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Background
Epithelial-mesenchymal transition (EMT) is a biological process that is fundamental 
to embryonic development and wound healing; however, it is also hijacked by cancer 
cells to acquire an invasive and aggressive phenotype to enable metastasis during tumor 
progression [1]. The morphological changes during EMT are briefly described as the 
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Background:  The plasticity along the epithelial-mesenchymal transition (EMT) spec‑
trum has been shown to be regulated by various epigenetic repertoires. Emerging 
evidence of local chromatin conformation changes suggests that regulation of EMT 
may occur at a higher order of three-dimensional genome level.

Results:  We perform Hi-C analysis and combine ChIP-seq data across cancer cell lines 
representing different EMT states. We demonstrate that the epithelial and mesenchy‑
mal genes are regulated distinctively. We find that EMT genes are regulated within their 
topologically associated domains (TADs), with only a subset of mesenchymal genes 
being influenced by A/B compartment switches, indicating topological remodeling 
is required in the transcriptional regulation of these genes. At the TAD level, epithelial 
and mesenchymal genes are associated with different regulatory trajectories. The 
epithelial gene-residing TADs are enriched with H3K27me3 marks in the mesenchymal-
like states. The mesenchymal gene-residing TADs, which do not show enrichment 
of H3K27me3 in epithelial-like states, exhibit increased interaction frequencies with 
regulatory elements in the mesenchymal-like states.

Conclusions:  We propose a novel workflow coupling immunofluorescence and 
dielectrophoresis to unravel EMT heterogeneity at single-cell resolution. The predicted 
three-dimensional structures of chromosome 10, harboring Vimentin, identify cell 
clusters of different states. Our results pioneer a novel avenue to decipher the com‑
plexities underlying the regulation of EMT and may infer the barriers of plasticity in the 
3D genome context.
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transition from cobblestone, polarized epithelial cells into a dispersed spindle-shaped 
mesenchymal phenotype, accompanied by the corresponding switch between epithe-
lial and mesenchymal markers [2–6]. The recent paradigm of EMT has shifted from the 
binary to the spectral view consisting of various intermediate states [1, 7]. Cancer cells 
undergo EMT in a sequential fashion resulting in diverse populations of differing EMT 
states—from a state enriched in epithelial markers, to one that expresses both epithe-
lial/mesenchymal markers and lastly in a state where only mesenchymal markers are 
expressed [8, 9]. The transitional phases of the EMT states have thus been described as 
an EMT spectrum [10, 11] and shown in in vivo models [12, 13].

The plasticity along the EMT spectrum is regulated by transcriptional programs con-
sisting of a repertoire of different transcription factors (TFs) between each state [1, 11, 
12]. These TFs form a core regulatory network to either stabilize a given state or to drive 
the plasticity [1, 2, 6, 14–16]. The EMT-TFs network modulates the expression of EMT 
genes at various levels, through direct transcriptional control, epigenetic modifications, 
alternative splicing, post-translational modifications, subcellular localizations, and non-
coding RNA regulation [1, 17, 18]. The interest in the epigenomic landscape changes 
in EMT has been growing, given its possible role in conferring the fluid nature of EMT 
in cancer [17, 19, 20] similar to the reprogramming during cell fate determination [21]. 
The epigenetic remodeling regulated by a pioneer factor-like EMT suppressor, grainy-
head-like 2 (GRHL2), exemplified the fluidity and barriers that might exist in terms of 
the plasticity along the EMT spectrum [22, 23]. The diverse predicted enrichment of TF 
binding sites at the open chromatin regions among different states [12] also pointed to a 
non-linear scenario of the plasticity landscape to regulate the EMT genes.

Studies on selected loci of epithelial or mesenchymal genes have implied that local 
chromatin conformation changes are crucial during EMT [24–27]. For instance, the 
transcription of CDH1 was shown to be mediated via DNA looping between GRHL2 
and HNFα enhancers in an EMT model using mouse mammary epithelial cells [24]. A 
more recent study on a TGF-β-induced EMT model showed that transcriptionally active 
chromatin in the “active” compartments can interact with the heterochromatic lamin 
filament proteins lamin B1 during phenotype transition [27]. This emerging evidence of 
local chromatin conformation changes is implicating that the regulation of EMT genes 
might occur at a higher order at the three-dimensional (3D) genome level.

The 3D conformation of chromatin has important roles in the transcriptional regula-
tion of genes [28]. Chromatin conformation capture-based methods have revealed the 
hierarchical organization of the chromatin architecture–chromosome territories, active/
inactive (A/B) chromosomal compartments, topological associating domains (TADs), 
and short- and long-range chromatin interactions [29–32]. The reorganization of the 3D 
chromatin conformation is evident in influencing cell identity during lineage-differenti-
ation and can be dysregulated in diseases [33, 34]. Despite plethora of studies describing 
the 3D genome in various basic biological processes, such as cell cycle and development 
or in diseases [33, 35–37], there is no study to date to investigate the changes in the 3D 
chromatin structure among the epithelial and mesenchymal plasticity states.

In this study, we analyzed genome-wide higher-order chromatin structure in 
cancer cell lines of epithelial and mesenchymal states through the integration of 
Hi-C, histone ChIP-seq, and RNA-seq data from both our in-house platforms and 
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the ENCODE (Encyclopedia of DNA Elements) dataset [38, 39]. The genome-wide 
integrative analyses aimed to investigate variability of chromatin conformation and 
chromatin state changes during EMT in relation to gene transcription. Furthermore, 
to dissect the underlying heterogeneity, we combined fluorescence labelling of the 
lineage markers and a dielectrophoresis approach to isolate cells representing dif-
fering EMT states to deconvolute the chromatin conformation changes at the sin-
gle-cell resolution. This study provided the most extensive data for the analysis of 
higher-order chromatin structure along the EMT plasticity spectrum in cancer cells 
to date.

Results
Refinement of a subset of pan‑cancer epithelial and mesenchymal genes

To identify a core set of EMT genes, we refined a subset of pan-cancer epithelial (E) 
and mesenchymal (M) genes by using previously published generic EMT gene signa-
tures for cell lines and tumors [10] and overlapped with the hallmark EMT signature 
of the Molecular Signatures Database (MSigDB v7.4) [40] to obtain 88 epithelial and 
62 mesenchymal genes (Fig. 1A). We first verified if the expression of these E and M 
genes were still able to stratify the tumors by their EMT status across multiple can-
cer types. The EMT states of the tumors, in each cancer dataset, were scored by our 
refined generic signature, which had the advantage of being able to quantify EMT 
status in a pan-cancer fashion, while simultaneously unbiased towards EMT-related 
stromal genes [10]. We observed that the E-scored tumors had a stronger expression 
of E genes and a reduced expression of the M genes in 6 cancers, namely ovarian, 
breast, gastric, lung, colorectal, and bladder cancer (Fig. 1B). In particular, the tumors 
which had a hybrid EM state showed a distinct differential expression in both the E 
and M genes. These EMT genes were not frequently associated with genomic altera-
tions (Average mutation frequency = 0.7%; Additional file  2: Fig. S1A) nor showed 
frequent copy number gains/losses (average copy number gain = 1%, average copy 
number loss = 0.3%; Additional file 2: Fig. S1FA) in pan-cancer TCGA tumors (n = 
8510), indicating that the regulation of these EMT genes in cancer was not a conse-
quence of genomic alterations. To investigate if this refined subset of EMT genes were 
associated with disease-free survival (DFS), Kaplan–Meier analyses was performed 
on the E and M genes across 6 cancers (Fig.  1C, Additional file  2: Fig. S1B). The E 
genes were associated with better survival in ovarian (HR = 0.83, p = 0.0386; Fig. 1C) 
and bladder cancers (HR = 0.60, p = 0.0231; Fig.  1C), while patients with tumors 
that exhibit higher expression of the M genes (Q1) showed poorer DFS in ovarian 
(HR= 1.42, p = 0.0001; Fig. 1C) and gastric cancer (HR = 1.81, p = 0.0214; Fig. 1C). 
Interestingly, the tumors with higher expression of M genes in bladder and colorectal 
cancers also showed poorer survival, despite not showing significance (bladder can-
cer – HR = 1.6, p = 0.052; colorectal cancer – HR = 1.5, p = 0.1428; Additional file 2: 
Fig. S1B), which could be due to the small sample sizes. While for breast and lung 
cancers, the EMT genes were not associated with survival (breast cancer – HRepithelial 
= 0.94, HRmesenchymal = 1.20; lung cancer – HRepithelial = 1.34, HRmesenchymal = 1.1; Fig. 
S1B). In summary, the 88 E and 62 M genes are only likely to determine the patient 
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prognosis in selected cancer types, as the survival could be affected by the cancer-
specific microenvironments and molecular subtypes. The varying association of EMT 
genes to prognosis was also evident in previous studies [10, 41]. Nevertheless, the 
refined subset of EMT genes presented in this study were able to clearly stratify the 
tumors by their EMT states in multiple cancers.

Fig. 1  a Venn diagram of overlapping epithelial and mesenchymal genes of generic EMT signatures 
from tumor and cell line, with hallmark EMT genes. b Heatmaps of hierarchical clustering the expression 
of epithelial (purple) and mesenchymal (orange) genes (horizontal) across tumors (vertical) in ovarian, 
breast, gastric, lung, colorectal, and bladder cancers with the EMT scores of the tumors depicted vertically 
alongside the heatmap, indicating the EM subtypes. c Kaplan-Meier survival analysis of epithelial (purple) or 
mesenchymal (orange) genes for 1st quartile (solid line) vs 4th quartile (dotted line), in ovarian, bladder, and 
gastric cancers
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A subset of mesenchymal genes exhibited concordant compartmental switch between EM 

states

To further decipher the regulation of EMT in cancer, the 3D genome architecture of 
the refined EMT signature genes were explored. High-throughput chromatin confor-
mation capture (Hi-C) technique was performed in two ovarian cancer cell lines PEO1 
(EMT score −0.328) and HEYA8 (EMT score 0.643) that represented the E and M states. 
The Hi-C libraries were sequenced at a high depth to allow better resolution of the 3D 
genome organization in these cell lines (Additional file 2: Fig. S2A – H and Additional 
file 3: Table S1). The genome-wide chromatin interactions can be depicted as patterns of 
interactions where regions of the same type tend to have higher interactions frequencies 
than those regions of a different type. These regions usually occur on a chromosomal 
scale and are referred to as A and B compartments [29, 42, 43]. Genome-wide differences 
in the A and B compartments between PEO1 and HEYA8 could be observed on a chro-
mosomal-wide scale (Fig. 2A). The Hi-C data of two ovarian cancer cell lines revealed 
that, overall, the genes in the A compartment had higher expression compared to those 
in the B compartment (Additional file 2: Fig. S3A), reflecting the nature of the A com-
partment being the active euchromatic compartment. The changes in the compartments 
between PEO1 and HEYA8 can be categorized mainly into 3 types: (i) “Stable”—either 
“active” in both PEO1 and HEYA8 (AA) or “inactive” in both PEO1 and HEYA8 (BB); 
(ii) “AB”—compartment switching from “active” in PEO1 to “inactive” in HEYA8; (iii) 
“BA”—compartment switching from “inactive” in PEO1 to “active” in HEYA8 (Fig. 2A). 
Between the two cell lines, majority of the genes were in the stable active compartments 
(PEO1 versus HEYA8 compartments: AA 76%, BB 8%), while only a small fraction of 
the genes was in the dynamic compartments (PEO1 versus HEYA8 compartments: AB 
4% and BA 12%) (Fig. 2A). This suggested that there was only a slight degree of plas-
ticity in the compartments and the 3D genome changes at the hierarchical order and 
the compartments were relatively stable between the two states. To explore whether the 
compartmentalization of the 3D genome could define the differences between the E and 
M states via controlling the transcription of genes residing in each compartment, the 
concordance of the gene expression levels to the nature of the residing compartment 
was examined with the assumption that the gene expression level in the active compart-
ment would be higher and vice versa. At the genome-wide scale, there was indeed dif-
ferential gene expression in the dynamic compartments in both AB and BA (p < 0.001, 
Additional file 2: Fig. S3B). However, only 33% and 34% of the genes in BA and AB dis-
played concordance between gene expression and compartment changes (Additional 
file 2: Fig. S3B). Gene ontology (GO) of these concordant genes showed that the genes 
that switched from the inactive to active compartments between PEO1 and HEYA8 (BA) 
were enriched in cellular metabolic processes (FDR= 2.07 × 10−13, Additional file 2: Fig. 
S3B), while genes in AB did not reveal specific GO.

Zooming into the EMT genes, most of the E and M genes remained in the sta-
ble AA and BB compartments (EpithelialAA+BB = 77, 87.5%; MesenchymalAA+BB = 
47, 77%; Fig. 2B. Additional file 4: Table S2A and 2C), while a smaller of proportion of 
the EMT genes exhibited changes in compartment status between the two cell lines 
(EpithelialAB+BA = 11, 12.5%; MesenchymalAB+BA = 14, 23%; Fig. 2C. Additional file 4: 
Table S2A). In terms of the concordance of gene expression levels, EMT genes showed 
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Fig. 2  a Top panels: genome-wide (x-axis) compartments A (red) and B (blue) in PEO1 and HEYA8 based on 
the PC1 values (y-axis); bottom panels: genome-wide Hi-C interaction heatmaps in PEO1 and HEYA8. b Box 
plots showing fold change of log2 FPKM expression (y-axis) of 88 epithelial (left) and 61 mesenchymal (right) 
genes categorized by the compartment changes (x-axis; AA, BB, AB, BA) between PEO1 versus (v.s) HEYA8. P 
values were obtained by Wilcoxon test, *p<0.05, **p<0.01 and ****p<0.0001.  c Heatmaps of the 2 major 
compartments A (red) and B (blue), sub-compartments A.1.1 (dark red), A.1.2 (red), A.2.1 (light red), A.2.2 
(pale red), B.1.1 (white), B.1.2 (light blue), B.2.1 (blue), and B.2.2 (dark blue), and RNA expression in the scale 
of Z-scores of epithelial and mesenchymal genes in PEO1 and HEYA8. The GO terms for the compartment 
switches (AA, BB, AB, and BB) are shown at the right of the RNA expression heatmap, where available. d 
Heatmap of the 2 major compartments A (red) and B (blue) and RNA expression in the scale of Z-scores of 
epithelial and mesenchymal genes in MCF7 (dark purple), PEO1 (light purple), PANC1 (pale yellow), A549 
(light yellow), and HEYA8 (dark yellow) of different EMT scores along the spectrum. The GO terms for the 
stable or dynamic compartment changes are shown at the right of the RNA expression heatmap, where 
available. e Box plot of Pearson correlation (y-axis) between the PC1 values of the major compartments and 
expression of epithelial and mesenchymal genes based on the stable or dynamic compartment changes 
(x-axis)
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differential expression specific to the EMT state regardless of the stable (AA/BB) and 
dynamic (AB/BA) compartments (Fig. 2B). The E genes were all more highly expressed 
in PEO1 across the compartment categories (Fig. 2C). The M genes in AA were highly 
expressed in HEYA8 (p < 0.01, Fig. 2B). Notably, the M genes in the dynamic BA com-
partments showed significant upregulation in the M state (p < 0.05, Fig. 2B). GO analysis 
(Fig.  2C) further revealed that the E genes in AA were enriched in epithelium devel-
opment (FDR = 9.35 × 10−15, Additional file 4: Table S2B) including EPCAM, CDH1, 
ESRP2, CLDN7, and KRT19. No specific GO was annotated in other categories. Of note, 
the M genes in AA were enriched in processes of the extracellular matrix organization 
(FDR= 3.60 × 10−7, Additional file  4: Table  S2D) including SERPINE1, BGN, LOXL2, 
GREM1, and PTX3. Interestingly, the M genes in BA were enriched in genes involved 
in the regulation of cell differentiation (FDR = 1.61 × 10−2, Additional file 4: Table S2E) 
including COL5A2, LOX, COL6A2, FBN1, FBLN1, CDH2, and SNAI2, indicating that 
this subset of M genes may require genome reorganization at the higher-order hierarchy 
during EMT. In both PEO1 and HEYA8, compartment A showed correlation to active 
histone marks (H3K27ac, H3K4me1, and H3K4me3), while the repressive histone mark 
H3K27me3 was weakly correlated to both compartments A and B, and H3K9me3 was 
correlated to compartment B in HEYA8 (Additional file 2: Fig. S3C).

Sub‑compartments of the chromatin did not have a deterministic role in regulating 

the EMT genes in the AA compartments

As majority of E genes in HEYA8 remained in the active compartment despite being 
repressed transcriptionally, we questioned if a refined sub-compartmentalization of the 
chromatin [44] would better segregate the EMT genes to identify intermediate sub-com-
partments enriched in H3K27me3 in HEYA8. The E genes in AA were mostly assigned 
to active sub-compartments A.1.1 and A.1.2 in both PEO1 and HEYA8 (Fig. 2C, Addi-
tional file 4: Table S2H). This suggested that the repressed expression of these E genes in 
AA in HEYA8 indeed did not involve significant compartmental switch. Interestingly, E 
genes in BB and BA were re-assigned to active sub-compartments A.1.1, A.1.2, A.2.1, 
and A.2.2 in PEO1 without significant change in sub-compartments in HEYA8 (Fig. 2C. 
Additional file 4: Table S2F and S2H). This suggested that these E genes could be regu-
lated further by sub-compartmentalization of the chromatin with the sub-compartments 
being the fundamental units of the chromatin organization. Similarly, the M genes in 
AA were assigned to the active sub-compartments A.1.1 and A.1.2 in both PEO1 and 
HEYA8 (Fig. 2C. Additional file 4: Table S2G). This confirmed that the repressed expres-
sion of these M genes in AA in PEO1 also did not involve significant compartmental 
switch. In addition, the M genes in BB were assigned to sub-compartments B.1.1 and 
B.1.2, whereas the M genes in BA with a corresponding increase in expression in HEYA8 
were re-assigned to sub-compartments A.1.1, A.1.2, A.2.1, A.2.2, and B.1.2 in PEO1 
(Fig. 2C. Additional file 4: Table S2G and S2H), signifying that these M genes would also 
be regulated further at units within the sub-compartments. At a broader scale, when 
segregating the chromatin into two major compartments, the rearrangement of the M 
genes from an inactive to active compartment, or vice versa, may pose an epigenetic bar-
rier on the activation of M genes during EMT. But at a finer scale of the sub-compart-
mentalization, it is evident that regulation of the EMT genes occurs in a more intrinsic 
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manner, where smaller units within the sub-compartments may better explain the regu-
lation of the genes in a 3D context. In summary, in this ovarian cancer cell line model, 
the compartmental changes did not occur in most of the E genes while a subset of M 
genes required for cell differentiation did show association to the compartment changes 
between EM states at a broader scale of chromatin compartments.

Mesenchymal genes involved in morphogenesis showed compartmental changes 

along the EMT spectrum

We extended the analysis of the EMT genes in their major chromatin compartments A 
and B, to a panel of 5 cancer cell lines along the EMT spectrum with annotated EMT 
scores (Fig. S4A), which had 3D genome (Hi-C) and epigenetic (histones ChIP-seq) 
information available. The expression levels of E and M genes did show good correlation 
with the EMT spectrum (Additional file 2: Fig. S4B – C).

Evidently, majority of the E genes remained stable in the AA/BB compartments (n = 
64, 72.7%, Additional file  5: Table  S3A) across the 5 cancer cell lines (Fig.  2D). These 
genes were involved in epithelium development including ESRP2, KRT19, KRT18, 
CDH1, and EPCAM (FDRstable = 1.89 × 10−14, Fig.  2D. Additional file  5: Table  S3B). 
Twenty-four (27.3%) E genes showed dynamic compartment changes across 5 can-
cer cell lines. The E genes that showed dynamic compartment changes across the cell 
lines were involved in epithelium differentiation including GRHL2, PERP, TJP2, and 
IRF6 (FDRdynamic = 1.06 × 10−3, Fig.  2D. Additional file  5: Table  S3C). Overall, the E 
genes were still being repressed in the M cell lines, regardless of the compartment sta-
tus (Fig. 2D). Interestingly, for the M genes, we observed a higher degree of plasticity in 
the compartment changes across the cancer cell lines (Mesenchymalstable = 28, 45.9%; 
Mesenchymaldynamic A/B = 33, 54.1%; Fig. 2D. Additional file 6: Table S4A). The M genes 
in the stable compartments were involved in the process of bleb assembly, includ-
ing genes such as SERPINE1, BGN, LOXL2, COL6A2, and EFEMP2 (FDRstable = 6.43 
× 10−03; Fig. 2D. Additional file 6: Table S4B). In addition, the M genes that exhibited 
dynamic compartment changes across the cancer cell lines (Additional file 6: Table S4A) 
were enriched in the biological process related to anatomical structure morphogenesis, 
including COL5A2, LOX, CDH2, ZEB1, and AXL (FDRdynamic = 1.22 × 10−8; Fig.  2D. 
Additional file 6: Table S4C). This highlighted that the M genes involved in cell morphol-
ogy changes during EMT would require to be regulated by compartmental changes. The 
expression of M genes in the dynamic compartments were significantly correlated to the 
compartment changes across the cell lines, while the E genes did not show any correla-
tion between the compartment changes and expression (p = 5.67 × 10−4; Fig. 2E). Taken 
together, our analysis suggested that the M genes involved in morphogenesis are likely to 
be regulated at the higher hierarchical order of the active/inactive compartments at the 
genome level along the EMT spectrum.

Epithelial genes in the eTADs were regulated at the histone levels regardless of the TAD 

boundary changes

To understand how the EMT genes could be further regulated, insights were sought by 
digging into the next higher order of chromatin structure occurring at the sub-chro-
mosomal scale, the topological associating domains (TADs) [31, 32]. The TAD which 
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encompasses an E gene is termed as an epithelial TAD (eTAD); likewise, the TAD with 
an M gene is defined as mesenchymal TAD (mTAD) (Fig.  3A). At the TAD level, we 
questioned if the boundary changes in the TADs between the PEO1 (E) and HEYA8 (M) 
states had a role in the modulation of the EMT genes. The changes in the TAD bounda-
ries can be briefly categorized into (i) TADs with unchanged boundaries—“Stable”; (ii) 
TADs with shifted boundaries—“Expand,” “Shrink,” and “Shift.” A similar proportion of E 
and M TADs retain their TAD boundaries between the two EMT states (37% in eTADs; 
40% in mTADs; Fig.  3B). Similar proportion of the eTADs/mTADs which displayed 
boundary changes between the E and M states were also observed (“Expand”—26% 
eTADs, 25% mTADs; “Shrink”—24% eTADs, 21% mTADs; “Shift”—13% eTADs, 14% 
mTADs; Fig. 3B). We then questioned if these changes in the EMT TADs between the 
two states had any impact on the epigenomic landscape in the TADs. The eTADs in 
HEYA8 had significantly higher enrichment of the repressive H3K27me3 mark while the 
eTADs in PEO1 had higher enrichment of active H3K27ac chromatin mark, regardless 
of the TAD boundary changes (Fig. 3C, D). In the mTADs, the changes in the chromatin 
marks between the E and M states were subtle, regardless of the TAD boundary changes, 
since there was no enrichment of the repressive H3K27me3 mark nor the decrease of 
the active marks in the mTADs of the E state (Fig. 3C, D). Our data suggested that the 
E genes in the TADs were repressed in the M state at the chromatin level for histone 
modifications, while the subtle changes in the histone marks in the mTADs pointing to 
a different trajectory path of regulation for the M genes. We then questioned if DNA 
methylation had a role in the regulation of the genes in the EMT TADs. Firstly, the E 
genes were methylated in the M state as compared to the E state (p < 0.0001. Additional 
file 2: Fig. S5A), while the M genes did not show any significant difference between the 
E and M states in methylation levels, which corroborated with a previous study [23]. 
The methylation levels of the genes in mTADs were higher than the eTADs in the E state 
(pPEO1-eTAD vs PEO1-mTAD < 0.05. Additional file 2: Fig. S5B). However, the methylation lev-
els of the genes in the EMT TADs were generally higher in the M state (pPEO1-eTAD vs 

HEYA8-eTAD < 0.0001, pPEO1-mTAD vs HEYA8-mTAD < 0.0001. Additional file 2: Fig. S5B).

H3K27me3 in eTADs contributed to the regulation of the epithelial genes in M state 

of the EMT spectrum

In the EMT spectrum model across the 5 cancer cell lines, we observed that the M-like 
cancer cell lines had a higher enrichment of H3K27me3 compared to E-like can-
cer cell lines with a positive correlation to the EMT score (Fig. 3E). However, this was 
not observed for H3K9me3 in the eTADs (Fig.  3E). The repressive H3K27me3 mark 
in the eTADs and at the E genes correlated positively with the EMT scores (Fig.  3F, 
Pearson correlationeTADs = 0.933, peTADs = 0.021. Additional file  2: Fig. S4D, Pearson 
correlationEgenes = 0.938, pEgenes = 0.018. Additional file  7: Table  S5). There was also 
a strong negative correlation between the H3K27ac signal in the eTADs and at the 
E genes, to the EMT score of the cancer cell lines, albeit not being significant in the 
eTADs (Fig.  3F, Pearson correlationeTADs = −0.691, peTADs = 0.197. Fig. S4D, Pearson 
correlationEgenes = −0.917, pEgenes = 0.029. Additional file 7: Table S5). This suggested 
that the eTADs adopted a more repressed chromatin state in the M-like cancer cell lines, 
with the enrichment of H3K27me3. On the other hand, the mTADs in the E-like cancer 
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Fig. 3  a Definition of epithelial and mesenchymal TADs. b Top panel: Illustration of changes in EMT TADs 
between PEO1 (epithelial state) and HEYA8 (mesenchymal state), described by 4 categories: (i) Stable, (ii) 
Expand, (iii) Shrink, and (iv) Shift. The dashed lines represent the TAD boundaries that were identified in 
the cancer cell line, which was used as a reference of comparison. Bottom panel: Pie charts annotating the 
percentages of changes in HEYA8 eTADs with respect to PEO1 eTADs (left) and changes in PEO1 mTADs with 
respect to HEYA8 mTADs (right). c Distribution profile plots and heatmaps of the histones marks between 
PEO1 and HEYA8 in epithelial (left) and mesenchymal (right) TADs, split into the categories of TAD changes: 
(i) Stable, (ii) Expand, (iii) Shrink, and (iv) Shift. H3K4me1, H3K27ac, H3K27me3, and H3K9me3 are represented 
by indigo, green, black, and blue respectively. d Boxplots of normalized histones signal (y-axis; H3K4me1, 
H3K27ac, H3K27me3, and H3K9me3) in eTADs (top row) and mTADs (bottom row) of PEO1 (black) and 
HEYA8 (grey). The histones signals were split into the categories of TAD changes within each histone marks: 
(i) Stable, (ii) Expand, (iii) Shrink, and (iv) Shift. Student’s t test was carried out between PEO1 and HEYA8 for 
the respective histone marks, *p<0.05 **p<0.01, ***p<0.001 and ****p<0.0001. e Distribution profile plots 
and heatmaps of histone marks (H3K27ac—green, H3K27me3—black, and H3K9me3—blue) in eTADs 
(left) and mTADs (right) of cancer cell lines representing different states of the EMT spectrum. The relative 
epithelial and/or mesenchymal states of the cancer cell lines are shown as a color bar on top of the heatmaps 
(epithelial state—purple, mesenchymal state—orange). f Scatter plot showing Pearson correlation (R, x-axis) 
of EMT score to average histone signal in eTADs (purple circle) and mTADs (orange cross) across the cancer 
cell lines
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cell lines did not exhibit higher enrichment of H3K27me3, which was in concordant 
with the ovarian cancer model. In the mTADs and corresponding M genes, there was no 
correlation between the repressive H3K27me3 mark and the EMT score (Fig. 3F, Pear-
son correlationmTADs = −0. 308, pmTADs = 0.614. Fig. S4D, Pearson correlationMgenes = 
−0.306, pMgenes = 0.617. Additional file 7: Table S5) There was also no significant corre-
lation between other histone marks (H3K27ac, H3K4me1, and H3K9me3) and the EMT 
score of the cancer cell lines for the mTADs (Fig. 3F. Additional file 2: Fig. S4D. Addi-
tional file  7: Table  S5). Taken together, the repressive histone modification marked by 
H3K27me3 contributed to the regulation of the E genes where both the eTADs and the E 
genes adopted a repressed chromatin mark in the M state, leading to a reduced expres-
sion of the E genes. Whereas in the case of the mTADs and M genes, the reduced expres-
sion of the M genes in the E state did not equate to a repressed chromatin state akin to 
the eTADs.

Changes in H3K27me3 in the mTADs and M genes were less associated to the EMT states

Prior studies in the 3D genome have shown that the most fluid variable of the chroma-
tin conformation is the promoter-enhancer interactome, exhibiting significant degree 
of cell-type specificity [45–49]. We hypothesized that the underlying mechanism in the 
regulation of the M genes could be influenced by the interactome differences within 
the TADs. Therefore, we looked at the normalized contact probabilities within the 
EMT TADs in three cell lines, PEO1, A549, and HEYA8, representing the E, EM, and 
M states. We observed that the eTADs in the EM (A549) and M (HEYA8) cell lines had 
slightly higher interaction frequency within the eTADs (pPEO1-A549 < 0.0001, pPEO1-HEYA8 
< 0.0001; Fig. 4A). As we know that eTADs showed a decrease in H3K27ac and enrich-
ment in H3K27me3 mark in the M state (Fig.  3E, F), the increase in the contact fre-
quency within the eTADs in the EM and M state could be due to the compaction of the 
chromatin as we observed a significantly lower accessibility in the eTADs in HEYA8 as 
compared to PEO1 (Additional file 2: Fig. S6A). On the other hand, the mTADs in all 
three cell lines exhibited strong boundary-boundary interactions (Fig.  4A). There was 
higher contact frequency in the mTADs of HEYA8 as compared to PEO1 and A549, as 
well as higher contact frequency in A549 when compared to PEO1 (pHEYA8-PEO1 < 0.01, 
pHEYA8-A549< 0.05, pA549-PEO1< 0.01 Fig. 4A). Knowing that the mTADs did not show sig-
nificant enrichment of repressive histone marks (Fig. 3E, F), the frequent contact prob-
abilities within the mTADs of the M state might suggest increased loop formation, since 
the mTADs in the E-like and the M-like cell lines did not differ in terms of accessibility 
(Additional file 2: Fig. S6A). In addition, we observed similar levels of CTCF and cohesin 
complex proteins across the E-like and M-like cell lines (Additional file 2: Fig. S6B) thus 
implying that the boundaries of the mTADs do not play a significant role towards the 
changes in contact probabilities within the TADs.

Local chromatin interaction with the regulatory elements in TADs contributed 

to the regulation of EMT genes

We continued to examine the spatial proximity and the chromatin loop interactions 
between EMT genes and other non-EMT genes, or EMT genes and its regulatory ele-
ments, within the same TAD. To approach this, we performed an aggregate analysis 



Page 12 of 31Pang et al. Genome Biology          (2022) 23:121 

between the transcription start site (TSS) of EMT genes and other non-EMT genes 
within the same TADs. The interaction scores of the E genes coming into spatial prox-
imity of the other genes within the same TADs were similar along the EMT spectrum, 
showing no significant differences between the E-like and M-like cell lines (Fig. 4B). The 
histone profiles around these spatial proximity sites in the eTADs showed the trend as 
the active H3K27ac mark decreased and the H3K27me3 mark increased from E to EM, 
to M (Fig. 4B). In the mTADs, non-EMT genes were also in proximity with the M genes. 
However, in PEO1, the genes contacted less frequently with each other compared to the 

(See figure on next page.)
Fig. 4  a Aggregate TAD plot showing normalized observed/expected Hi-C counts in the eTADs (top row) 
and mTADs (bottom row) of cancer cell lines—PEO1 (purple), A549 (white), and HEYA8 (orange)—arranged 
in the order of increasing EMT score (from epithelial to mesenchymal state). Boxplot representations of 
the observed/expected Hi-C counts (y-axis) within the eTADs or mTADs of the cancer cell lines (x-axis) are 
depicted on the right of the aggregate TAD plots. Student’s t test was used for the statistical analysis, ****p < 
0.0001. b Aggregate Hi-C matrices showing the interaction z-scores (red: high interaction z-score, blue: low 
interaction z-score) at pairwise genomic regions, between TSS of epithelial genes to the other genes within 
the eTADs of cancer cell lines—PEO1 (purple), A549 (white), and HEYA8 (orange)—arranged in the order of 
increasing EMT score (from epithelial to mesenchymal state). Distribution profile plots of the histone marks 
(H3K27ac—green, H3K27me3—black, and H3K4me1—indigo) at the TSS of epithelial genes were shown 
below the respective aggregate Hi-C matrices. Boxplot representation of interaction z-scores, as highlighted 
by the dashed boxes in the aggregate matrices, (y-axis) at the TSS of epithelial genes across the cancer cell 
lines (x-axis) of different EMT scores along the EMT spectrum. Student’s t test was used for the statistical 
analysis. c Aggregate Hi-C matrices showing the interaction z-scores (red: high interaction z-score, blue: low 
interaction z-score) at pairwise genomic regions, between TSS of mesenchymal genes to the other genes 
within the mTADs of cancer cell lines—PEO1 (purple), A549 (white), and HEYA8 (orange)—arranged in the 
order of increasing EMT score (from epithelial to mesenchymal state). Distribution profile plots of the histone 
marks (H3K27ac—green, H3K27me3—black, and H3K4me1—indigo) at the TSS of mesenchymal genes 
were shown below the respective aggregate Hi-C matrices. Boxplot representation of interaction z-scores, as 
highlighted by the dashed boxes in the aggregate matrices, (y-axis) at the TSS of mesenchymal genes across 
the cancer cell lines (x-axis) of different EMT scores along the EMT spectrum. Student’s t test was used for the 
statistical analysis, **p< 0.01, ***p<0.001 and ****p<0.0001. d Triangular Hi-C matrix showing the normalized 
Hi-C counts at CDH1 and CDH2 TADs (chr16:68,300,000–68,900,000 and chr18:27,600,000–28,250,000, 
respectively) in PEO1 (top Hi-C matrix) and HEYA8 (bottom inverted Hi-C matrix). The TADs at CDH1 and CDH2 
loci are represented by the solid black lines drawn on the Hi-C matrix. Histone marks in the 4 ovarian cancer 
cell lines (PEO1, OVCA429, SKOV3, and HEYA8) are shown below the Hi-C matrices. H3K4me1, H3K27ac, and 
H3K27me3 are represented by indigo, green, and black respectively. The gene track (hg38) is shown below 
the histone marks tracks. The dotted arcs, below the gene track, represent the interacting loci that were used 
in assessing the interaction frequency by 3C-qPCR. The interacting loci were also annotated in the triangular 
Hi-C matrices by the grey arrows. e Bar chart representation of 3C-qPCR interaction frequencies (y-axis) 
between interacting loci (x-axis) annotated in d, in 4 ovarian cancer cell lines (PEO1, OVCA429, SKOV3, and 
HEYA8). The interacting loci assessed by 3C-qPCR at the CDH1 TAD are “CDH1-CDH3” (CDH1 TSS to CDH3 TSS), 
“CDH3-ZFP90” (CDH3 TSS to ZFP90 TSS), “CDH1- ZFP90” (CDH1 TSS to ZFP90 TSS), and “CDH1 TAD boundary” 
(CDH1 TAD 5′boundary to 3′boundary). The interacting loci assessed by 3C-qPCR at the CDH2 TAD are 
“CDH2 TSS-intron” (CDH2 TSS to CDH2 intronic enhancer), “CDH2 TES-Enhancer” (CDH2 TES to CDH2 upstream 
enhancer), and “CDH2 TAD boundary” (CDH2 TAD 5′boundary to 3′boundary). Interaction frequencies were 
normalized to loading control and Student’s t tests were used for statistical analyses. *p<0.05, **p<0.01, 
***p<0.001, and ****p<0.0001. f Top bar plot depicting Hi-C observed/expected values (y-axis) between 
interacting loci (x-axis) in CDH1 TAD, in PEO1 (black) and HEYA8 (grey). The interacting loci at the CDH1 TAD 
are as follows: “CDH1-CDH3” (CDH1 TSS to CDH3 TSS), “CDH3-ZFP90” (CDH3 TSS to ZFP90 TSS), “CDH1- ZFP90” 
(CDH1 TSS to ZFP90 TSS), and “CDH1 TAD boundary” (CDH1 TAD 5′boundary to 3′boundary). Bottom bar plot 
depicting Hi-C observed/expected values (y-axis) between interacting loci (x-axis) in CDH2 TAD, in PEO1 
(black) and HEYA8 (grey). The interacting loci at the CDH2 TAD are as follows: “CDH2 TSS-intron” (CDH2 TSS 
to CDH2 intronic enhancer), “CDH2 TES-Enhancer” (CDH2 TES to CDH2 upstream enhancer), and “CDH2 TAD 
boundary” (CDH2 TAD 5′boundary to 3′boundary). Student’s t tests were used for statistical analyses, *p<0.05. 
g Illustration of 3D genome structure and epigenetic landscape changes in the epithelial and mesenchymal 
TADs during different EMT states along the EMT spectrum. H3K27ac and H3K27me3 are represented by green 
and grey respectively. The active compartment A and inactive compartment B are represented by red and 
blue respectively



Page 13 of 31Pang et al. Genome Biology          (2022) 23:121 	

M-like cell lines, A549 and HEYA8 (Fig.  4C). Given the subtle changes in the histone 
marks within the mTADs between the E and M state, the aggregate contact frequency 
suggested that loop interactions in the mTADs could play a bigger role in the regulation 
of the M genes.

3C-qPCR was used to validate the loop interactions of the EMT genes within their 
respective TADs to assess if the increasing chromatin interaction frequency along the 
EMT spectrum, at the M genes to non-EMT genes in the same TAD was indeed occur-
ring. Four ovarian cancer cell lines (PEO1, OVCA429, SKOV3, and HEYA8) representing 
the E, Intermediate E (IE), Intermediate M (IM), and M states along the EMT spectrum 
[23] (Additional file 2: Fig. S4A) were examined at the two classical E and M genes of 
the cadherin family – E-Cadherin (CDH1) and N-Cadherin (CDH2). At the CDH1 TAD, 
the M-like cell lines (SKOV3 and HEYA8) adopted a more repressed chromatin state 
while the E-like cell lines (PEO1 and OVCA429) had an open chromatin state according 
to the histone peaks (Fig. 4D). CDH1 interacted more frequently to other genes (CDH3 

Fig. 4  (See legend on previous page.)
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and ZFP90) within the same TAD in the E-like cell lines (PEO1 and OVCA429) (Fig. 4D, 
E). In the 2 EMT states (PEO1 and OVCA429 – E, IE), the expression of both CDH1 
and CDH3 were similar, corresponding to higher CDH1-CDH3 interaction frequen-
cies (Fig. 4E. Additional file 2: Fig. S6D). Notably, the decrease in CDH1-CDH3 contact 
strength also corresponded to the decreasing expressions of both CDH1 and CDH3 
(Fig. 4E. Additional file 2: Fig. S6D). We observed that in SKOV3 (IM state), which had 
the lowest CDH1-CDH3 interaction frequency among the 4 cell lines, also showed low 
CDH1 and CDH3 expression (Fig. 4E. Additional file 2: Fig. S6D). Interestingly, HEYA8 
(M state) which had the lowest CDH1 and CDH3 expression among the four showed 
slight increase of CDH1-CDH3 interaction frequency compared to SKOV3 (Fig.  4E. 
Additional file 2: Fig. S6D). However, we did not see the same phenomena between the 
co-expression of genes and the gene-gene contact strength in CDH3-ZPF90 or CDH1-
ZFP90 interactions (Fig. 4E. Additional file 2: Fig. S6D). We speculated that there might 
be a sub-TAD present harboring both CDH1 and CDH3.

In contrast, at the CDH2 TAD, the M-like cell lines were enriched in active histone 
marks (H3K27ac and H3K4me1) while the E-like cell lines showed a slight increase in 
H3K27me3 binding across the TAD (Fig. 4D). 3C-qPCR showed that CDH2 interacted 
strongly with its intronic enhancer in HEYA8 while this interaction became weaker as the 
H3K4me1 and H3K27ac marks were depleted in the less M-like cells (PEO1, OVCA429, 
and SKOV3) (Fig. 4E). There was up to 2-fold increase in interaction frequency in CDH2 
TSS to the intronic enhancer between HEYA8 and PEO1 (Fig. 4E). Likewise, this pattern 
of increased interaction frequency in the M state was also observed between the tran-
scription end site (TES) of CDH2 and an upstream enhancer in the CDH2 TAD (Fig. 4D, 
E). In both CDH1 and CDH2 TADs, the TAD boundaries displayed similar interaction 
frequency between all the EMT states (Fig. 4E). In agreement with the 3C-qPCR obser-
vations, Hi-C data at the CDH2 TAD showed higher interaction frequencies in HEYA8 
at the interacting loci of CDH2 TSS-intron, CDH2 TES-enhancer (Fig. 4F). Albeit not 
being significant, we did observe higher interaction between CDH1 and CDH3 in the 
Hi-C data of PEO1 as compared to HEYA8 (Fig. 4F). In summary, the eTADs adopted 
an open chromatin state in the E state compared to the M state with 3C-qPCR show-
ing increased interaction between selected E genes such as CDH1 and CDH3 with non-
EMT genes in the same domain. In the mTADs, both 3C-qPCR and Hi-C suggested that 
the changes in the local chromatin conformation with the M genes such as CDH2 could 
play a bigger role in the transcriptional activity of these genes (Fig. 4G).

Regulation of SNAI2 via concerted coordination among transcription factor binding, 

enhancer looping, and the chromatin state

Among the EMT-TFs, the regulation of SNAI2 is less understood [50, 51] compared to 
its paralog SNAI1 [52, 53]. We thus continued to explore the chromatin looping within 
the SNAI2 TAD. From the Hi-C data, we observed 2 loops arising from the SNAI2 pro-
moter, of which one of the loops shows an interaction between SNAI2 TSS and a distal 
enhancer (Fig. 5A). In addition, there is a proximal enhancer to SNAI2 that consists of 
the binding site of GRHL2 (Fig. 5A), a gatekeeper of the E state [22]. Although no loops 
were detected between the proximal enhancer and SNAI2 in the Hi-C data, knowing 
that GRHL2 regulates E genes via CpG methylation and nucleosome remodeling during 
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the intermediate states of EMT/MET [23], we then questioned if the binding of GRHL2 
at the SNAI2 TAD would contribute to the repression of SNAI2 in the E state by using 
3C-qPCR.

Through 3C-qPCR, the interaction frequencies between SNAI2 TSS and its proximal 
enhancer were found to be significantly higher in E-like cells (PEO1 and OVCA429) 
with higher GRHL2 expression, as compared to the M-like SKOV3 and HEYA8 with no 
GRHL2 expression (pPEO1-SKOV3 < 0.001, pPEO1-HEYA8 < 0.001, pOVCA429-SKOV3 < 0.0001, 
pOVCA429-HEYA8 < 0.0001. Fig.  5B). On the contrary, the interaction between SNAI2 
TSS and its distal enhancer in the TAD showed a higher interaction frequency in the 
M-like HEYA8 than the E state (PEO1) (pPEO1-HEYA8 < 0.05. Fig. 5B). In PEO1 (E), the 
distal and proximal enhancers were in closer proximity compared to the M-like cell 
lines (pPEO1-HEYA8 < 0.001; Fig. 5B). The proximal enhancer of SNAI2 coincided with the 
GRHL2 binding peaks in both PEO1 and OVCA429 (Fig. 5A, D) with low H3K27ac and 
H3K27me3 marks (Additional file 2: Fig. S6E). Knowing that SNAI1 binds to the SNAI2 
E-boxes and recruits HDAC to repress transcription [54], SNAI2 repression in PEO1 
could result from the endogenous SNAI1 expression and the concomitant H3K27me3 
enrichment at the SNAI2 TSS with the removal of H3K27ac at the proximal and distal 
enhancers around the close proximity looping (Fig. 5B, D).

In the M-like states SKOV3 (IM) and HEYA8 (M), with both SNAI1 and GRHL2 being 
absent endogenously, the spatial proximity of SNAI2 TSS with the proximal enhancer 

Fig. 5  a Triangular Hi-C matrix depicting the Hi-C counts at SNAI2 TAD in PEO1 (top Hi-C matrix) and 
HEYA8 (bottom Hi-C matrix). The loops (blue solid lines) identified from the Hi-C data are shown below 
their respective Hi-C matrices. Histone marks in the 4 ovarian cancer cell lines are shown below the Hi-C 
matrices. H3K4me1, H3K27ac, and H3K27me3 are represented by indigo, green, and black respectively. 
GRHL2 binding regions (GRHL2 peaks) at SNAI2 TAD are shown below the histone marks tracks. The gene 
track (hg38) is shown below the GRHL2 peaks. The green stripes correspond to the regions at the SNAI2 TAD: 
SNAI2 gene, proximal enhancer, and distal enhancer. The solid arcs represent the interacting loci that were 
used in assessing interaction frequency by 3C-qPCR, “SNAI2 TSS to proximal enhancer,” “SNAI2 TSS to distal 
enhancer,” and “proximal to distal enhancer.” b Bar chart representation of 3C-qPCR normalized interaction 
frequencies between interacting loci as annotated in a. The normalized interaction frequency (y-axis) at the 
interacting loci (axis) were shown in 4 ovarian cancer cell lines (PEO1—black, OVCA429—dark grey, SKOV3—
grey, and HEYA8—light grey), representing different EMT states across the EMT spectrum (epithelial—black, 
mesenchymal—light grey). RNA-seq log2(FPKM) expression of SNAI1 (solid grey line with square symbol), 
SNAI2 (solid black line with circle symbol), and GRHL2 (dotted dark grey line with triangle symbol) is shown 
below the bar chart for the respective cell lines. Student’s t tests were used for statistical analyses. *p<0.05, 
***p<0.001, and ****p<0.0001. c Bar chart representation of 3C-qPCR normalized interaction frequencies 
between interacting loci as annotated in a. The normalized interaction frequency (y-axis) at the interacting 
loci (x-axis) were shown in OVCA429 shGRHL2 DOX– (dark grey; mesenchymal state) and OVCA429 shGRHL2 
DOX+ (black; epithelial state). 3C-qPCR showing normalized interaction frequencies between SNAI2 TSS 
and its proximal/distal enhancers in OVCA429 shGRHL2 Tet-inducible cell line (epithelial state—black, 
mesenchymal state—grey). Bar chart representation of log2 fold change (y-axis) of SNAI1, SNAI2, and GRHL2 
(x-axis) between OVCA429 shGRHL2 DOX– (dark grey) and OVCA429 shGRHL2 DOX+ (black) is shown below 
the 3C-qPCR bar chart. The log2 fold change expression (y-axis) was determined by RT-qPCR. Student’s t tests 
were used for statistical analyses. *p<0.05 and ***p<0.001. d Illustration of local chromatin structure at SNAI2 
locus in the 4 ovarian cancer cell lines (PEO1—purple, OVCA429—light purple, SKOV3—light orange, and 
HEYA8—orange) representing different EMT states along the spectrum, as well as the changes in chromatin 
conformation at SNAI2 locus as the cell transits from a mesenchymal (OVCA429 shGRHL2 DOX–, orange) 
to epithelial (OVCA429 shGRHL2 DOX+, purple) state. The representations of the proteins, histones, and 
enhancer at the SNAI2 locus are as indicated: SNAI1—yellow circle, GRHL2—orange circle, H3K27ac—green 
circle, H3K27me3—grey circle, proximal enhancer—dark blue rectangle, and distal enhancer—light blue 
rectangle. The SNAI2 gene is represented by a black rectangle and the SNAI2 TSS is indicated by the black 
arrow appended at its side

(See figure on next page.)
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decreased significantly. Even as the proximal enhancer exhibited an increasing enrich-
ment of H3K27ac and H3K4me1 marks in SKOV3 and HEYA8 (Additional file 2: Fig. 
S6E), the accessibility to the enhancer in SKOV3 and HEYA8 was decreased (Addi-
tional file 2: Fig. S6E). The factor binding to the proximal enhancer, in the absence of 
GRHL2, remained to be addressed. In HEYA8, the looping from SNAI2 TSS to the dis-
tal enhancer remained high with the concomitant induction of H3K27ac mark (Fig. 5B, 
D) and the slightly increased accessibility at the distal enhancer (Additional file 2: Fig. 
S6E). Taken together, given that the SNAI2 expression in SKOV3 and HEYA8 was higher 

Fig. 5  (See legend on previous page.)



Page 17 of 31Pang et al. Genome Biology          (2022) 23:121 	

compared to PEO1, our data suggested that the interactions among the TSS, proximal 
and distal enhancers and the local chromatin state might play a predominant role for 
SNAI2 transcription.

Interestingly, the distal enhancer interaction was absent in OVCA429, suggesting this 
interaction may have some cell-type specificity in the regulation of SNAI2 (Fig. 5B). This 
loss of interaction also corresponded to the region being inaccessible in OVCA429, with 
low ATAC-seq peaks at the site where the 3C primer was targeted, as compared to the 
other cell lines (PEO1, SKOV3, and HEYA8. Additional file 2: Fig. S6E). In OVCA429, 
there was no endogenous SNAI1 expression to repress SNAI2 at the distal enhancer 
with the decrease of H3K27me3 mark around SNAI2 TSS (Fig. 5A, D). However, GRHL2 
binding was still present at the proximal enhancer which remained in spatial proximity 
to SNAI2 TSS (Fig. 5B, D). We thus utilized a tetracycline-inducible transcriptional acti-
vation (Tet-On) system in OVCA429 shGRHL2 cells that drove the expression of GRHL2 
to model the transition between IE and IM states [23]. GRHL2 expression in OVCA429 
shGRHL2 Tet-On cells increased the interaction frequency between SNAI2 TSS and its 
proximal enhancer but not the distal enhancer, with the concomitant decrease in SNAI2 
expression (Fig. 5C) and the increase in SNAI1 expression (Fig. 5C, D). Therefore, the 
interaction between the proximal enhancer and SNAI2 TSS is regulated by the presence 
of GRHL2 binding together with the SNAI1 repression at the SNAI2 TSS without the 
restoration of the spatial proximity of the distal enhancer.

Heterogeneity of single‑cell 3D genome structure of selected EMT genes

Given the known heterogeneity of EMT transition states along the EMT spectrum [11, 
12, 55], the bulk Hi-C might still reflect a plethora of diverse EM states. Deconvolution 
of the genome-wide chromatin structure at a single-cell level was carried out. There 
were single-cell Hi-C (scHi-C) techniques established using various cell line models [37, 
56–58]. Here, we utilized a novel approach where immunofluorescence staining of the E 
and M markers could be obtained prior to the isolation of single cells via a dielectropho-
retic platform (Fig. 6A). PEO1 and HEYA8 cells were mixed in equal populations prior 

(See figure on next page.)
Fig. 6  a Workflow depicting single-cell isolation by epithelial and mesenchymal markers, followed Hi-C 
library construction from the single cells isolated from the “PEO1+HEYA8” mixed population of cells. Single 
cells isolated from the “PEO1+HEYA8” mixed population were classified into (i) Epithelial (EpCAM+/VIM–), 
(ii) Hybrid (EpCAM+/VIM+), and (iii) Mesenchymal (EpCAM–/VIM+) clusters. Profiles of the 3 clusters: b 
Staining of EpCAM (PE, red) and Vimentin (FIT-C, green); c Heatmap of single-cell Hi-C matrix at ± 500 kb of 
EPCAM or VIM; and d genome structures at chromosome 2 and 10. Hierarchical clustering heatmap based 
on the cell-cell r.m.s.d values at chromosomes 2 and 10 are shown on the right of the genome structures. 
e Workflow depicting single-cell isolation by epithelial and mesenchymal markers, following which Hi-C 
library construction from the single cells isolated from OVCA429 shGRHL2 Tet-inducible cell line treated 
with doxycycline to induce GRHL2 expression. The single cells from OVCA429 shGRHL2 Tet-inducible were 
classified into (i) low GRHL2/EpCAM, (ii) mid GRHL2/EpCAM, and (iii) high GRHL2/EpCAM as differentiated 
by the staining intensity of GRHL2 (APC, green) and EpCAM (PE, red). Profiles of the GRHL2 groups: f staining 
profiles. EMT spectrum (orange-purple gradient rectangle) alongside GRHL2 staining intensity (triangle with 
white-black gradient) indicates how the 3 groups of cells correspond to their EMT states in the spectrum; 
and g genome structures of chromosome 2 and 10. Heatmap of the cell-cell r.m.s.d values at chromosome 
2 and 10 of the OVCA429 shGRHL2 Tet-inducible single cells are shown below the genome structures. In b 
and f, cell IDs are shown to the left of staining images. In d and g, color = purple-to-red spectrum denotes 
chromosome start-to-end. Cells are arranged according to the dendrogram derived from hierarchical 
clustering of the cell-cell r.m.s.d values
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to crosslinking and staining for EpCAM (E marker) and Vimentin (M marker). The two 
markers were then used to isolate single cells by the fluorescence intensity of these 2 
markers (Fig. 6A. Additional file 2: Fig. S7A). Firstly, in the PEO1/HEYA8 mixed popula-
tion of cells, besides identifying cell clusters which stained positive for EpCAM and for 
Vimentin respectively, there was also a cluster of cells which showed double positivity 
(Fig. 6B. Additional file 2: Fig. S7B – C). These 3 clusters of single cells—“E,” “Hybrid,” 
and “M”—provided a great opportunity to explore differences in the local chromatin 
structure at EPCAM and VIM loci and therefore subjected to single-cell Hi-C analy-
sis. At the EPCAM locus, the E cluster had a higher density of short-range interactions 

Fig. 6  (See legend on previous page.)
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(+/− 100 kb interactions) which decreased in the hybrid cluster, and in the M cluster 
EPCAM was interacting to regions further upstream/downstream (+/− 300–500 kb) of 
the gene (Fig. 6C). At the VIM locus, there were lesser chromatin interactions at VIM 
in the E cluster compared to both the hybrid and M clusters (Fig. 6C). In addition, the 
regions upstream and downstream of VIM (+/− 500 kb) also had higher density of chro-
matin interactions in the hybrid and M clusters (Fig. 6C). Therefore, the 3 clusters of sin-
gle cells exhibited variability in the local chromatin structure at both EPCAM and VIM, 
as well as the upstream/downstream regions of the genes. Unlike the bulk Hi-C data, 
Hi-C contacts identified in single cells represent physical DNA-DNA contacts between 
distinct genomic regions, making it possible to measure the similarity of the single-cell 
3D genome structures of EPCAM and VIM at their respective chromosomes. Between 
the single cells of the E, hybrid, and M clusters, there was cell-cell variability in the 3D 
genome structure of chromosome (chr) 2 where EPCAM is situated, whereby the clus-
tering of the r.m.s.d (root-mean-square deviation) values did not identify the 3 clusters 
(Fig. 6D). Clustering of the r.m.s.d values of the 3D genome structures of chr10, where 
VIM is situated, showed that the genome structures in the E cluster were distinct from 
the hybrid and M clusters (Fig.  6D). According to the gene density of E and M genes 
per 10-Mb windows across the chromosomes, in relation to the average Pearson correla-
tion of compartment PC1 to gene expression, chr10 had a lower density of EMT genes 
but with higher average of correlation between chromosomal compartment changes and 
expression (Additional file 2: Fig. S7D). For chr2, despite having higher density of EMT 
genes than chr10, there was lower correlation between chromosomal compartmental 
changes and gene expression which could explain why the 3D genome structure of chr10 
performed better to cluster the EMT states.

In addition, scHi-C libraries from OVCA429 shGRHL2 Tet-inducible cells were also 
constructed (Fig. 6E). It was shown previously that the induction of GRHL2 in this sys-
tem did not change VIM expression [23], while EPCAM was shown to be a direct target 
of GRHL2 [22]. Hence, GRHL2 and EpCAM were stained in the OVCA429 shGRHL2 
Tet-inducible cells to assess the heterogenous EM states along this MET spectrum 
switching in between the intermediate states. In the OVCA429 shGRHL2 Tet-induci-
ble system, a heterogenous response to GRHL2 induction were observed at the single-
cell depth, with 3 groups of cells showing differential staining intensity of GRHL2 and 
EpCAM that could be classified into (i) low GRHL2/EpCAM, (ii) mid GRHL2/EpCAM, 
and (iii) high GRHL2/EpCAM (Fig. 6F. Additional file 2: Fig. S7B). We then assessed if 
the 3D genome structures at chr2 and chr10 were able to distinguish these 3 groups of 
cells. Clustering of the r.m.s.d values obtained from the 3D genome structure at chr2 
and chr10 of the OVCA429 shGRHL2 Tet-inducible cells consistently separated the high 
GRHL2/EpCAM cells from the rest (Fig. 6G). For chr2, the 3 high GRHL2/EpCAM cells 
were co-clustered with 2 mid GRHL2/EpCAM cells (Fig. 6G). This suggested that there 
was an association between the gradual increase in EpCAM protein expression and the 
changes in chromatin conformation at chr2 in these single cells, which was resolved 
in the single-cell Hi-C data obtained from the “PEO1+HEYA8” mixed population. For 
chr10, the 3 single cells belonging to the high GRHL2/EpCAM group were co-clustered 
with 1 low GRHL2/EpCAM cell while the rest of the low and mid GRHL2/EpCAM 
cells were clustered together (Fig. 6G). In sum, our data showed that the high GRHL2/
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EpCAM cells could be consistently separated from the rest from the chromatin confor-
mation of chr2 and chr10.

Discussion
One conceptual pitfall of understanding the regulation of EMT has been to assume the 
suppression of E genes and the activation of M genes not only would occur concomi-
tantly but also would follow the same regulatory trajectory. From the barriers of plastic-
ity during EMT or MET, it has been shown that E and M genes are regulated differently 
at the epigenetic level [23]. The coupling of different TF binding with the chromatin 
state changes has further supported the concept that although EMT or MET is revers-
ible, the reversibility does not indicate the existence of a universal path [12, 23]. From 
the spatial perspective of the 3D genome structure, the regulation of E and M genes is 
clearly distinct. Firstly, we observed that at the organization of the 3D genome at the 
higher order of compartments is not the sole contributing factor to the regulation of 
the EMT genes and processes. This was especially so for E genes where their expression 
was independent to the compartment state changes. The discordance of compartmental 
changes to gene expression has also been shown in stem cell differentiation. The covari-
ance between gene expression and PC1 values was calculated with only a small subset 
(33% concordance in AB, and 34% concordance in BA) of genes that showed concord-
ance of gene expression and compartmental switches [35]. While this was also true for 
nearly half of the M genes, a selected group of M genes crucial for morphogenesis did 
show compartmental changes from the inactive B in the E state to the active A compart-
ment in the M state. CDH2, the gene coding for N-cadherin, is among this category. This 
could partly explain why cadherin switching from CDH1 to CDH2 only occurs in 50% 
of cancer cells [11] that the structural changes from the compact chromatin to the more 
open euchromatin might require more complex coordination. This is similar to what 
was shown in the genome reorganization during the reprogramming of mouse B cells to 
iPSCs that the pluripotency genes in the A compartment were upregulated early during 
reprogramming while those genes that switched between B and A compartments were 
activated at later stages. The delayed activation of these genes reflected the requirement 
of prior extensive epigenetic and chromatin structure remodelling [59].

Between the cell lines representing the E and M states (PEO1 and HEYA8), we 
observed that the TADs were relatively stable which was in line with previous studies 
reporting conservation of TAD boundaries across different cell types [31, 35, 60, 61], 
while the chromatin modification patterns are constrained within the TAD boundaries. 
Our data suggested that the expression of the E genes within the eTADs were regulated 
by the changes in the histone modifications, switching from an open chromatin state 
marked by H3K27ac in the E-like cancer cell lines to a more repressed one in the M-like 
cancer cell lines, with the enrichment in H3K27me3. Interestingly, the M genes and their 
TADs show less associated with the changes in histone modification between the EMT 
states, suggesting that another underlying mechanism could contribute to the regula-
tion of the M genes. While the E genes and eTADs were repressed at the histone level in 
the M states, the M genes in the mTADs were more associated with changes in the local 
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conformation of DNA interactions to the regulatory elements in the M state. Since the 
M genes did not undergo the same repression mechanism during MET as the E genes 
would be repressed during EMT, this could explain why E genes could be re-expressed 
by the epigenetic modifying compounds such as HDAC inhibitors and EZH2 inhibi-
tors [23, 62] and the M genes do not exhibit the corresponding repression in the reverse 
manner [23]. Therefore, the repression of M genes would require different strategies 
involving the rearrangement of local DNA looping and contacts.

Within the EMT TADs, rather than binary changes in the local chromatin structure, 
such as the formation or loss of enhancer-promoter interactions, it is the quantitative 
changes such as contact frequency between the enhancer and its promoter that influ-
ences the transcriptional activity of the EMT gene. This was observed in both CDH2 
and SNAI2 mTADs, the increase in interaction frequency between the genes and its 
regulatory elements indeed corresponded to an increase in gene expression, despite the 
enhancer-promoter interactions still being present even in the E state, albeit at a lower 
frequency. Although the increase in interaction frequency between the E genes and their 
regulatory elements was not observed in bulk Hi-C data but via 3C-qPCR, it could be 
further validated with more 3C-qPCR at other epithelial genes, as the bulk Hi-C provides 
an aggregate of the chromatin interaction frequency at the 88 epithelial genes. The cor-
relation between enhancer-promoter contact frequency and gene transcription has been 
shown at the single-cell resolution of Drosophila embryos, via genome editing and live 
imaging [63]. The establishment of enhancer-promoter interactions preceding gene acti-
vation has been shown during fly embryogenesis and often requires the release of poised 
RNA polymerases prior to gene transcription [64, 65]. More recently, in Drosophila 
development through high-resolution imaging of single-cell spatial genomics, enhancer-
promoter interactions were found to be still present between different cell fates despite 
having differential transcriptional activity, and instead the stable enhancer-promoter 
interactions serves as a scaffolds for gene regulation as the enhancers are activated [66, 
67]. Furthermore, evidence of such pre-existing enhancer-promoter loops using Hi-C 
generated from human cell line models, under different stimuli, have reported the acti-
vation of genes which are already in contact with their specific enhancers upon signaling 
cues, thereby allowing rapid transcription activation [68]. In this context, whether the 
presence of pre-formed mesenchymal promoter-enhancer loops underlying the dynamic 
induction of EMT upon signaling cues needs to be addressed in a temporal manner.

Meanwhile, to answer the temporal mechanics of chromatin conformation in the 
regulation of EMT genes, we used an ovarian cancer cell line Tet-On system to model 
the transition between the IE and IM states. We observed changes in the interaction 
frequency between SNAI2 and its proximal enhancer during MET, which could be 
regulated by induction of GRHL2. However, the regulation of SNAI2 by SNAI1 and/
or GRHL2, as well as the spatial relationship of SNAI2 to both its proximal and distal 
enhancers, remains to be addressed. This suggests that the regulation of SNAI2 and its 
local chromatin structure also requires the presence of transcription factors such as 
SNAI1 and/or GRHL2 at the SNAI2 locus. The presence of transcription factors (TFs) in 
influencing the local chromatin structure has been described in cell differentiation [69], 
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and there are various modes of TF action on shaping the 3D genome [70]. In the forma-
tion of a functional promoter-enhancer loop, it can occur via a pre-formed loop followed 
by enhancer activation or TF pairing of activated enhancers to their specific promoters 
[59, 64]. In addition, using an epidermal differentiation system, it was shown that stable 
enhancer-promoter interactions (present before and after differentiation) were prefer-
entially associated with cohesin, while those enhancer-promoter interactions that only 
occur upon differentiation were usually mediated by differentiation-induced transcrip-
tion factors [71]. In recent studies, by coupling CRISPR with Flow-FISH (flow cytom-
etry and fluorescent in situ hybridization) [72] or single-cell RNA-seq (scRNA-seq )[73], 
the prediction of enhancer-promoter specificity in gene transcription has been found 
to be dictated by the enhancer activity (determined by the accessibility and H3K27ac 
signal) and contact frequency. Similarly, for the SNAI2 locus, we observed that the dis-
tal enhancer in the M-like states could play a bigger role in the regulation of SNAI2 
transcriptional activity, given the increased enhancer activity and contact frequency 
observed at the distal enhancer, as compared to SNAI2 proximal enhancer.

We also noted in the repression of CDH1 TAD, the CDH1-enhancer promoter 
remained present in the M state, albeit at a lower frequency. Although we did not 
assess interaction frequency between the CDH1 gene and its enhancers in all the 
cell lines, we did observe a higher interaction frequency between CDH1 and its 
proximal enhancer in PEO1 compared to HEYA8 (Additional file  2: Fig. S6C). In 
addition, it was previously reported in other EMT models that increased interac-
tion frequency between CDH1 and its intronic enhancer played a role in the regu-
lation of its expression [24, 25]. Interactions between inactive genes and elements 
marked by repressive chromatin modifications have been reported in another study 
suggesting the function of these repressive features as long-range silencers [74]. In 
consideration of the repression observed in the CDH1 TAD, future studies could 
address the role of silencers, in tandem with EMT transcription factors (EMT-
TFs), given that EMT-TFs usually coordinate the repression of epithelial genes and 
induction of M genes during EMT [1, 6]. Using CHi-C (Capture Hi-C) in a mouse 
model, it was also reported that promoters of active genes tend to interact with ele-
ments marked by active chromatin features, while transcriptionally inactive genes 
preferentially associate with repressive chromatin modifications [75], highlighting 
the presence of silencers in influencing gene expression.

With studies reporting the existence of heterogenous EMT states in the tumor 
and the in  vivo mouse model [12, 76], we established a method to capture the 
genome-wide chromatin conformation of single cells while maintaining the abil-
ity to stratify these cells by their EMT states. There were scHi-C techniques estab-
lished using various cell line models [37, 56–58] in which some of these methods 
uses fluorescence-activated cell sorting (FACS) on single nuclei to characterize the 
cells by their DNA content and Geminin-immunoreactivity. In the context of char-
acterizing cells by their EMT states, the phenotypic information of EMT markers 
expressed intracellularly or at the cell surface is required. In addition, we observed 
higher density of chromatin interactions occurring at the VIM locus in mesenchy-
mal-like cells, similar to the bulk Hi-C results in which mesenchymal genes tend 
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to interact more frequently with its regulatory elements. The epithelial-like cells, 
on the other hand, had lesser chromatin interactions at the single-cell depth. To 
further deconvolute the heterogeneous EMT states occurring during EMT, we con-
structed scHi-C libraries using a GRHL2 Tet-inducible system, where we observed 
the changes in chromatin conformation at chr2, harboring EPCAM, were able to 
distinguish the single cells by the staining intensity of EpCAM which was asso-
ciated with the induction of GRHL2. In addition, the genome structures of chr2 
and 10, harboring EpCAM and VIM respectively, were able to consistently distin-
guish the single cells that had the highest expression of both GRHL2 and EpCAM 
in the GRHL2 Tet-inducible system. By reconstructing and measuring the similar-
ity of 3D genome structures at selected chromosomes in the single cells, the EMT 
states could be stratified. While in prior studies, such an approach has been used to 
report the variability of 3D genome structures between single cells of uncharacter-
ized states [37, 56, 57, 77], our data highlights that chromatin conformation at the 
chromosomal level could be inferred by spatial arrangement of the EMT genes and 
paves a new path to identify the hybrid states.

Conclusions
The Hi-C information generated in this study, coupled with available information 
from public Hi-C datasets, provides an integrated and comprehensive understanding 
into the epigenetic regulation of the EMT genes in relation to chromatin conforma-
tion. This study also presents an approach to reconstruct the 3D genome structure at 
the single-cell depth in relation to the epithelial and mesenchymal features of each 
single cell, which enables further exploration of the role of epigenetic regulation in 
the plasticity of the EMT process. Our data will serve as a valuable avenue for the 
EMT community to better understand the complexities underlying the regulation of 
EM plasticity from the spatial genome context.

Methods
Cell culture

Ovarian cancer cell lines, PEO1, HEYA8, and OVCA429 shGRHL2 Tet-inducible, 
used were cultured as previously described [11, 22, 23]. GRHL2 expression was 
induced in OVCA429 shGRHL2 Tet-inducible cell line using doxycycline (1 μg/ml) 
and harvested 1 week later for 3C and scHi-C library construction.

ChIP‑seq analysis

ChIP-seq analysis was performed according to ENCODE guideline [78]. Upon quality 
checking the raw sequence data, the raw fastq files were mapped using bwa v0.7.13-
r1126 to hg38 using the bwa-mem algorithm. The mapped files were then processed 
using Picard v2.5.0 (http://​broad​insti​tute.​github.​io/​picard/) and Samtools v1.3 [79]. 
Mapped reads were converted to tag using Bedtools v2.25.0  [80]. Quality of ChIP-
seq results were checked using strand-cross-correlation analysis from R SPP pack-
age v1.14 [81] to ensure the ChIP-seq experiments were successful. Peaks were 
called using macs2 v2.1.0.20150731 [82] with --nomodel option and annotated using 
HOMER v4.10.

http://broadinstitute.github.io/picard/
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RNA‑seq analysis

The raw sequence data were mapped to hg38 using STAR 2.5.3a [83] using default 
parameter settings, and transcripts were quantified using RSEM v1.3.0 [84] and Gen-
code v30 annotation.

ATAC‑seq

Raw sequencing fastq files were assessed for quality, adapter content, and duplica-
tion rates with FastQC v0.11.9 [85], trimmed using NGmerge v0.3 [86] and aligned 
with bowtie2  v2.4.2 [87] to the human genome using Homo_sapiens.GRCh38 version 
from Ensembl [88]. The signal tracks were generated using BAMscale v0.05 [89], and 
the average signal in the eTADs/mTADs were calculated using deepTools v3.5.0 [90] 
multiBigwigSummary.

Chromatin conformation capture (3C)

Cells were crosslinked using 1% formaldehyde for 10 min at room temperature before 
quenching the reaction with 0.125M glycine. 3C was performed on the crosslinked 
cells as described by Naumova et al. [91, 92]. 3C-qPCR was then carried on the 3C 
DNA at the regions of interest and normalized to loading controls [93].

Hi‑C

Cells were crosslinked using 1% formaldehyde for 10 min, and the reaction was stopped 
in 0.125M glycine for 5 min. The crosslinked cells were then used for Hi-C library con-
struction as described by Rao et al. [42]. Libraries were then sequenced on an Illumina 
HiSeq platform with 2× 150 bp paired end reads.

Hi‑C analysis

The Hi-C libraries were mapped, processed, and filtered according to the HiCUP v0.6.1 
[94] and checked for quality of each library (Additional file  2: Fig. S1). The sequenc-
ing metrics of each library is recorded in supplementary information (Additional file 3: 
Table S1). PEO1 and HEYA8 Hi-C libraries were sequenced to about 1.2 billion paired 
end reads each. Common artifacts such as dangling ends, re-ligation fragments, contigu-
ous fragments, and duplicated reads were filtered out. About 74% and 77% of the total 
reads processed were usable Hi-C contacts in PEO1 and HEYA8, separately. The usa-
ble Hi-C contacts results generated from the HiCUP was then analyzed using HOMER 
v4.10 [95] and HiCExplorer [96–98].

A/B compartment analysis

Chromosomal compartments, A and B, were identified using HOMER v4.10 [95]. Pear-
son correlation was used to calculate the correlation between PC1 values and RNA-seq 
gene expression z-scores, to look at the correlation between compartmental changes and 
gene expression. Sub-compartments (A.1.1, A.1.2, A.2.1, A.2.2, B.1.1, B.1.2, B.2.1, and 
B.2.2) were called using CALDER [44] (https://​github.​com/​CSOgr​oup/​CALDER).

https://github.com/CSOgroup/CALDER
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TADs and loops analysis

The TADs and loops of the Hi-C data used in this study were identified using HiCEx-
plorer v3.6 [96–98] with the default parameters at 50 kb resolution. Aggregate TAD 
analysis was performed using FAN-C v0.9.17 [99]. To aggregate the contacts between 
EMT genes and the non-EMT genes of the same TAD, “hicAggregateContacts” from 
HiCExplorer with the option “—outFileObsExp” was used to obtain the interaction 
z-scores and the aggregate matrix. The interaction z-scores from the center pixels of 
the aggregate matrix were used to compare the differences in chromatin interaction fre-
quency between PEO1, A549, and HEYA8. For statistical analysis, two-sided Student’s 
t test was used. We used “cooler dump” from cooler v0.8 [100] to extract the observed/
expected values from the Hi-C data (cooler format) at interacting loci that were vali-
dated by 3C-qPCR in CDH1 and CDH2 TADs.

Single‑cell Hi‑C

Cells were crosslinked using 2% paraformaldehyde for 5 min before the reaction was 
quenched with glycine. After which the cells were washed with 1 ml PBS before incuba-
tion with 0.5 ml of blocking buffer (5% BSA, 0.1% Tween-20 in PBS) at room tempera-
ture for 15 min. After centrifugation of the cells at 2200g for 5 min at 4 °C, the cells are 
resuspended in 100 μl of incubation buffer (0.5% BSA, 0.1% Tween-20). The antibodies 
used for staining were as follows: (i) anti-EpCAM antibody conjugated with PE (sc-71059 
PE, Santa Cruz Biotechnology), (ii) anti-Vimentin antibody conjugated with FIT-C (sc-
32322 FIT-C, Santa Cruz Biotechnology), (iii) anti-GRHL2 (HPA004820, Sigma-Aldrich) 
with secondary antibody Alexa Fluor 647-conjugated anti-rabbit (A21245). The amount 
of the antibodies used for staining was as recommended in their respective datasheets. 
The cells were first stained for EpCAM for 30 min in the dark at room temperature and 
washed with PBS before permeabilization with 0.2% TritonX-100 for 15 min at room 
temperature. The cells are then washed with PBS before staining it for Vimentin for 30 
min in the dark at room temperature. For GRHL2 staining, the cells were washed with 
PBS after staining for Vimentin and subsequently stained for GRHL2 at 30 min in the 
dark at room temperature. The secondary antibody Alexa Fluor 647-conjugated anti-
rabbit (A21245) was then added to the cells after washing once with PBS and incubated 
at 30 min at room temperature in the dark. The crosslinked and stained cells, at a maxi-
mum of 20,000 cells, were then loaded onto the DEPArray™ NxT system for isolation 
of single cells (Menarini Silicon Biosystems) [101] following the protocol instructions. 
CellBrowser™ (Menarini, Silicon Biosystems, Bologna, Italy) analysis software, inte-
grated into the DEPArray™ system, was then used view and select cells from the parti-
cle database according to multiple criteria, based on qualitative and quantitative marker 
evaluation and cell morphology. The scan settings used for detection of the immunofluo-
rescence markers in CellBrowser™ (Menarini, Silicon Biosystems, Bologna, Italy) analy-
sis software are shown in the generated DepArray™ reports (Additional file 9: Single cell 
isolation reports.zip). The fluorescence images of the single cells are also shown in the 
generated DepArray™ reports (Additional file  9: Single cell isolation reports.zip). The 
isolated single cells were subsequently used for construction of single-cell Hi-C libraries 
using the Ampli1TM WGA Kit (Menarini Silicon Biosystems), with minor modifications 
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to the kit protocol. In particular, the cells were lysed using reduced volumes of Hi-C lysis 
buffer [42]. MboI was used to digest the DNA, before biotin-fill and ligation, to capture 
the Hi-C contacts. The Hi-C DNA was then obtained, following the protocol stated in 
the Ampli1TM WGA Kit. The single-cell Hi-C libraries were then sequenced on an Illu-
mina HiSeq platform with 2× 150 bp paired end reads.

Single‑cell Hi‑C analysis

The single-cell Hi-C libraries were mapped, processed, and filtered according to 
NucProcess [57], for subsequent 3D genome structure model analysis. The 3D genome 
structures in the single cells were reconstructed using NucDynamics [102] with the 
default parameters, and the comparison of the 3D structures between the single cells 
was calculated using the Nucleome processing and analysis toolkit [57, 102] (Nuc_tools, 
available at https://​github.​com/​tjs23/​nuc_​tools). scHiCExplorer [98] was used to gener-
ate the cool matrices representing the epithelial, hybrid, and mesenchymal cell clusters, 
which was used to plot the Hi-C matrix at +/− 500 kb of EpCAM and Vimentin locus.
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Map) under “DepMap Public 20Q2” release [109]. RNA-seq data for PEO1 was download from GEO GSE117765 [110].
Single-cell Hi-C data used in this study have been deposited in NCBI’s Sequence Read Archive [104, 105] and are acces‑
sible through GEO Series accession number GEO: GSE201919 [108]. The related DepArray™ generated reports which 
contains the parameters used for immunofluorescence detection and the immunofluorescence images of single cells 
captured using the CellBrowser™ analysis software have been submitted to Figshare. DOI: 10.6084/m9.figshare.19732567 
[111].
Additional data that support the findings of this study are available from the corresponding author, R.Y.H, upon reason‑
able request.
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