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Abstract

Based on a deep generative model of variational graph autoencoder (VGAE), we
develop a new method, DeepLinc (deep learning framework for Landscapes of
Interacting Cells), for the de novo reconstruction of cell interaction networks from
single-cell spatial transcriptomic data. DeepLinc demonstrates high efficiency in
learning from imperfect and incomplete spatial transcriptome data, filtering false
interactions, and imputing missing distal and proximal interactions. The latent
representations learned by DeepLinc are also used for inferring the signature genes
contributing to the cell interaction landscapes, and for reclustering the cells based
on the spatially coded cell heterogeneity in complex tissues at single-cell resolution.

Keywords: Single-cell spatial transcriptome, Cell interaction, Variational graph
autoencoder, VGAE, Deep learning

Background
The physiological functions of multicellular tissues are not only defined by heteroge-

neous cells forming these tissues but are also highly dependent on complicated local

and distal cell-cell interactions [1, 2]. Furthermore, it is increasingly recognized that

many of the intracellular activities of each single cell are closely related to its interac-

tions with the multicellular context [3]. The intrinsic gene expression profile of each

single cell is both a consequence and a defining factor of the complicated cell inter-

action network in physiological contexts [4, 5].

Recent advances in various spatially resolved transcriptome profiling techniques have

made it possible to measure gene expression profiles at single-cell or subcellular reso-

lution while simultaneously retaining information on the spatial locations of cells.

These techniques include in situ sequencing methods, such as FISSEQ [6] and STAR-

map [7]; imaging methods based on fluorescence in situ hybridization (FISH), such as

MERFISH [8], seqFISH [9], SPOTs [10], and osmFISH [11]; spatial barcoding tech-

niques, such as Slide-seq [12], HDST [13], and DBiT-seq [14]; and laser capture micro-

dissection (LCM) combined with flow cytometry methods, such as GEO-seq [15] and
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TSCS [16]. Due to different experimental designs, the coverage of these transcriptome

profiles ranges from tens to thousands of genes.

Spatially resolved transcriptome profiles provide insightful resources for understand-

ing the cellular organization patterns in multiple types of tissues and organs, such as

the central nervous system [13, 17, 18], developing human heart [19], and tumors [13,

20]. However, these snapshots of tissue sections are still incomplete observations of the

multicellular organization and the potential local interactions between geometrically

adjacent cells. It remains a major challenge to infer full cell interaction networks, in-

cluding distal cell-cell interactions, which are potentially mediated by a broad range of

different mechanisms. Various methods are currently available for spatially resolving

predefined cell types with bulk RNA-seq or scRNA-seq data and for inferring cell-cell

interactions based on known ligand-receptor pairs or other predefined features and ref-

erences [21–25]. However, methods for the de novo reconstruction of cell interaction

networks in an unbiased and more comprehensive manner by taking full advantage of

spatial transcriptome profiles at single-cell resolution are still lacking.

In addition, due to various technical limitations, spatially resolved single-cell tran-

scriptome profiles suffer to different extents from data imperfections such as too many

missing values, batch effects, biased and low coverage, and high noise levels [26, 27],

which necessitate methods with a sophisticated design for mining cell-cell interactions

from such imperfect and incomplete snapshots. Ideally, such methods should be cap-

able of reducing the noise of spatial transcriptome data, reconstructing existing interac-

tions, restoring missing interactions (including distal interconnections), and mining

latent features related to cell-cell interaction landscapes.

The nonlinear, high-dimensional, sparse and multimodal features of single-cell spatial

transcriptome data make it a proper and feasible target of the deep learning strategy.

Multiple deep learning models have been applied for various tasks with single-cell

spatial transcriptome data, for example, integration of histology to define spatial do-

mains and predict local gene expressions with convolutional networks [28, 29], imput-

ation of spatial transcriptome profiles by graph-regularized tensor completion [30],

inference of gene-gene interactions with convolutional networks [31], and integration

of sc/snRNA-seq data with nonconvex optimization to resolve in situ cell clusters [32].

These methods serve as powerful frameworks for learning from multimodal data and

resolving the spatial cell and gene organizations in tissues [33]. However, none of them

were designed to directly uncover the cell-cell interactions that shape the tissue

organization and define tissue physiological functions.

Deep generative models such as generative adversarial networks (GANs) and vari-

ational autoencoders (VAEs) have been proven to be powerful tools for leveraging la-

tent features and modeling high-dimensional scRNA-seq data for various tasks, such as

denoising [34], clustering [35], dimension reduction [36], and missing value imputation

[37]. In the present study, we adapted another type of deep generative model, vari-

ational graph autoencoders (VGAEs) [38], for encoding cell-cell interaction features

from spatial single-cell transcriptome data and eventually regenerating full cell-cell

interaction landscapes. VGAE is a recently developed state-of-the-art machine learning

algorithm in which the core of variational autoencoders has been adapted [39] and ex-

tended for graph representation learning [40]. Our method, referred to as DeepLinc

(deep learning framework for landscapes of interacting cells), uses the VGAE model to
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integrate and learn from the two dimensions of information (i.e., cell interactions and

gene expression profiles) during the encoding phase. Furthermore, the adversarial strat-

egy was applied to force the encoder to explicitly approximate the Gaussian distribution

[41]. The decoding phase then uses the latent representation learned during encoding

to reconstruct a cell-cell interaction graph.

Specifically, DeepLinc assumes that the neighboring cells should be much more likely

to have some types of interactions than randomly picked non-neighboring cells that are

far away from each other. Therefore, for a particular tissue region, the neighboring cell

pairs comprise an incomplete and potentially noisy observation of a subset of the full

cell-cell interaction network. The main task of DeepLinc is to learn from this subset of

cell-cell interactions, extract the underlying features of single-cell transcriptome pro-

files, and finally, regenerate a more unbiased and complete landscape of cell-cell inter-

actions, which would include both proximal and distal interactions. To the best of our

knowledge, DeepLinc is the first framework of its kind to apply a deep generative

model for recovering cell interactions from spatial single-cell transcriptomic data.

Based on a wide array of tests with real and simulated data, DeepLinc demonstrated

its high efficiency in learning from imperfect and incomplete spatial transcriptome data,

filtering false interactions, and inferring missing distal and proximal interactions. The

reconstructed full networks of cell interactions exhibited high physiological relevance.

Such de novo reconstructions of cell interaction networks do not depend on prior

knowledge of cell types, ligand-receptor pairs, or cell interaction mechanisms. Further-

more, the interrogation of the pipeline revealed signature genes that are potentially in-

volved in shaping cell interaction landscapes. Finally, the reconstructed cell interaction

landscapes, which are presumably more complete than the original snapshots of cell

spatial organization, categorized hub cells and partitioned cells into further subclusters

based on both the features of cell interaction landscapes and transcriptome profiles.

These new insights could greatly aid in elucidating the biological relevance and poten-

tial machinery underlying cell organization patterns in physiological contexts. In sum-

mary, as a specially designed method based on deep learning, DeepLinc is of unique

value for mining the latent features of cell interaction landscapes and, thus, for taking

full advantage of previous and future spatial transcriptome profiling data at single-cell

resolution.

Results
The DeepLinc model and the datasets used for testing

We assume that in a solid tissue the neighboring cells with direct contacts should be

much more likely to have some types of interactions than randomly picked non-

neighboring cells that are far away from each other. It is well recognized that single-cell

transcriptome profiles represent both the driving force and consequences of cell-cell

interaction landscapes [4, 5]. DeepLinc combines the VGAE and an adversarial network

to learn from single-cell spatial transcriptome profiles and generate a latent distribution

capturing the intrinsic associations between cell-cell interactions and the gene expres-

sion patterns of single cells (Fig. 1A).

Specifically, adjacent cell pairs defined simply by the geometric closeness between

single cells were summarized as an undirected adjacency network in which the nodes
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represent the cells and the edges indicate the neighboring cell pairs. This network is

represented by cell adjacency matrix A. The single-cell gene expression profiles, as fea-

tures of the nodes in A, are presented as the matrix X (Fig. 1A). The graph-structured

data (A) and the node features (X) are fed into the VGAE consisting of two graph con-

volutional layers. As the output of this variational graph convolutional network

(VGCN) encoder, the latent representation (H) captures the characteristics of a single

cell itself and its neighboring cells. In addition, H is further constrained by an adversar-

ial regularization module from a prior Gaussian distribution (Fig. 1A). Next, with the

information learned above, the decoder performs a dot product operation on H to gen-

erate a new adjacency matrix (A’) presenting the reconstructed cell-cell interaction net-

work (Fig. 1A). On the other hand, the vectors of H, which represent the latent

information of cell interaction landscapes and gene expression profiles, could be ex-

tracted for the visualization and clustering of single cells.

DeepLinc was applied to 4 published spatial transcriptomic datasets obtained from

the mouse visual cortex [17], the preoptic region of the mouse hypothalamus [18], the

mouse olfactory bulb [13], and human breast cancer [13] (Fig. 1B). Note that the spatial

Fig. 1 Overview of DeepLinc and the datasets. A Schematic description of the DeepLinc pipeline. DeepLinc
consists of an encoder, a decoder, and an adversarial regularization module in the VGAE framework. The
encoder is a two-layer graph convolutional network (GCN) and the decoder is a Sigmoid function for the
dot product of latent variables. The single-cell transcriptome profile and the cell adjacency matrix derived
from a single-cell spatial transcriptome dataset serve as inputs of DeepLinc. The output of DeepLinc is a
new matrix (A’) presenting the reconstructed cell-cell interaction network. In addition, DeepLinc also uses
the latent information of cell interaction landscapes and gene expression profiles for the visualization and
clustering of single cells. B Statistics of the 4 datasets used for reconstruction of cell interaction networks
by DeepLinc

Li and Yang Genome Biology          (2022) 23:124 Page 4 of 24



transcriptome profiling techniques and the sparseness of the gene expression profiles

vary greatly across these studies (Fig. 1B). In brief, the seqFISH and MERFISH datasets

show much lower gene coverage (fewer than 200 genes) than the two HDST datasets

(approximately 10,000 genes). However, the latter 2 high-throughput datasets are very

sparse, and large numbers of genes were not detected in all the single cells in these

datasets.

Modeling of cell interactions by DeepLinc and the effects of denoising

Single-cell spatial transcriptome profiles provide snapshots of cell-cell interaction land-

scapes, which are presumably just small subsets of interactions from complete cell-cell

interaction networks and usually contaminated by high levels of noise. Therefore, the

ability of DeepLinc to efficiently learn from the provided information on cell spatial

organization and single-cell transcriptome profiles, filter out noise, correctly infer latent

interactions, and eventually recover complete cell interaction landscapes is a critical

benchmark.

DeepLinc was applied to the 4 seqFISH, MERFISH, HDST olfactory bulb, and HDST

breast cancer datasets (Fig. 1B). First, cell adjacency maps were defined by assembling

the neighboring cells in the tissue sections. Specifically, the distances between each pair

of cells (Additional file 1: Fig. S1A) or between each cell and its 3 closest neighbors

(Additional file 1: Fig. S1B) were used to assess the overall distance distributions of ad-

jacent cell pairs with potential direct interactions. The distance threshold for defining

direct contacts in each tissue section was then determined based on the above distribu-

tions (Additional file 1: Fig. S1B). For each cell, only the 3 closest neighbors falling

under the distance threshold were defined as direct contacts. The union of the direct

contacts of all the cells then constituted the full adjacency matrix. DeepLinc uses neigh-

boring cells with direct contacts as the positive set for learning the transcriptome fea-

tures related to cell-cell interactions. From a general biological point of view, we think

it is reasonable to assume that in a solid tissue, most of the cells in 2-D could directly

contact with 3 or more other cells.

The edges of direct contacts were randomly divided into two groups for training

(90%) and testing (10%). The negative set for testing, which was 100 times larger than

the positive set, was composed of fake edges between two randomly picked non-

neighboring cells on the tissue section. For all of the 4 datasets, DeepLinc showed high

sensitivity and accuracy in recovering the originally annotated cell-cell interactions,

with area under the receiver operating characteristic (AUROC) ranging from 0.8 to lar-

ger than 0.9 (Fig. 2A) and false positive rate (FPR) below 5% (Additional file 1: Fig. S2).

Notably, DeepLinc modeled the cell interaction networks almost equally well with ei-

ther the highly sparse high-throughput datasets (HDST olfactory bulb and HDST

breast cancer) or the low-throughput datasets (seqFISH and MERFISH).

Next, we tested the tolerance of DeepLinc to artificial noise in the single-cell gene ex-

pression data. Specifically, different levels of random noise with Gaussian distributions

were introduced on top of the original gene expression profiles of all the cells

(Methods). As shown in Fig. 2A, performances of DeepLinc were not compromised by

fairly high levels of noise, indicating the robustness of DeepLinc to noise in gene ex-

pression data, which is critical when dealing with highly noisy single-cell spatial
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transcriptome data. However, further corruption of the data dramatically impaired the

performance of DeepLinc, illustrating the minimal gene expression profile information

needed for DeepLinc to correctly rebuild the cell interaction landscapes.

Single-cell spatial transcriptome data is largely suffering from high sparsity due to

large numbers of dropouts, especially for the high-throughput data such as HDST.

Therefore, we also generated two more noise models to simulate different types of

dropouts (Additional file 1: Fig. S3). In the first model, different percentages of genes

were randomly removed from the expression dataset to mimic dropouts of genes, and

in the second model, different percentages of the non-zero values were randomly

picked and forced to be zero, which mimics dropouts of individual datapoints in single

cells. DeepLinc showed high tolerance to the noise from both types of dropouts (Add-

itional file 1: Fig. S3). In general, the performances of DeepLinc were still fairly good

with the dropout ratio of 50%. As well expected, more severe dropouts would strongly

reduce the accuracy of DeepLinc. In summary, these tests confirm the advantage of

DeepLinc in extracting the latent information of cell-cell interactions from the highly

sparse and noisy spatial transcriptome profiles.

Fig. 2 Performance of DeepLinc in reconstructing cell interaction networks. A The levels of AUROC at different
training epochs of DeepLinc. The original data or data with different levels of random noise in the gene
expression profiles were used. Larger σ values would result in higher levels of random noise in general (see
“Methods” for details). B The AUROCs between the randomly removed real edges and originally nonexistent
edges. Different proportions of the edges in the original cell adjacency maps were randomly picked and
discarded. Then, the remaining edges were used for training the DeepLinc model. This process was repeated
30 times for each proportion of the missing edges to draw a boxplot. C The AUROCs between mixed-in fake
edges and pre-existing real edges. Different numbers (1- to 10-fold of the size of the original cell adjacency
map) of randomly generated fake edges were added into the original cell adjacency map, which was then fed
to DeepLinc. This process was repeated 30 times for each level of fake edges to draw a boxplot
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DeepLinc also demonstrated relatively stable and high levels of fitting (AUC 85~95%)

with different sizes of tissue sections that were randomly picked from the original

frame of the tissue sections and therefore included fewer cells than the original data

(Additional file 1: Fig. S4). The performance of DeepLinc was still fairly good with small

tissue sections containing as few as 500 cells, indicating the efficient learning capability

of DeepLinc. This is a useful feature for dissecting the cell organization of ultrafine tis-

sue sections.

We also tested DeepLinc for its capability to recover cell-cell interaction landscapes

with different proportions of missing interactions. Specifically, certain percentages of

the existing edges were randomly removed from the original cell-cell interaction net-

work. The remaining network and the single-cell transcriptome data were then used

for training the DeepLinc model. Ultimately, AUROC values were calculated to evalu-

ate the performance of DeepLinc in correctly distinguishing the arbitrarily removed in-

teractions (positives) and the originally nonexistent interactions (negatives). As shown

in Fig. 2B, DeepLinc exhibited high precision in imputing the missing positive interac-

tions. For example, even when half of the interactions were lost in the input, DeepLinc

still managed to recover these missing edges with 65–75% precision (Fig. 2B). This indi-

cates that DeepLinc can indeed efficiently learn from limited and incomplete networks

of cell interactions to reinstate missing edges. Such an imputation and prediction cap-

ability is critical for applications of DeepLinc for the inference of full cell interaction

landscapes from the incomplete snapshots generated from spatially resolved single-cell

transcriptome profiles.

In addition to the missing interactions (i.e., false negatives), false annotations of cell-

cell interactions (i.e., false positives) that are fed to DeepLinc are another major issue

to address. To test the robustness of DeepLinc in correctly recovering cell interactions

with random false interactions (i.e., the denoising capability), we added fake edges be-

tween randomly picked cell pairs into the original cell interaction network. Taking such

highly noisy data as the input, DeepLinc can still nicely distinguish the originally non-

existent edges and the real pre-existing edges (Fig. 2C). Even when fake edges were arti-

ficially added in numbers as high as several-fold the original number of cell

interactions, DeepLinc still managed to filter out the extensive noise and recover the

predefined cell interactions with fairly good precision (Fig. 2C). This indicates the high

tolerance of DeepLinc to random false interactions and its efficient denoising effects

Reconstructed cell-cell interaction landscapes

The landscapes of the reconstructed and the original cell-cell interaction networks were

interrogated with a permutation test as described previously [21, 24, 42] to evaluate the

enrichment or depletion of certain types of interactions in a network by comparison

with randomly assembled networks with similar scales. As shown in Fig. 3A–D, the

cell-cell interaction landscapes reconstructed by DeepLinc exhibited substantial differ-

ences from the original cell adjacency networks composed of proximal cell pairs with

direct contacts.

For the visual cortex data of seqFISH, relative to the original network, the recon-

structed network reinforced the interactions between the astrocytes and the two types

of neurons (glutamatergic and GABAergic) (Fig. 3A). Interactions between epithelial
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cells and almost all the other cell types were significantly enriched in the reconstructed

network. On the other hand, despite the high count, the interactions among the gluta-

matergic neurons appeared depleted when compared to random networks (Fig. 3A),

whereas such interactions were highly enriched in the original cell adjacency network.

Therefore, the reconstructed network indicates high selectivity of the interactions

among the excitatory glutamatergic neurons.

For the MERFISH data of the mouse hypothalamic preoptic region, the reconstructed

network strengthened the interactions within endothelial cells and between endothelial

cells and astrocytes (Fig. 3B), similar to the observations based on the mouse visual cor-

tex data discussed above. However, unlike the visual cortex, the mouse hypothalamic

preoptic region showed enriched interactions between excitatory (mainly glutamatergic)

and inhibitory (GABAergic) neurons in the reconstructed network. In addition, the in-

teractions within excitatory neurons were strongly enriched (Fig. 3B), whereas the op-

posite observation was obtained from the visual cortex data (Fig. 3A). Therefore, the

above results revealed both common and tissue-specific cell interaction patterns in the

two types of CNS systems. Finally, unlike the original cell adjacency network, the re-

constructed network of the mouse hypothalamic preoptic region showed strong

Fig. 3 Landscapes of cell interactions reconstructed by DeepLinc. A–D Evaluation of the over- or under-
representation of particular types of interactions in the original cell adjacency networks (left) and in the
reconstructed cell interaction networks (right) with the 4 datasets. The results are represented as dot
heatmaps showing the interaction relationships between cell types. Dot size represents the connectivity
between two cell types, calculated by the number of connections divided by the product of the cell
numbers. The color of the dots represents significance (−log10P) determined by comparing with the
permutation test, in which positive values indicate enrichment and negative values indicate depletion. E
Original and reconstructed cell interaction networks in a representative tissue section from MERFISH dataset
of hypothalamic preoptic area. The red box indicates a microglia cell with distal interactions with many
other cells in the reconstructed networks
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enrichment according to the interactions among the mature oligodendrocytes, the in-

teractions between microglia and many other cells, and the interactions between peri-

cytes and other cells (Fig. 3B).

The cell interaction network reconstructed from HDST data of the olfactory bulb

showed more enriched interactions between oligodendrocytes and most of the other

cell types, whereas the interactions between immune cells and other cells were reduced

relative to the random networks (Fig. 3C). In addition, the interactions among vascular

cells and glial cells (peripheral glia, astrocytes, and ependymal cells) were specifically in-

tensified in the reconstructed network (Fig. 3C), indicating strong internal interactions

within the complex blood–brain barrier composed of these cells [43–45].

Finally, for the breast cancer tissue profile data obtained with HDST, the recon-

structed network exhibited strong interactions between lymphocytes (T cells and B

cells) and almost all the other cell types (Fig. 3D). In contrast, the interactions between

stromal cells and endothelial cells were enriched in the original network but depleted

in the reconstructed network, suggesting high specificity of such interactions (Fig. 3D).

In summary, by learning from the cell adjacency maps defined simply by the spatial

organization of cells, which are incomplete, sparse, and noisy, DeepLinc performs the

imputation of missing interactions and the filtration of potentially false connections.

Ultimately, the reconstructed interaction networks are significantly enlarged and

reshaped, which should recapitulate the cell interaction landscapes in a more compre-

hensive and precise manner.

As shown by the local regions from different tissues in Fig. 3E and Additional file 1:

Fig. S5 as examples, small numbers of the originally defined direct cell interactions

were removed, and new interactions were added by DeepLinc. The reconstructed net-

works had more hierarchical and modularized structures. Interestingly, in the two ex-

amples of visual cortex and hypothalamic preoptic area, microglia showed dense

connections with many other cells, including neurons, astrocytes, endothelial cells, and

oligodendrocytes, thereby serving as hub cells (Fig. 3E, Additional file 1: Fig. S5C),

which nicely recapitulated the wide-ranging functions of microglia and their well-

acknowledged interactions with other cell types in the CNS [46]. Such insight was miss-

ing in the original cell-cell interaction network.

Distal interactions in the reconstructed cell networks

The probability of cell-cell interactions predicted by DeepLinc showed slightly negative

correlations with geometric distances in general, and significant numbers of distal cell

pairs presented high probabilities of interactions (Additional file 1: Fig. S6). Such distal

interactions were missing in the original cell adjacency map, and DeepLinc demon-

strated its capability to recover cell-cell interactions that are not restricted by spatial

proximity.

The newly recovered distal interactions showed distinct patterns of participating cell

types. For example, in the seqFISH study of the mouse visual cortex, distal interactions

were highly enriched between neurons (Fig. 4A). An example is provided in Fig. 4E to

show the interactions between a glutamatergic neuron and other GABAergic neurons.

By contrast, distal interactions were depleted between endothelial cells (Fig. 4A). This

is in line with the notion that endothelial cells form a tight one-cell-thick interior
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interface in blood vessels, and it is not surprising to see a lack of distal interactions be-

tween endothelial cells. In addition, a similar depletion of distal interactions between

endothelial cells was observed in the HDST breast cancer data (Fig. 4D).

In the hypothalamic preoptic region dataset obtained with MERFISH, the newly re-

constructed distal interactions were depleted between pericytes and other cell types

(Fig. 4B) relative to the expectation based simply on chance. Indeed, embedded in the

basement membrane of blood capillaries, pericytes directly interlock and communicate

with endothelial cells [47]. Long-distance interactions between pericytes and other cell

types are indeed not expected.

Being similar to the seqFISH study of the mouse visual cortex, an enrichment of the

distal interactions between neurons was also observed in the MERFISH data of hypo-

thalamic preoptic region and HDST olfactory bulb dataset (Fig. 4B, C). In addition, in

both the hypothalamic preoptic region and the olfactory bulb, the newly reconstructed

distal interactions were depleted between neurons and glial cells (Neu-Glial in Fig. 4B,

and Neu-Epen/Astro/Per/Oligo in Fig. 4C) relative to the expectation based simply on

chance. By contrast, in the olfactory bulb, immune cells showed a broad spectrum of

long-range interactions with almost all cell types, especially with neurons, indicating

abundant nerve-immune circuits (Fig. 4C).

In the HDST breast cancer data, the newly recovered distal interactions were

enriched with interactions between epithelial and stromal cells (Fig. 4D). An example is

Fig. 4 Landscapes of distal interactions in the reconstructed cell networks. A–D Evaluation of the over- or
under-representation of particular types of distal interactions in the reconstructed cell interaction networks
with the 4 datasets. The results are represented as dot heatmaps showing the enrichment or depletion of
the distal interactions between certain cell types. The color of the dots represents significance (−log10P)
determined by comparing with the permutation test, in which positive values indicate enrichment, and
negative values indicate depletion. E–G Examples of distal interactions between a glutamatergic neuron
and GABAergic neurons (E), between an epithelial cell and stromal cells (F), and between a T cell and other
T cells (G). The proximal interactions between neighboring cells are shown as backgrounds

Li and Yang Genome Biology          (2022) 23:124 Page 10 of 24



provided in Fig. 4F to show the interactions between an epithelial cell and multiple

stromal cells. This was not surprising given the frequent reports of stromal-epithelial

cell interactions mediated by cytokines and extracellular vesicles [48–50], which confer

high potential for remote interactions [51, 52]. Similarly, T cells or B cells heavily rely

on long-range communication via cytokines, a notion reflected by the distal interac-

tions enriched among T or B cells in the reconstructed network (Fig. 4D, and an ex-

ample illustrating interactions between T cells is given in Fig. 4G). In contrast, the

long-distance interactions were depleted in interactions that are highly dependent on

direct cell contacts (for example, antigen presentation), such as the interactions be-

tween T and B cells, T cells and epithelial cells, T cells and macrophages, B cells and

epithelial cells, and B cells and macrophages (Fig. 4D).

In the HDST breast cancer data, the epithelial cells were mostly tumor cells.

Taking 4 randomly picked T cells and epithelial cells as examples, Additional file

1: Fig. S7 shows the distances between the interacting cell pairs, which were gener-

ally much shorter than those from the randomly shuffled networks. Therefore,

DeepLinc recovered the enriched interactions between T cells and tumor cells (Fig.

3D), which were strongly limited to proximal and not distal interactions (Fig. 4D,

Additional file 1: Fig. S7).

Interestingly, in contrast to epithelial cells, endothelial cells were more involved in

distal interactions with immune cells (Fig. 4D). Indeed, it has been frequently reported

that endothelial cells secrete chemokines to facilitate the transmigration and homing of

immune cells into tumor tissues [53, 54].

DeepLinc identifies signature genes shaping the cell interaction landscapes

Next, we further interrogated the DeepLinc model to infer the signature genes that play

important roles in shaping the comprehensive landscapes of cell-cell interactions. In

brief, the expression profile of a particular gene was shuffled across all the single cells,

and the new transcriptome data and the cell adjacency network were then fed to Dee-

pLinc. The AUPRC calculated from the cell network reconstructed by DeepLinc with

these modified data was then compared to the original AUPRC with the unmodified

gene expression data. The reduction, defined as the sensitivity score, indicates the sen-

sitivity of the DeepLinc model to the particular gene being shuffled and therefore serves

as an assessment of the potential contribution of the gene to the cell-cell interaction

landscape. The same procedure was performed for each gene one at a time to obtain

the sensitivity scores of all the genes (Additional file 1: Fig. S8).

The top-rated genes with the highest sensitivity scores were indeed enriched by mul-

tiple molecular and cellular processes related to cell-cell interactions (Fig. 5A–D). For

example, 205 genes (Additional file 2: Table S1) showed outstanding sensitivity scores

with the HDST breast cancer data, and these genes were involved in the processes of

cell-substrate adhesion, junction formation, and protein targeting to the membrane

(Fig. 5A, and the full list of functional categories supplied in Additional file 1: Fig.

S9A). SPATA2, which showed the highest sensitivity score (Additional file 1: Fig. S8B),

mediates the recruitment of CYLD to the LUBAC complex [55, 56], thereby playing a

crucial role in the TNFR1- and NOD2-signaling pathways. The rest of the top 10 genes

listed in Additional file 1: Fig. S8B include PKHD1 (transmembrane or secreted protein,
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involved in ciliogenesis, cell-cell and cell-matrix adhesion, and calcium ion homeosta-

sis), S100PBP (binding partner of the calcium sensor S100P, involved in cell adhesion)

[57], PSD4 (GEF for ARF6, involved in endocytosis), TRIM5 (capsid-specific restriction

factor, involved in innate immune signaling and autophagy), ADAP2 (GTPase-activat-

ing protein for ARFs, localizing to the plasma membrane, showing phospholipid bind-

ing activity and mediating TCR signaling), and CCL26 (C-C motif chemokine ligand

for CCR3).

For the other HDST high-throughput spatial transcriptome dataset of the mouse ol-

factory bulb, the top-rated genes (Additional file 3: Table S2) were more specifically

Fig. 5 Biological processes enriched by the signature genes in shaping the cell interaction networks. A, B
For the two high-dimensional datasets of HDST, the biological processes involving the top-ranked genes
were obtained through Gene Ontology Enrichment Analysis. C, D For two low-throughput datasets
(seqFISH and MERFISH), due to the limitation of gene numbers, all the genes were sorted by their sensitivity
scores, and gene set enrichment analysis was performed. E Prediction of cell interactions with genes
annotated as ligands or receptors and the same number of top-ranked signature genes identified by
DeepLinc in the seqFISH (left) and MERFISH (right) datasets. Simple machine learning models, including
support vector classification (SVC), K-nearest neighbor (KNN), and gradient boosting decision tree (GBDT)
models, were used for this test. The originally defined cell adjacency map was used as a positive set of cell
interactions, and randomly selected nonadjacent cell pairs with the same numbers were used as a negative
set. This process was repeated 30 times with different training and testing set assignments. P-value were
obtained with Student’s t test
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involved in the cell-cell interactions of the nervous system, such as synaptic transmis-

sion, ion transmembrane transport, axonogenesis, synaptic vesicle activities, and trans-

synaptic signaling (Fig. 5B, and the full list of functional categories supplied in

Additional file 1: Fig. S9B).

For the two low-throughput datasets of the mouse visual cortex (seqFISH) and mouse

hypothalamic preoptic region (MERFISH), we performed gene set enrichment analysis

(GSEA) to identify the processes involving more of the top-rated signature genes for

the cell interaction landscapes (Fig. 5C, D, and the full lists in Additional file 1: Fig.

S10). In the mouse visual cortex, these processes included the inflammatory response,

response to external stimulus, defense response, extracellular structure organization,

signal release, secretory vesicle processes, and peptide secretion (Fig. 5C). In the hypo-

thalamic preoptic region, the identified processes included actin-based cell projection,

axon, membrane organization, cell-cell adhesion, secretory granule, and peptide secre-

tion (Fig. 5D).

Together, the above results indicate the capability of the DeepLinc model to mine

transcriptome signatures that are directly or indirectly associated with cell interaction

landscapes. The high-impact genes revealed by the interrogation of the DeepLinc pipe-

line provide insights into the key processes defining different types of cell interactions

in specific tissue contexts. Interestingly, compared to the annotated ligand and receptor

genes, equal numbers of the top-rated signature genes were much more efficient in dis-

tinguishing interactive and noninteractive cell pairs with simple classifiers in both the

mouse visual cortex and mouse hypothalamic preoptic region datasets (Fig. 5E). This

once again suggests that the information on cell-cell interactions is largely coded in the

transcriptome and not limited to specific ligand and receptor genes, a notion that lays

the foundation of DeepLinc for the inference of cell interaction landscapes with spatial

transcriptome data.

DeepLinc identifies multicellular domains informing organizational tissue structures

As a deep data-generative model, DeepLinc generates a latent representation (H), which

captures both the characteristics of the single-cell transcriptome profile and its position

in the cell-cell interaction landscape. Therefore, we used this latent information of the

cells learned by DeepLinc to redefine the multicellular spatial domains in heteroge-

neous tissues.

For example, in the seqFISH data of the mouse visual cortex, the embedding vectors in

H for each cell were used for unsupervised K-means clustering, resulting in 6 subgroups

of cells (Fig. 6A). The optimal cluster number was defined by Calinski-Harabasz scores

[58] (see methods for details). These cell clusters were largely different from the previ-

ously annotated cell types based only on known marker genes (Fig. 6A). Instead, the new

cell groups resembled the multilayered organization of the heterogeneous cells in the

mouse visual cortex [17] (Fig. 6A), which reflected the spatially restricted developmental

trajectory from the inner to outer regions of the tissue. Similarly, for the MERFISH data-

set of the hypothalamic preoptic area, the same analysis classified the tissue section into 7

subregions (Fig. 6B), which were again highly correlated with the original anatomy.

Next, for the same types of cells that are allocated to these different spatially coded

cell clusters, differential expression analysis identified domain-specific signature genes.
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Taking astrocytes and GABAergic and glutamatergic neurons in the mouse visual cor-

tex as examples, the same types of cells allocated in the 6 domains showed significantly

differential expression patterns of some signature genes (Fig. 6C). The details of these

patterns were well in line with the inner-outer structure of the mouse visual cortex.

However, the same types of cells located in the same layer were also partitioned into

different cell clusters (e.g., Clusters D1 and D3) (Fig. 6A). Although the astrocytes,

GABAergic neurons, and glutamatergic neurons in D1 and D3 showed similar patterns

Fig. 6 Spatial domains defined by reclustering of cells based on latent vectors recovered by DeepLinc. A, B
The UMAP graph and spatial locations of different spatial domain clusters and cell types. The spatial domain
clusters were acquired by the k-means method with latent vectors of the single cells. C, D Spatially specific
gene expression signatures of homologous cells reclustered by DeepLinc. The heatmaps show the
differential expression of domain-specific genes. The dot size represents the significance of the one-versus-
rest test (Mann–Whitney U test). The color indicates the median value of the normalized z-scores of gene
expression in each cluster
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of gene expression in general, some genes were differentially expressed, indicating the

differences between D1 and D3 (Fig. 6C). This again indicates that DeepLinc captures

features from both gene expression profiles and spatially coded cell interaction land-

scapes. Similarly, for the MERFISH dataset of the hypothalamic preoptic area, neurons

allocated into different domains also showed differentially expressed signature genes

(Fig. 6D).

In summary, DeepLinc rebuilt more comprehensive cell interaction landscapes by

learning from spatially resolved single-cell transcriptome profiles. The latent informa-

tion on spatially dependent cellular features redefined the geometric domains of tissues

composed of heterogeneous cells. These results therefore provide unique insights into

the spatially coded cellular organization underlying the potential physiological relevance

of cell interaction landscapes.

Discussion
As a major methodological breakthrough, technologies for profiling spatially resolved

transcriptomes have provided unprecedented opportunities for the dissection of highly

heterogeneous cellular organizations in physiological and pathophysiological contexts.

However, it has been a major challenge to comprehensively and precisely infer cell-cell

interactions based on spatial transcriptome profiles at single-cell resolution. First,

spatial transcriptome profiles are random snapshots of very limited numbers of tissue

sections. The cellular organization patterns contain information on cell-cell interactions

and presumably represent only small collections sampled from the full landscape.

Therefore, methods for correctly inferring the complete landscapes of cell interactions

by taking advantage of the observed cell geometric distributions and gene expression

profiles are urgently needed. Second, current spatial transcriptome data are limited by a

series of technical issues, including biased and low gene coverage, low signal-to-noise

ratios, high data sparsity under high-throughput techniques, and/or batch effects,

thereby necessitating data-mining methods that are highly robust to these technical

limitations.

Powered by the strong data representation capacity of the VGAE model, DeepLinc

was specifically designed and optimized to denoise and infer missing interactions by ef-

ficiently learning from the incomplete sets of cell organization revealed by different

methods of single-cell spatial transcriptome profiling. Further analysis of the features

mined by DeepLinc helps identify the signature genes shaping cell interaction land-

scapes and cells with special features, such as hub cells and cells in specific domains of

the interaction landscape.

Various methods have been available for inferring the cell-cell interaction landscapes

utilizing bulk RNA-seq, scRNA-seq, or spatially resolved single-cell data. These

methods are mostly based on predefined or previously annotated ligands, receptors,

and downstream target genes [23, 25, 59–61]. These methods have mostly been applied

to scRNA-seq data and are not well suited for single-cell spatial transcriptome data,

which show very limited and uneven coverage of the ligand and receptor genes due to

high sparsity and noise. This necessitates de novo methods, such as DeepLinc, for re-

construction of cell-cell interaction networks in a more unbiased manner independent

of prior knowledge such as ligand-receptor pairs. Instead, by assuming that cell inter-

action potentials have been coded in single-cell transcriptome profiles, DeepLinc is
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trained by the observed cell-cell connections and then utilized to infer missing interac-

tions. As shown in Fig. 4 and Additional file 1: Fig. S5, DeepLinc recovered great num-

bers of distal interactions, and meanwhile, DeepLinc removed some of the predefined

proximal interactions between neighboring cells. Therefore, DeepLinc is positioned as a

data-mining and processing strategy tailored for single-cell spatial transcriptome profil-

ing data, with the goal of recovering the full landscapes of cell interactions from limited

observations of tissue sections.

Specifically, DeepLinc uses VGAE to encode the intrinsic characteristics of spatial

transcriptome data and decode cell interactions. The dual modal data (i.e., the graph-

like cell adjacency map and the high- or mid-throughput transcriptome profile) are in-

tegrated at the same time. Here, the design of VGAE constrains the model to put more

weight on the key genes by force-fitting the global cell interaction graph signatures. To

the best of our knowledge, DeepLinc is the first deep generative learning model for in-

ferring cell interactions from spatial transcriptomic data. Based on a wide array of tests

with real and simulated data, DeepLinc demonstrated high efficiency in learning from

imperfect and incomplete spatial transcriptome data, filtering false interactions, and in-

ferring missing distal and proximal interactions, thereby suggesting the reliability and

effectiveness of the deep learning strategy.

With the DeepLinc model, our sensitivity test of transcriptome profiles suggested sig-

nature genes with potentially high impacts on the cell interaction landscape. Import-

antly, compared to known ligand and receptor genes, these genes showing high

sensitivities performed better in simple classification models of cell interactions. This

supports our presumption that cell-cell interactions are coded in single-cell transcrip-

tome profiles, rather than simply being defined by ligand and receptor genes. The iden-

tification of these signature genes could facilitate the understanding of the various

machineries underlying heterogeneous cell interactions and further suggests the possi-

bility of directly predicting cell interactions simply from single-cell transcriptome pro-

files. Further refined models would be needed for this purpose.

Due to the lack of more detailed information in spatial transcriptome data, DeepLinc

does not provide the directionality or strength of the cell interactions. Potentially different

modes of cell interactions also cannot be differentiated by DeepLinc in its current form.

Finally, similar to most of the deep learning models based on GAE, it is difficult to effi-

ciently and directly backtrack the important features encoded by the graph convolutional

networks used in DeepLinc. Technical advances in spatial transcriptome profiling and

breakthroughs in graph convolutional models would help further improve DeepLinc in

the future. In addition, if more information becomes available due to future technological

advances, DeepLinc could be further expanded to incorporate features such as cell

morphology, surface markers, and metabolic profiles. Finally, although this is not the main

target of DeepLinc, the framework can be used for inferring single-cell gene expression

profiles by using information on cell interactions based on the assumption that the gene

expression profiles are partly correlated with local and distal cell interaction patterns [62].

In summary, as a tool for deep data mining, DeepLinc further empowers rapidly

emerging spatial transcriptome profiles for the de novo reconstruction of cell inter-

action maps. This new strategy, facilitated by deep graph convolutional networks,

does not rely on any prior knowledge of cells or gene functions. We anticipate that

the combination of state-of-the-art spatial transcriptome profiling techniques and
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an efficient data deep mining framework will greatly facilitate the identification of

the biological mechanisms underlying complex cell communication networks with

physiological relevance.

Conclusions
DeepLinc is a novel computational method, with a strategy of deep learning, for de

novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome

profiles. With simulated and real data, DeepLinc demonstrates high efficiency in learn-

ing from imperfect and incomplete spatial transcriptome data, filtering false interac-

tions, and inferring missing distal and proximal interactions. Interrogations of the

DeepLinc pipeline reveal signature genes that are potentially involved in shaping cell

interaction landscapes. In addition, clustering of cells based on the latent features of

cell interactions and transcriptome profiles learned by DeepLinc indicates multicellular

domains informing organizational tissue structures.

Methods
Datasets of single-cell spatial transcriptome profiles

Four published datasets were used for the current study [13, 17, 18], including mouse

visual cortex profiled by seqFISH [17], preoptic region of the mouse hypothalamus by

MERFISH [18], mouse olfactory bulb, and human breast cancer by HDST [13] (Fig.

1B). Fewer than 200 genes were profiled by seqFISH and MERFISH, whereas HDST

generates high-throughput transcriptome profiles coving around 10,000 genes (Fig. 1B).

The seqFISH dataset was downloaded from the data portal at https://bitbucket.org/qzhu/

smfish-hmrf/src/master/. The data was processed according to the procedure described in

the original study [17]. The final dataset covers 125 genes measured in 1597 cells.

The MERFISH dataset of the mouse hypothalamic preoptic region was downloaded

from https://datadryad.org/stash/dataset/10.5061/dryad.8t8s24818. We used the slice re-

gion at Bregma+0.11 mm of the animal No. 18, as it contains the largest number of sin-

gle cells. After removing the ambiguous cells, the final dataset contains 4975 cells,

covering 160 genes, five of which were blank controls.

The datasets of mouse olfactory bulb and human breast cancer profiled by HDST

were downloaded from the data portal at https://portals.broadinstitute.org/single_cell/

study/SCP420 [13]. The olfactory bulb dataset contains 3 sections (CN13_D2, CN24_

D1, and CN24_E1) from two mice. We selected a field of CN13_D2 (x:8447~11447, y:

5447.5~6447.5), which consists of 1981 nuclei. In total, 14,909 genes were measured

among these cells, although a majority of them were not detected in each cell. The

breast cancer dataset also includes 3 tissue sections (CN21_E2, CN21_C1, and CN21_

D1), which were obtained from a histological grade 3 HER2+ patient. We selected a

field of CN21_E2 (x:8464~9664, y:5000~6500) consisting of 1765 nuclei. This data, be-

ing very sparse as well, covers 8336 genes.

Overview of the DeepLinc pipeline

The algorithm of DeepLinc

DeepLinc assumes that the neighboring cells in a solid tissue should be much more

likely to have some types of interactions than randomly picked non-neighboring cells
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that are far away from each other. Therefore, for a particular tissue region, the neigh-

boring cell pairs comprise an incomplete and potentially noisy observation of cell-cell

interactions sampled from the comprehensive cell interaction landscape. In other

words, neighboring cell pairs in tissue sections reveal some cell-cell interactions,

whereas large numbers of other interactions are not explicitly shown. We then assume

that the features related to cell interactions are encoded in the gene expression profile

of each singe cell.

DeepLinc uses neighboring cells with direct contacts as the positive set for learning

the transcriptome features related to cell-cell interactions. From a general biological

point of view, it is reasonable to assume that in a solid tissue, most of the cells in 2-D

could directly contact with 3 or more other cells. From a technical point of view, for

the strategies of machine learning, it is critical to minimize the potential false positives

in the predefined positive sets for training. Therefore, for each cell, we only used the 3

nearest neighbors to define direct contacts, which we believe is a balanced choice gen-

erating enough number of direct contacts for training the DeepLinc pipeline, and at the

same time, ensuring few false positives to contaminate the positive training set.

DeepLinc leverages a variational graph autoencoder (VGAE) with an adversarial net-

work for regularization, to infer the unobserved interactions between cells. The entire

architecture includes three parts: a variational graph convolutional network (VGCN)

encoder, an inner product decoder, and an adversarial module.

Given a cell adjacency matrix A and a gene expression matrix X, the VGAE learns

the embedded features H of the cell graph. A two-layer graph convolutional network

(GCN) (250-125) is used as the encoder module.

q H jX;Að Þ ¼
Yn

i¼1
q hijX;Að Þ

q hijX;Að Þ ¼ Ν hijμi; diag σ2
� �� �

Similar to variational autoencoder, μ =GCNμ(X,A) is the matrix of mean vectors and

logσ =GCNσ(X,A). As a typical structure, the GCN is defined as GCNðX;AÞ ¼ ~AReLUð
~AXW 0ÞW 1 with weight Wi and normalized adjacency matrix ~A ¼ D−1

2ðAþ IÞD−1
2 to

realize layer-to-layer information transmission. We use ReLU as the activation function

of the first layer instead of the second layer. The purpose of this step is to learn mean-

ingful embedded features supporting the interaction formation by aggregating informa-

tion of each cell itself and its interacting neighbor cells.

The inner product decoder p(A|H) = σ(H ·HT) is employed to reconstruct a new cell

interaction matrix, which reports probability scores of the interactions between each

pair of single cells.

VGAE has exhibited outstanding performance in learning the embedded features of

graph elements [38]. However, for single-cell spatial transcriptome data, a major chal-

lenge is its high sparsity and data noise. For such non-ideal situations, the standard

variational encoder-decoder structure adopted by VGAE does not make more con-

straints on latent variables, often resulting in underfitting of the sparse data [63]. Here

we implement strong regularization on the latent distribution with the adversarial

network.

Specifically, the adversarial module is built on a multilayer perceptron (MLP). The

architecture is similar to the discriminator of generative adversarial networks (GAN).
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The adversarial network has two fully-connected hidden layers with ReLU activation

(125–150). The output layer uses sigmoid function to judge whether a latent sample hi
is from a prior Gaussian distribution or from VGAE.

Eventually, the DeepLinc pipeline was optimized to maximize the log-likelihood of

cell-cell interaction network. The objective of VGAE is to minimize its cost function by

optimizing the evidence lower bound (ELBO):

ζELBO ¼ Eq H jX;Að Þ logp AjHð Þ½ �−DKL q H jX;Að Þ p Hð Þkð Þ

For the adversarial module, the loss function is binary cross-entropy.

Implementation of DeepLinc

DeepLinc is implemented as a Python package, which is available at https://github.

com/xryanglab/DeepLinc. Two files are needed as inputs of the pipeline, one for the

cells-by-genes matrix of gene expression data and the other for the predefined cell adja-

cency matrix. If an enrichment analysis of the interactions between cell populations, an

annotation file defining the cell types would be needed.

DeepLinc allows users to specify the node numbers. For datasets with more cells, lar-

ger numbers of nodes are recommended to capture the complexity of data better. Al-

though the number of hidden layers for the encoder is also adjustable, extra caution

has to be taken, since deeper graph convolutional networks are prone to over-

smoothing [64]. In general, the two-layer graph convolutional network has been widely

used and proven suitable for most of the tasks. The Adam optimizer [65] with 4e-4

learning rate is used for optimization. The dropout method is also used to ease the

overfitting effect.

A new cell interaction matrix is the main output of DeepLinc. The latent representa-

tion output by DeepLinc can also be used for unsupervised clustering of the single cells.

Implementation of DeepLinc requires the following packages: Numpy v1.16.4, Scipy

v1.2.1, Pandas v0.20.3, Matplotlib v3.0.2, Seaborn v0.8.1, Networkx v2.1, Scikit-learn

v0.21.2, Tensorflow v1.4.0, Python 3.5.2 (Anaconda3-4.2.0). The DeepLinc model was

trained on a single GPU of GTX 1050 or Tesla K80.

Reconstruction of the cell interaction networks

As introduced above, DeepLinc inferred interaction probability scores for all the cell

pairs. Next, cell interaction networks were assembled with the cell pairs with high

probability scores. Specifically, different thresholds of the probability scores were tested

for identifications of cell interactions. The optimal threshold was then determined so

that the newly assembled cell interaction network on the testing set has the highest ac-

curacy for recovering the predefined cell adjacency maps.

Benchmark of DeepLinc for recovering missing interactions

Different proportions of the edges in the original cell adjacency maps were randomly

picked and discarded. The remaining edges were used for training the DeepLinc model.

The area under the receiver operating characteristic (AUROC) was calculated to assess

the accuracy of the reconstructed interaction networks for recovering the discarded

edges. Here equal numbers of the originally non-existing edges were used as true nega-

tive sets.
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Benchmark of DeepLinc for differentiating real and fake interactions

Different numbers (1 to 10 folds of the size of the original cell adjacency map) of ran-

domly generated fake edges were added into the original cell adjacency map, which was

then fed to DeepLinc. AUROC of the reconstructed network was calculated by taking

the pre-existing real edges as positives and the mixed-in fake edges as negatives.

Benchmark of DeepLinc for the tolerance to random noise in gene expression profiles

Random noise was independently generated and implemented to each gene in each sin-

gle cell. Specifically, for each gene, the new expression level was regenerated by adding

random noise as follows:

Expnoiseþ i; jð Þ
Expnormal i; jð Þ ¼ 2rand;

rand � Ν 0; σð Þ

Among them, Expnoise+(i, j) represents the regenerated expression value of gene j in

sample i, and Expnormal(i, j) represents the original expression level. The fold change

used to simulate noise, after log2 transformation, follows the normal distribution N(0,

σ), whereas different σ values would result in different levels of random noise in

general.

Evaluating the over- or under-representation of particular types of interactions

A previously described strategy [21, 24, 42] was used to evaluate the enrichment or de-

pletion of the interactions between different cell types or within a cell type. In brief, we

randomly shuffled the reconstructed networks for 1000 times. From these 1000 net-

works, the numbers of cell interactions of a certain type, e.g., interactions between two

types of cells, were used to generate a null distribution. The observed interaction num-

ber was then compared to this null distribution, generating a P-value indicating how

often the random values were higher or lower than the observed ones, which corre-

sponds to either enrichment or depletion of the particular type of interactions in the

network. Two-tail test was done for such analysis.

Evaluation of the enrichment or depletion of the distal interactions between certain

cell types was done with a similar strategy. For each dataset, we first generate a distance

distribution with all the edges in the reconstructed cell interaction network, from which

a threshold was determined to classify the distal interactions (Additional file 1: Fig. S6).

The same number of interactions was established between randomly picked distal cell

pairs. Such procedure was repeated for 1000 times, generating a null background of the

distal cell interaction landscapes. Next, the observed number of distal interactions was

compared to this null distribution, generating a P-value indicating how often the ran-

dom values were higher or lower than the observed one, which corresponds to either

enrichment or depletion of the particular type of distal interactions in the network.

Two-tail test was done for such analysis.

Sensitivity analysis for each gene

Sensitivity analysis was performed to evaluate the potential contribution of a gene to

shaping the reconstructed cell interaction landscape. In brief, for a particular gene in
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the transcriptome profile, the expression profile was shuffled among all the single cells.

This new data, with the expression of one gene shuffled at a time, was then fed to Dee-

pLinc, which then generates a new cell interaction network. ΔAUPRC was then calcu-

lated by comparing the AUPRC values of the two cell interaction networks built by

DeepLinc with the original unperturbed gene expression data and the data with the ex-

pression of one gene perturbed. For each gene, the process above was repeated for 30

times, and the average ΔAUPRC was used to quantitatively evaluate the sensitivity of

the reconstructed cell interaction network to the gene, thereby defined as the sensitivity

score.

For the two high-throughput HDST datasets, distributions of the sensitivity scores of

all the genes were prepared, and the biological processes involving the top-ranked

genes were obtained with the Gene Ontology enrichment analysis [66]. For two low-

throughput datasets of seqFISH and MERFISH, all the genes were sorted by their sensi-

tivity scores, and the Gene Set Enrichment Analysis [67] was performed to acquire the

biological processes enriched by the top-ranked genes. The biological processes were

filtered by gene numbers (min size=3 and max size=500), resulting in 1240 and 1691

gene sets for the GSEA analysis with the seqFISH and MERFISH data, respectively.

Prediction of cell interactions with simple machine learning models

For the seqFISH and MERFISH datasets, simple machine learning models including

Support Vector Classification (SVC), K-nearest neighbor (KNN), and Gradient Boosting

Decision Tree (GBDT) were used to test the capability of specified genes for classifica-

tions of the interacting and non-interacting cell pairs. The sklearn package in Python

was used to build these models. The originally defined cell adjacency map was used as

positive sets of cell interactions, and randomly selected unadjacent cell pairs, with the

same numbers, were used as negatives.

Sixteen genes annotated as ligands or receptors and the same number of top-ranked

signature genes identified by DeepLinc were used for the classification models. Their

expression vectors of a pair of cells were concatenated and used as the feature vectors.

The combined set of positive and negative cell interactions were randomly divided into

4:1, serving as the training and testing sets, respectively. The three classification models

were then applied on the data to predict the interacting cell pairs with the testing set.

This process was repeated for 30 times with different training and testing set assign-

ments. The AUROC values were calculated based on the predictions.

Clustering of the single cells based on the latent representation learned by DeepLinc

Dimension of the latent representation H was set as 10 for clustering of the single cells

with the k-means method. The Calinski-Harabasz score was used to determine the op-

timal cluster number. The “umap” package in Python was used for dimension reduction

and visualization of the latent vectors of the single cells.

Differential gene expression analysis between single-cell groups

For the cells of the same type but distributed in different spatial domains, differential

expression analysis was performed to identify the upregulated genes specifically in each

spatial domain. For each domain, the genes that are significantly upregulated in both
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one-versus-one and one-versus-rest tests (Mann–Whitney U test, P < 0.01) were

deemed as domain-specific high-expression genes.
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