E. coli K-12 MG1655 as the pathogenic strain E. coli O157:H7. Patho-

Scope and KrakenUniq incorrectly predicted the non-pathogenic E. coli K-12 MG1655

strain as E. coli BW2952 and E. coli O145:H28. Mash dist and Sourmash were the only

tools that reported the true E. coli K-12 strain. The tools performed considerably better

when predicting for E. coli O157:H7, as Mash dist, Sourmash, PathoScope, Kraken2, and

KrakenUniq were able to predict the strain correctly. When considering the two Clos-

tridium near neighbors, PathoScope, Kraken2 and KrakenUniq misclassified C. sporo-

genes as C. botulinum. In contrast, C. botulinum was incorrectly called C. sporogenes by

Mash dist, Sourmash, and MetaPhlAn3. While predicting for the Streptococcus near

neighbors, all tools predicted S. pyogenes correctly and only PathoScope misclassified S.

dysgalctiae as S. pyogenes, while other tools called it accurately. In summary, our experi-

ments demonstrated that none of the tools were able to correctly predict all pathogens

and near neighbors at the species and strain levels. SeqScreen provides a more detailed

framework beyond species or strain-level taxonomic classifications to aid the user in

interpreting the pathogenicity potential of a query sequence, including exact protein

hits, GO terms, multiple likely taxonomic labels with confidence scores, and FunSoC

assignments.

Use case #2: Screening for novel pathogens

To highlight the advantage of using SeqScreen’s FunSoC-based pathogenic se-

quence detection pipeline in contrast to relying on taxonomic labels, our next set

of experiments evaluated how the absence of the exact set of species or strain en-

tries in the database corresponding to the bacterial genome query would impact

the classifications by these tools. This was done to simulate a query of a novel

pathogen genome by removing the entries corresponding to the query bacterial

genome from the database. We selected two tools for this experiment, Mash dist

and PathoScope, as modifying their databases for this experiment was readily

achievable and both performed well in the previous use case. Table 3 shows the re-

sults of the classifiers using these modified databases. As expected, the closest near

neighbor of the query genome is selected when a pathogen is not present in the

database. Also, as was the case with the complete databases, both of the tools mis-

classified the E. coli strains. PathoScope called E. coli K-12 MG1655 at species level

while Mash dist reported a hit to the pathogenic E. coli O16:H48 strain. For the

Clostridium species, both tools called the pathogen as its non-pathogenic near

neighbor, emphasizing the difficulty of adequate identification in a simulated novel

pathogen environment. In the case of Streptococcus, S. dysgalactiae was classified

as S. sp. NCTC 11567 by Mash dist and S. intermedius by PathoScope, whereas S.

pyogenes was classified as its near neighbor S. dysgalactiae by Mash dist and S.

infantarius by PathoScope. In contrast, as seen in Fig. 4, retaining genus specific

hits from SeqScreen was sufficient to observe functional differences between the

near neighbor pathogens. This experiment highlights that current approaches may
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still fail to separate near neighbor pathogens. The use of FunSoC calls for patho-

genic sequences may help to distinguish emerging pathogens.

To further test SeqScreen’s ability to identify pathogenic markers in the absence of a

particular taxa in the database, we focused on C. botulinum, which was the pathogen

that proved most difficult for tools to place in the above experiments. We removed all

UniRef100 proteins that had a taxonomic identifier corresponding to C. botulinum

from our database. We then ran SeqScreen on C. botulinum reads and analyzed Fun-

SoCs associated with them, just as in use case #1. We found multiple hits to BotA ho-

mologs from other Clostridium species that were associated with the same FunSoCs as

in the original experiment (i.e., C. botulinum present in the database) except for viru-

lence regulator (Table S6). Interestingly, we even found a hit to the TetX toxin gene in

the disable organ FunSoC associated with Clostridium tetani, which is a distant homo-

log of the BotA gene and even lies beyond its UniRef50 cluster. In contrast to the other

tools, the FunSoC-based framework allows for accurate detection of pathogenic

markers without needing the exact taxa to be present, particularly since sequences are

more conserved in protein than nucleotide space.

Use case #3: Screening human clinical samples for an unknown pathogenic virus

As a final use case to further illustrate SeqScreen’s ability to identify pathogenic se-

quences in clinical samples, we ran SeqScreen on the sequencing data obtained from

the peripheral blood mononuclear cells (PBMC) of three COVID-19 patients and three

healthy patients as reported in the study by Xiong et al. [56]. We reasoned that the

samples from COVID-19 patients should contain certain reads with functional markers

that would indicate presence of the SARS-CoV-2 virus. To better understand SeqSc-

reen’s application for computationally analyzing clinical samples for unknown

Table 3 Simulating a novel pathogen. Mash dist and PathoScope were run on pathogen
sequences and their near neighbors with the corresponding truth species removed in their
respective databases to simulate an example of classifying a novel pathogen not in the database.
SRA represents the SRA id of the sample, True Organism represents the actual bacterial strain or
species, Mash dist represents the Mash results on each of the samples (with the truth organism
species or strain removed from its sketch database), and PathoScope represents the PathoScope
results on each of the samples (with the truth organism species or strain removed from its
database). In three of the cases, C. sporogenes, C. botulinum, and S. pyogenes, Mash dist classified
the organism as it near neighbor—C. botulinum, C. sporogenes, and S. dysgalactiae, respectively. S.
dysgalactiae was classified as S. sp. NCTC 11567 whereas the commensal E. coli K12 and pathogenic
E. coli 0157:H7 were classified as E. coli O16:H48 and E. coli 2009C-3554, respectively. PathoScope
only classified two pathogens, C. sporogenes and C. botuinum, as their nearest neighbor
counterparts. S. dysgalactiae was classified as S. intermedius, whereas S. pyogenes was classified as S.
infantarius. E. coli K12 was only classified at the species level, while the pathogenic strain E. coli
O157:H7 was classified as E. coli xuzhou21

SRA True Organism Mash dist PathoScope

DRR198806 E. coli K12 MG1655 E. coli O16:H48 E. coli

DRR198804 E. coli O157:H7 E. coli 2009C-3554 E. coli Xuzhou21

SRR8758382 C. sporogenes C. botulinum C. botulinum

SRR8981313 C. botulinum C. sporogenes C. sporogenes

SRR12825903 S. dysgalactiae S. sp. NCTC 11567 S. intermedius

ERR1735064 S. pyogenes S. dysgalactiae S. infantarius
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pathogenic viruses, we chose to run an older version of SeqScreen (v1.2) on these sam-

ples, retaining the same analysis functionality with a database that predated the

COVID-19 pandemic and the inclusion of SARS-CoV-2 virus. This was done for two

reasons. First, we wanted to evaluate SeqScreen’s ability to retrieve functional patho-

genic information by simulating an experiment with an unknown virus along with a

database that did not contain the causative virus. Second, we wanted to highlight

SeqScreen’s ability to detect GO terms and FunSoCs directly from metatranscriptomes

of clinical samples with low levels of the novel pathogen to highlight its sensitivity. For

this study, we focused on GO terms that were specific to the COVID-19 samples and

viral proteins (i.e., GO terms that were not assigned to bacterial, eukaryotic, or archaeal

proteins or observed in the healthy controls). Only three GO terms met these criteria

within one of the COVID-19 samples (CRR119891). All three of the GO terms, sup-

pression by virus of host ISG15 activity (GO:0039579), induction by virus of catabolism

of host mRNA (GO:0039595), and suppression by virus of host NF-kappa B transcrip-

tion factor activity (GO:0039644) were indicative of SARS-CoV-2 virus activity [57].

SeqScreen assigned replicase polyprotein 1ab from Bat coronavirus 279/2005 (UniProt

ID: P0C6V9, e-value: 5.8e-29) to one sequence read and reported these three GO terms

in sample CRR119891. Searching for other coronavirus taxonomic assignments in that

sample revealed one additional read that SeqScreen assigned to spike glycoprotein from

Bat coronavirus HKU3 (UniProtID: Q3LZX1, e-value: 1.3e-09). No other coronavirus

reads were identified in the samples, consistent with the report from the original publi-

cation in Xiong et al. that very few to no SARS-CoV-2 reads were identified in the

PBMC samples. In the SeqScreen v1.2 database, the associated FunSoC with the replic-

ase polyprotein 1ab was evasion and the FunSoCs predicted for the spike protein were

adhesion and invasion, which reflect the biological functions of the two proteins. To

compare SeqScreen v1.2 results to another tool, we ran HUMAnN 2 [58] on the six

PBMC metatranscriptomes to check for presence of virulence markers and pathways.

The HUMAnN2 results did not point to any evidence for presence of COVID-19 spe-

cific markers in this sample nor the others [59] which is expected given the focus of

the tool on reporting enriched genes and pathways, rather than rare pathogenic se-

quences. As SeqScreen extensively characterizes individual short protein-coding se-

quences and is geared towards identifying functional markers of pathogenicity, it can

sensitively detect trace amounts of pathogenic signal in clinical samples. The reads

identified as SARS-CoV-2 were confirmed to such when aligned to the database con-

taining SARS-CoV-2 using BLAST [36] as seen in Fig. S3. Thus, in data from a large-

scale unbiased metatranscriptome sequencing study, we were able to computationally

identify sequences from an emerging pathogen that were not present in the SeqScreen

database.

Discussion
The challenge of pathogen identification and detection from sequence level features is

significant and requires a nuanced, multi-layered approach. A given species often in-

cludes both pathogenic and non-pathogenic strains. These may not be well-defined

taxonomically [4] since sequences with similar taxonomic labels can contain mostly

non-pathogenic sequences with a smattering of pathogenic ones. Even at the strain

level, addition or subtraction of a single gene may affect the overall pathogenicity of the
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microbe [60]. SeqScreen provides a novel approach to this important problem and fo-

cuses on read-level analyses that facilitate the detection of low abundance pathogenic

sequences from metagenomic samples. Not only does SeqScreen enable functional ana-

lysis of partial and full-length genes, it also allows for the analysis of sequences anno-

tated with a subset of high-confidence FunSoCs that can be analyzed to detect

pathogenic presence in the sample. SeqScreen is different from using canonical taxo-

nomic classifiers for pathogen detection in that it outputs functional information (best

hit protein) and FunSoC information (pathogenicity) at read level instead of a candidate

list of taxonomic labels. Taxonomic classifiers often are ambiguous for similar patho-

gens and near neighbors within the same genus or species, such as commensal E. coli

K-12 MG1655 and pathogenic E. coli O157:H7, as well as C. botulinum and C. sporo-

genes, and S. dysgalactiae, and S. pyogenes. We show that FunSoCs can distinguish

these pairs. Commensal bacteria such as L. gasseri had no pathogenic functions associ-

ated with the species, validating our negative control, and highlighting SeqScreen’s abil-

ity to accurately identify commensals. Note that several of the commensals analyzed in

this study contain genes that can contribute to infection in humans, but these microbes

are rarely disease-causing agents.

A notable, novel feature of SeqScreen for pathogen detection and characterization is

the addition of FunSoCs as labels for each sequence in the query dataset. FunSoCs de-

scribe the role of these sequences in microbial pathogenesis when the possessing mi-

crobe infects human, crop, or livestock hosts. Using controlled vocabularies and other

data mined from popular protein databases, we showed that our models can capture

FunSoCs with a high level of precision. To improve the balance between precision and

recall over most of the FunSoCs, we proposed a majority voting ensemble classifier.

SeqScreen utilizes a lookup table created by classifying all UniProt proteins using the

ensemble classifier to annotate query sequences with FunSoCs. SeqScreen’s FunSoC

curations are not the first attempt to collate sequences of concern in a specific compu-

tational framework and/or database. Prior efforts such as the Virulence Factor Database

(VFDB), Pathosystems Resource Integration Center (PATRIC) [61], and Pathogen-Host

Interaction database (PHI-Base) [62] all offer resources for identification of virulence

factors. VFDB has been widely used but is limited by a lack of specificity regarding the

inclusion and selection criteria for its sequences. PATRIC has some annotation of

pathogenic sequences but is primarily focused on bacterial genomes. PHI-Base de-

scribes the result of pathogen-host interactions for pathogenic sequences following mu-

tation. SeqScreen was designed to overcome some of these limitations through an

iterative ensemble machine learning framework that leverages functional information

combined with curations to identify FunSoCs. In addition to the databases discussed,

we also analyzed the antibiotic resistance markers in the CARD database [63]. We

found that several UniProt/UniParc identifiers (52%) from CARD were not present in

our FunSoC database. We used this as a use case to elucidate the flexibility of re-

training our ensemble model to improve coverage on a specific database. Fig. S4 shows

that re-training our ensemble classifier on a small sample of CARD proteins can result

in increased recall from 0.12 to 0.99 on annotating CARD with the antibiotic resistance

FunSoC.

Our experimental results underscore the importance of annotating sequences with

their roles in pathogenesis to supplement prevailing taxonomy-based classifiers and
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pathogen detection tools. SeqScreen’s FunSoC-based pathogen detection approach is

sensitive to specific gene-based differences between closely related strains and accur-

ately identifies pathogenic markers. Out of the tools we evaluated, only Kaiju was able

to accurately distinguish all the near neighbors from pathogens at the species level. The

protein-based classification strategy used by Kaiju is different from other k-mer based

tools, but similar to SeqScreen’s function-based characterization, indicating the advan-

tages of annotating by pathogenic function. SeqScreen provides an advantage in that it

also reports the most likely taxonomic assignments and protein-specific functional in-

formation for each sequence, including GO terms and FunSoCs, to accurately identify

pathogenic sequences in each sequence without relying solely on taxonomic markers.

Inspection of the FunSoC lookup table indicates that SeqScreen preserves FunSoC la-

bels even when the proteins are distantly related (up to 40% sequence similarity), as

seen in the C. botulinum experiment. Hence, the inference of FunSoC annotations from

GO terms can be useful for discerning novel pathogens as they are not limited to spe-

cific taxonomic labels, but on learning latent features that connect similar pathogenic

makers. SeqScreen also provides a more detailed framework beyond species or strain-

level taxonomic classifications to aid the user in interpreting the pathogenicity potential

of a query sequence, including exact protein hits, GO terms, multiple likely taxonomic

labels with confidence scores, and FunSoC assignments. Further, from our experiment

on metatranscriptomic PBMC samples [56], SeqScreen was able to identify reads from

SARS-CoV-2 that were missed in original study where the authors did not find SARS-

CoV-2 viral RNA in PBMC samples of COVID-19 patients. This underlines SeqScreen’s

sensitivity and advantage over other approaches in clinical monitoring, even in the

presence of an uncharacterized emerging pathogen.

The task of mapping biological (e.g., functional annotations) and textual features

(e.g., keywords and abstract metadata) to these FunSoCs is non-trivial for three reasons.

The first concerns identifying from the literature a sufficiently large training set of se-

quences associated with each FunSoC. Second, variability in annotation across subject

matter experts and inconsistencies in database annotations often makes it challenging

to incorporate relevant features. Third, the amount of labeled data available per Fun-

SoC is disproportionate which makes accurate multi-label and multi-class classification

difficult. Also, the positive labels are far fewer when compared to the negative labels

making the accurate prediction of positive labels non-trivial due to class imbalance.

One known limitation of SeqScreen is that it heavily depends on annotated sequences

for identification of SoCs. As of April 2021 (UniProt release 2021_02), there are 1.5

million proteins with evidence at the protein or transcript level (less than 0.75%), with

64 million proteins with functions inferred from homology and over 212 million pro-

teins total. Through several years of curating, our team was able to annotate thousands

of proteins specific to pathogenic function, augmenting information contained in Uni-

Prot, and enabling robust pathogenic sequence screening of sequences of high concern.

However, coordinated community efforts are needed to improve annotation quality of

proteins in these key databases. We also note that while we have shown SeqScreen to

be an accurate pathogen detection tool, explicitly identifying and labelling pathogens is

not possible with only FunSoC information, as seen in Fig. 4; the presence of genes as-

sociated with the FunSoC annotations must be considered when interpreting results.

SeqScreen identifies functions of sequences of concern (FunSoCs) but stops short of
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performing pathogen identification. It was designed to characterize individual DNA se-

quences. In future work, we aim to extend our FunSoC-based machine learning (ML)

framework towards pathogen identification by analyzing sequences at the genome level.

Finally, while SeqScreen can accurately screen oligonucleotides and short DNA se-

quences for FunSoCs, large metagenome-scale pathogen analysis is still an open challenge.

Currently, while SeqScreen can accurately and sensitively annotate sequences, it requires

substantial compute and memory requirements to scale to large metagenomic datasets

(Fig. S5). To address this, one possible solution is to use a read or database subsampling

method such as RACE [64]. In contrast to random sampling methods, methods like RACE

employ diversity sampling using techniques like Locality Sensitive Hashing (LSH) to only

discard reads that are similar to ones already present in the sample. This strategy may be

able to preserve the full complement of taxonomic and functional diversity while drastic-

ally reducing runtime. It is also important to note that while SeqScreen can accurately

and sensitively characterize individual reads, it does not generate clinically actionable re-

ports with respect to pathogen presence/absence. We leave as future work leveraging the

SeqScreen output into clinically actionable pathogen presence or absence calls, in tune

with previous efforts in this area including laboratory validation and clinical samples [65].

Conclusions
SeqScreen is a novel, comprehensive sequence characterization platform that can be

used for synthetic DNA screening and pathogen detection. It uses a multimodal ap-

proach combining conventional alignment-based tools, machine learning, and expert

sequence curation to produce a new paradigm for novel pathogen detection tools,

which is beneficial to both synthetic DNA manufacturers and microbiome scientists

alike. SeqScreen is the first open-source, modular framework for transparent and col-

laborative research to improve DNA screening practices beyond simple screens against

BSAT agents and toxins.

Methods
Pipeline implementation

The SeqScreen pipeline is implemented as a modular architecture combining various

individual workflows for taxonomic and functional characterization as well as identifi-

cation of Functions of Sequences of Concern (FunSoCs) in short DNA sequences. The

pipeline is implemented using Nextflow for scalable and reproducible deployment and

the scripts are written in Perl and Python. The five main workflows available as part of

SeqScreen are (i) initialization (fasta verification), (ii) SeqMapper (Identification of

BSAT agents), (iii) protein and taxonomic identification, (iv) functional annotation (v),

and FunSoC identification and SeqScreen report generation. Further information on

databases, dependencies, and parameters can be found at GitLab: https://gitlab.com/

treangenlab/seqscreen/-/wikis/home. The modules used depend on the mode (default

or sensitive) that SeqScreen is run. In the slower sensitive mode, BLAST(N/X)

approaches are used to get an accurate protein and taxonomic identification and func-

tional annotations. In contrast, default mode is faster as it uses DIAMOND (--evalue

10 –block-size 200 –more-sensitive) for protein identification. The taxonomic classifi-

cation workflow in this mode combines both centrifuge and DIAMOND results. In
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addition to different modes, SeqScreen also has optional modules like HMMER which

can be activated with a flag (--hmmscan) which runs the sequence against the Pfam

HMMs. To increase the efficiency of analysis, SeqScreen also supports multithreading

as well as SLURM execution (--slurm) for runs on High Performance Computing

(HPC) nodes. FunSoCs are assigned to sequences by transferring labels from protein

hits. The output includes a report in TSV format that captures the taxonomic and

functional as well as FunSoC annotations for each read in the sample. SeqScreen also

provides a HTML view of the FunSoCs for each of the sequences in the sample with

additional filters for users to view and select sequences and/or FunSoCs of interest.

The version (1.4.11) and source code used in the manuscript can be found at Zenodo

[66]. More information on databases, dependencies and parameters can be found on

the SeqScreen source-code repository [67].

Functional benchmarking

Data for the functional benchmarking was downloaded from the CAFA website

(https://www.biofunctionprediction.org/cafa/). The CAFA 3 [68] training data was

downloaded from the website (https://www.biofunctionprediction.org/cafa-targets/

CAFA3_training_data.tgz). From the training set, a subset of 250 proteins having ap-

propriate lengths (at least 200 aa) were chosen for the benchmarking. A set of (250)

proteins of sub-lengths 34 aa, 50 aa, 67 aa, and 80 aa was derived from this set of pro-

teins for sub-lengths benchmarking. To create the sub-lengths for the respective pro-

teins, we randomly selected a starting residue from each of the 250 proteins and

considered the stretch of residues up to the desired lengths as the sub-protein. The

proteins were then run through each of the tools: PANNZER 2 [69], eggNOG-mapper

[70], and DeepGOPlus [71]. Further details about the dataset, tools, and commands

and databases the tools were run with are shown in the Supplementary Data SD2.1 and

Supplementary Table S7.

Taxonomic benchmarking

Seven simulated datasets used in previous tool benchmarking and comparison studies

were considered for benchmarking [72, 73]. These reflected characterized real metagen-

omes found in various environments like human (e.g., buccal, gut) and in the natural

or built environment (e.g., city parks/medians, houses, soil, subway), using the same

methodology. All reads were 100-bp (Illumina) and simulated using ART [74] at 30X

coverage and post-processed to remove ambiguously mapped reads at the species levels

using MEGAN [75]. The reads thus obtained map unambiguously to a single species in

the RefSeq database. SeqScreen was compared to several popular metagenomic classi-

fiers namely, Kraken [76], Kraken2 [77], KrakenUniq [78], Centrifuge [79], MetaOthello

[80], and Kaiju [81]. SeqScreen’s performance on taxonomy and additional information

can be found in Supplementary Data SD2.2 and Table S7.

Ensemble machine learning for FunSoC prediction

SeqScreen combines functional and taxonomic data for pathogen detection. SeqScreen as-

signs FunSoCs to query sequences, providing information on the role each sequence likely

plays in microbial pathogenesis or countermeasure resistance (e.g., antibiotic resistance).
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Sequences of concern were identified primarily through literature review. Curators devel-

oped queries to infer FunSoCs from features such as GO annotations and other UniProt

fields to obtain sequence sets for each FunSoC for SeqScreen training and testing. Exam-

ples of these UniProt queries are provided at https://osf.io/tdwnb/ [82]. After initial for-

mulation with UniProt queries, the biocurator FunSoC annotations were checked through

manual literature reviews to maximize the number of sequences specific to a FunSoC

category while limiting false positives. The biocurated set of training data can be found in

Supplementary Data SD3. An updated database of SeqScreen biocurated FunSoCs is

maintained at https://osf.io/8apv3/ [83]. The proteins of each FunSoC were then used as a

training set. The number of verified sequences for each FunSoC category ranged from

4,722 for disable organ to 24 for counter immunoglobulin. Since these included some se-

quences with annotation scores less than 3, we later pruned these in the preprocessing

step to get uniformly high-quality labeled training data. We used these sequences as the

training dataset for our machine learning models to capture underlying mappings be-

tween the sequence features and FunSoCs. Each of the curated proteins is assigned a bin-

ary label indicating the presence/absence of each of the 32 FunSoCs. This can be

visualized as a matrix M where an entry mij marked as 1 represents that Proteini is anno-

tated as having FunSoCj, or in other words Proteini is positively labeled for FunSoCj. On

the contrary, mij marked as 0 means that Proteini does not belong to FunSoCj and is nega-

tively labeled for that FunSoC. Every sequence of the collected set of labeled proteins is

positively labeled for at least one FunSoC.

Dataset curation and preprocessing

To build a training and testing dataset for our models, proteins were obtained that

were not positively associated with each FunSoC. This was done to avoid tagging

every sequence analyzed by SeqScreen with a particular FunSoC. The great major-

ity of biological sequences are benign, so we decided to append the set of curated

proteins with a selected set of proteins from SwissProt and labeled them with 0’s

for each FunSoC. This forced the model to learn it could neglect assigning Fun-

SoCs to proteins. Further, these proteins were only selected if they had an annota-

tion score greater than 3, to control for the quality of annotation. Once this set of

proteins and their respective negative labels were added to the initial list of curated

proteins, we extracted relevant features from each of the proteins to be included as

features. GO annotations and keywords for each protein were extracted from Uni-

Prot. Once extracted, a large binary feature matrix F was constructed for the total

set of proteins. The rows represent each protein in the dataset and the columns

represent all possible features of the dataset, (i.e., a union of all the individual fea-

tures of each protein in the dataset). Each entry fij in the feature matrix F, is a

binary value representing presence or absence of a particular featurej for a proteini.

Apart from controlling for annotation scores, to further help reduce the effect of

noise and non-specific keywords or GO terms from our datasets, we decided to

preprocess the feature set to exclude any sparse features that occurred in less than

10 proteins. This reduced the total number of features from over 50k to around

16k features. The feature matrix had a size of 98,283 samples and 16,071 after pre-

processing. This was the final matrix for downstream machine learning tasks.
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Machine learning models

The challenge of assigning FunSoCs to proteins is a multi-class, multi-label classifica-

tion problem where a given protein can be assigned to any (or none) of 32 different

FunSoCs. These are often independent of one another and can be learned individually.

Multi-class and multi-label classifications are hard as often these classes have different

amounts of training data available (Table S8). This might make certain labels harder to

predict than others and result in a poor classifier that is biased to certain well curated

class labels. This also makes accuracy a tricky metric to handle given the imbalance in

data labels. From our feature matrix we observed that the number of proteins labeled

negatively (i.e., 0) for all FunSoCs greatly outnumbered those with at least one positive

label. Though this mirrors the label imbalance in real data, it poses a challenge in learn-

ing tasks as the models tend to learn features only from the majority class thereby

achieving high accuracy by classifying everything as negative. To address this, we inves-

tigate incorporating class weights and sampling techniques into our models. Another

challenge often encountered in such tasks is overfitting. By choosing a relatively high

number of examples (25% of the training), we carefully monitored the validation and

training accuracy to ensure they were similar. We also used regularization techniques

such as L1-regularization (Support Vector) and dropout (Neural Networks) to balance

weights and reduce overfitting in our models.

Recently, the explainability of predictive models for machine learning has been em-

phasized in microbiome research [84, 85]. To follow this idea of producing explainable

results, we used feature selection or two-step modular approaches that aided the inter-

pretability of the models. Though we analyzed 11 models for our FunSoC prediction

task, here, we describe the top three best-scoring approaches combined with a majority

voting scheme. Figure 3 illustrates the architectures and parameters of the top three

models as part of the ensemble classifier. The first is a two-stage modular pipeline that

uses neural networks. For the purposes of this discussion, we describe stage 1 as the de-

tection stage and stage 2 as the classification stage. In the detection stage, we use a

multi-layer perceptron with one hidden layer consisting of 200 neurons. The network

has a binary output which encodes whether the input sequence is associated with at

least one FunSoC. Proteins without FunSoCs are eliminated from downstream classifi-

cation. Proteins that have at least one FunSoC reach the classification stage which de-

tects FunSoCs associated with a sequence in a multi-label fashion. The architecture of

the detection stage consists of one hidden layer with 500 neurons. The output layer

contains one neuron per FunSoC that outputs a binary label. For both detection and

classification, all internal layers use ReLU activation while the output layers have sig-

moid classification. The binary cross-entropy loss function is shown in Eq. 1 where y (0

or 1) is the class label and p is the predicted probability that the observation belongs to

class y. This is used in conjunction with the Adam optimizer [86], and the models also

incorporate a dropout layer with rate 0.2.

Binary cross-entropy loss: L = − ( y log(p) + (1 − y) log(1 − p) ) (1)

The second model is analogous to the two-stage neural network pipeline except for

two major differences. First, the neural networks are replaced with Linear-Support Vec-

tor Classifiers (LinearSVC). The LinearSVCs are tuned with training label weights to

account for class imbalance and have a binary output for detecting the presence of at

least one FunSoC. Second, the classification architecture now consists of different
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LinearSVCs, one for each FunSoC. Each classification LinearSVC has a binary output

indicating the presence of that FunSoC. Both the detection and classification Line-

arSVCs uses squared hinge loss with L1 penalty (shown in Eq. 2, where Yi is the output

label, Xi is the feature vector of sample i and β is the vector of weights, n is the number

of samples and p is the number of features), a c-value (C) of 0.01 and 4000 iterations

for convergence during training.

Cost function: L ¼ C
Pn

i¼1
ðY i maxð0; 1−βTXiÞ þ ð1−Y iÞ maxð0; 1þ βTXiÞÞ2 þ

PP

j¼1
jβ jj ð2Þ

The third best performing model deviates from the two-stage detection and clas-

sification pipeline and instead incorporates a feature detection step prior to classifi-

cation to help with interpretability. The model is a combination of LinearSVCs and

neural networks and uses one of each for each FunSoC. In the first step, Line-

arSVCs are used as a feature selection tool to extract important features for each

FunSoC. Since the L1 penalty was used for classification, it assigns a weight of zero

to features that are not discriminative towards the FunSoC classification. The Line-

arSVCs were also augmented with class weights to make the feature selection sen-

sitive to the minority positive labels in each FunSoC. The LinearSVC used an L1

penalty, a c-value of 0.01 and 3000 iterations. Once the features are selected, this

new feature set is fed as an input to the neural network for classification. The

neural network has one hidden layer with 100 neurons and uses ReLU activation

for internal layers and sigmoid activation for the output layer, a dropout layer with

rate 0.2 and binary cross-entropy loss. To further lessen the effects of class imbal-

ance, after feature selection random oversampling of the minority class was done

prior to training the neural network to balance the number of positive and nega-

tive samples in the training set.

The LinearSVCs for all the models were directly incorporated using their scikit-learn

[87] implementations. To implement the neural networks, the Keras [88] package was

used. Parameter tuning was carried out by varying the c-value (C) and testing using dif-

ferent kernels for other non-linear SVCs whereas the number of layers, depth of the

neural network, activations, dropout rate, and including class weights was tested for the

neural network model. The parameters reported above were consistently the best per-

forming across the parameter space while maintaining a relatively simple architecture

and were chosen as the final parameters.

To combine the strengths of all the classifiers discussed above, we also analyzed an

additional model that employed an ensemble majority vote on the outputs of the

three models. The ensemble classifier was developed after visualizing performances of

the three individual classifiers on hard-to-classify FunSoCs like develop in host, nonvi-

ral invasion, toxin synthase, and bacterial counter signaling to try and balance the dis-

parity between precision and recall. To have a model that does not suffer from sub-

optimal performances on multiple FunSoCs we reasoned that a majority vote classifier

would be a better overarching model for a consistent performance across FunSoCs

for downstream applications, especially pathogen detection. Further, another import-

ant advantage of ensemble methods is its robustness and ability to reduce variance in

the individual underlying models and help with prediction consistency [89, 90]. The

scripts used for machine learning are available in Supplementary Data SD4.
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A primary focus during the development of the ML models was to make the feature

selection and classification strategies as explainable as possible instead of applying it as

“black box” techniques. The interpretability of the models was also imperative for itera-

tive curation where these features and labels could be passed on to the biocurators to

potentially curate and refine more examples of proteins belonging to the respective

FunSoCs. These refined labels were then fed back into the ML models to obtain the

final FunSoC assignments. To minimize variability of our ML results and make SeqSc-

reen analysis more reproducible, ML-based predictions are pre-computed on all of Uni-

Prot and is included in the SeqScreen database as a lookup file. This allows users to

explicitly view and check the FunSoCs associated with individual UniProt hits and cor-

roborate their biological accuracy.

Pathogen sequence identification

In this work, we provide motivating experiments that underlie an important application

of SeqScreen towards pathogen detection. We run SeqScreen on isolate reads obtained

from four pairs of well characterized but hard-to-distinguish pathogens namely E. coli

K-12 MG1655 and pathogenic E. coli O157:H7, as well as distinguishing C. botulinum

from C. sporogenes, and S. dysgalactiae from S. pyogenes in addition to identifying the

commensals S. pyogenes and L. gasseri. To carry out accurate FunSoC annotations, the

reads were preprocessed to remove low quality bases and adapters using Trimmomatic

[91]. In addition to evaluating SeqScreen, we also ran the set of bacterial reads through

Mash dist, Sourmash, PathoScope, Kraken2, KrakenUniq, MetaPhlAn3, and Kaiju.

These tools (except PathoScope) were run as part of the MetScale v1.5 pipeline

(https://github.com/signaturescience/metscale) using default parameters and a quality

trim threshold of 30 with Trimmomatic, k value of 51 with Sourmash, and all other

MetScale v1.5 default parameters, tool containers, and databases for analyzing paired-

end Illumina reads. We evaluated the results on their respective complete databases as

well as a modified version of their database (for Mash dist and PathoScope) in which

the entries corresponding to the query genome were removed to simulate a novel or

emerging pathogen. In case of E. coli, the respective strains were removed, while in the

case of the other bacteria, the species (and all strains) were omitted from the database.

To facilitate manipulating the Mash database, we created the Mash database from a

new version of RefSeq (downloaded November 2020, Release 202). The RefSeq ge-

nomes were downloaded using the tool ncbi-genome-download available on conda

(https://github.com/kblin/ncbi-genome-download). The genomes downloaded included

complete genomes as well as chromosomal sequences (--assembly-levels complete,chro-

mosome parameter)

Sequences from peripheral blood mononuclear cells in COVID-19 patients

Sequencing data from three samples of healthy individuals (CRR125445, CRR125456,

CRR119890) and three samples of COVID-19 samples (CRR119891, CRR119892,

CRR119893) from the study Xiong et al. [56] were considered for our analysis. The

fastq files were converted to fasta before submission to SeqScreen for processing.

After preprocessing reads through quality control and human read removal (see de-

tailed methods here: https://osf.io/7nrd3/wiki/home/), each sample was passed through
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SeqScreen v1.2 to obtain the respective set of proteins, FunSoCs, and GO terms out-

puts. GO terms were parsed with the CoV-IRT-Micro scripts (https://github.com/

AstrobioMike/CoV-IRT-Micro), and GO terms were identified that were unique to

both the COVID-19 patient samples and viral proteins. The SeqScreen tsv final report

was used to connect proteins to GO terms and find all coronavirus reads in the sam-

ples. HUMAnN2 was run on the COVID-19 samples to obtain enriched genes and

pathways to compare SeqScreen against.
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