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Background
Protein-DNA interactions are essential for the regulation of most vital processes in liv-
ing cells. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) [1, 2] is 
the main tool to identify these interactions on a genome-wide scale. ChIP-seq has been 
widely used in the life sciences and has led to unprecedented discoveries in development 
[3, 4], differentiation [3, 5–7], and regeneration [8, 9] as well as in diseases like cancer 
[10–12] or immune dysregulation [13–15].

The experimental design and the bioinformatic analysis of a ChIP-seq experiment can 
be focused either on the identification of genomic regions of protein-DNA interactions 
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or on the analysis of their differential occupancy between biological states in a compar-
ative fashion. The latter type of analysis is required for most experimental setups that 
compare different biological scenarios, such as genotypes, cell states, or treatments. 
A wide variety of computational tools can be applied for differential analysis of ChIP-
seq experiments. While some of these tools were specifically developed for differen-
tial ChIP-seq (DCS) analysis, others were initially designed to analyze differential gene 
expression in RNA-seq datasets, which requires their adaptation for the investigation 
of ChIP-seq datasets. In principle, all computational tools for DCS analysis are based 
on certain assumptions. For instance, some tools, particularly those initially developed 
for RNA-seq analysis, assume that the majority of occupied genomic regions do not dif-
fer between experimental states. Yet, this assumption does not hold for comparative 
ChIP-seq studies that involve experimental perturbation of levels and/or the activity of 
the protein under investigation. For example, the global downregulation of a particular 
histone modification after treatment with small molecule inhibitors will result in inad-
equate identification of differentially occupied regions if the normalization method is 
based on suboptimal assumptions [16, 17]. Hence, depending on the biological scenario, 
different normalization methods employed by individual tools will have a strong impact 
on the outcome. Finally, the length of the identified genomic regions is dependent on the 
investigated protein, ranging from a few hundred to several thousands of base pairs (bp). 
All these aspects prevent straightforward decisions to choose the optimal computational 
tool for DCS analysis for a given scenario. Yet, suboptimal tool usage can have a strong 
impact on downstream analyses, such as peak annotation and motif analysis. Thus, the 
guided choice of DCS analysis tools depending on the experiments characteristics is 
expected to significantly improve the interpretation of ChIP-seq datasets in a biological 
context.

We set out to comprehensively evaluate the performance of 33 available DCS soft-
ware tools and custom approaches. Reference datasets obtained by in silico simulation 
of ChIP-seq tracks were complemented with sub-sampling of experimentally derived 
ChIP-seq data to obtain realistic representations of background noise in biological data. 
Tool performances were evaluated with precision-recall curves, and the accuracy of 
tested tools was assessed depending on peak shape and biological regulation scenario. 
By combining the area under the precision-recall curve (AUPRC), stability metrics, and 
computational cost, we derived the DCS score, which enables researchers to choose the 
optimal DCS analysis tool for any given protein of interest and biological scenario. In 
addition, our decision trees provide recommendations for the analysis of ChIP-seq data-
sets of experiments for which no clear assumptions about genomic binding patterns can 
be made. Thus, our results will lead to improvements in the identification of molecular 
mechanisms that are based on protein-DNA interactions.

Results
Establishing reference data and application of DCS tools

To model the most relevant biological scenarios, we focused on three common 
shapes of ChIP-seq signals, representing transcription factors (TF) and two types 
of posttranslational histone modifications, as proposed by the Roadmap Epigenom-
ics Consortium [18]. While TFs usually occupy genomic regions of a few hundred 
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bp or less [19], histone marks with “sharp” peaks, such as histone H3 lysine 27 acet-
ylation (H3K27ac), H3 lysine 9 acetylation (H3K9ac), or H3 lysine 4 trimethylation 
(H3K4me3), represent regions covering up to a few kilobases [19, 20]. In contrast, 
“broad” histone marks, such as H3 lysine 27 trimethylation (H3K27me3), H3 lysine 36 
trimethylation (H3K36me3), or H3 lysine 79 dimethylation (H3K79me2) can spread 
over larger genomic regions of several hundred kilobases [19, 20]. We also defined 
two biological scenarios that represent frequent experimental conditions in ChIP-seq 
experiments. First, we assumed that equal fractions of genomic regions show increas-
ing and decreasing signals between two samples (at a 50:50 ratio) while the intensity 
of remaining peaks does not change. This scenario is representative of comparisons of 
developmental or physiological states between cells or tissues. In the second regula-
tion scenario, we assumed a global decrease of ChIP-seq peak signals in one sample 
(in a 100:0 ratio), as is often seen upon gene knockout or pharmacological inhibition 
of the target protein (Fig. 1a).

Fig. 1  Simulation and sub-sampling of differential ChIP-seq experiments. a Schematic overview of simulated 
peaks and regulation scenarios: Each box represents one test scenario, per scenario the compared samples, 
and their signal strength are shown in blue and in red. The columns show transcription factor (TF), H3K27ac 
(sharp mark) and H3K36me3 (broad mark) histone mark ChIP-seq signals (DCSsim width parameters shown 
below). In the 50:50 regulation scenario, the number of differential regions is equally distributed, while in the 
100:0 scenario we assume a global downregulation of the signal. Arrow positions indicate the differential 
ChIP-seq signals and their color show the sample with the higher signal. b Overview of the benchmarking 
workflow. We applied DCSsim to simulate in silico data and DCSsub to sub-sample genuine ChIP-seq signals. 
This resulted in sequence reads for two samples (red and blue). After preprocessing, we directly applied 
peak-independent tools or peak-dependent DCS tools subsequent to peak calling. The resulting peaks 
and differential regions are depicted as arrows. To assess the DCS tools, we calculated the area under the 
precision-recall curves. c Heatmaps and profile plots showing all peak regions of a ChIP-seq experiment for 
the TF C/EBPa (left), DCSsub sub-sampling from the same dataset (middle), and the DCSsim simulation of 
TF peak shapes (right). d Quantitative overview of test cases. We generated five independent datasets per 
peak-regulation scenario. Then we applied three peak callers in combination with 12 peak-dependent DCS 
tools and 21 peak-independent DCS tools. We used up to 16 parameter setups per DCS tool, and analyses 
were run for simulated and sub-sampled ChIP-seq data. * HOMER with previously called peaks (HOMERpd)
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We simulated in silico ChIP-seq data for the resulting six scenarios with DCSsim, a 
Python-based tool we developed to create artificial ChIP-seq reads (Additional file  1: 
Fig. S1a). Peaks were distributed into two samples representing the biological scenario 
based on beta distributions and a predefined number of replicates (Additional file 1: Fig. 
S1b).

To benchmark different DCS tools, we applied DCSsim on the reference sequence of 
mouse chromosome 19 to simulate 1000 ChIP-seq peaks in two samples and two repli-
cates each. To model a dataset that features more realistic signal-to-noise ratios, a more 
heterogeneous distribution of background noise, and less clear signal boundaries, we 
also sub-sampled the top ~1000 ChIP-seq peak regions from genuine ChIP-seq experi-
ments with DCSsub (Fig. 1b). DCSsub is able to sub-sample reads for a defined set of 
regions (Additional file 1: Fig. S1c), applying the same parameters for the distribution of 
reads to samples and replicates as DCSsim (Additional file 1: Fig. S1b, d). To model TF 
peak shapes, we chose ChIP-seq data for the transcription factor C/EBPa [21] (Fig. 1c). 
The TF CCAAT-enhancer-binding protein alpha (C/EBPa) is involved in myeloid dif-
ferentiation of hematopoietic stem and progenitor cells [22, 23]. ChIP-seq data for 
the histone marks H3K27ac [24] and H3K36me3 [25] were chosen to represent sharp 
and broad marks, respectively (Additional file 1: Fig. S1e, f, g). H3K27ac marks active 
enhancers and promoters [26] while H3K36me3 is associated with actively transcribed 
genes [27].

In silico generated and sub-sampled ChIP-seq data (Additional file 2: Table S1) for all 
scenarios were processed with our evaluation pipeline (Fig.  1b), which includes align-
ment against the respective reference genomes and peak prediction.

Computational tools for the analysis of DCS data can be divided into two groups 
depending on their ability to perform peak calling. While peak-dependent tools require 
previous peak calling through another application, peak-independent tools handle the 
peak calling procedure internally. We used MACS2 [28], SICER2 [29], and JAMM [30] 
for external peak calling to match the requirements for detecting different peak shapes 
from multiple replicates per sample. We then applied 31 available DCS tools plus 2 cus-
tom approaches (uniquepeaks and slidingwindow) to the datasets (Fig.  1d, Additional 
file 3: Table S2, Additional file 4: Table S3). To evaluate the outcomes of DCS tools, we 
calculated the precision-recall curve per tool and parameter setup. We used the AUPRC 
(Additional file 1: Fig. S1h) as the main measure of performance. As the exploration of 
the complete parameter space for each tool and scenario would have exceeded the scope 
of this work, we chose default and/or recommended parameters and/or adapted them 
to match respective peak shapes (Additional file 4: Table S3), resulting in 23,220 AUPRC 
values (Fig. 1d).

DCS tool performances depend on peak shape and regulation scenario

First, we compared the AUPRCs of all tools and parameter setups derived from sim-
ulated and sub-sampled datasets. As expected, most tools performed slightly better 
when in silico simulated ChIP-seq data were used as input, as peak regions were clearly 
defined and signal-to-noise ratios were high (Fig.  2a). This was particularly apparent 
for GenoGAM [31], csaw [32], NarrowPeaks [33], and uniquepeaks. Uniquepeaks is a 
simple custom approach marking only those regions as differential that were called in 
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one sample and not in the other. However, the performance of several tools was equal 
when simulated or sub-sampled data were used as input. Next, we focused on the DCS 
tools with the best performance for each test scenario to investigate specific differences. 
While simulated data yielded higher AUPRCs for TFs, the results were more heteroge-
neous when sharp and broad marks were compared (Additional file 1: Fig. S2a). Over-
all, we found that the difference in performance on simulated vs. sub-sampled regions 
was significantly higher for peak-dependent tools compared to tools with internal peak 
calling (Fig. 2b). However, we found that original peak shapes, signal-to-noise metrics, 
and background uniformity were preserved in sub-sampled data. DCSim also accurately 
mimicked these parameters (Fig.  1c, Additional file  1: Figs. S1e, f, g, and S2b). There-
fore, we decided to combine simulated and sub-sampled data to obtain one performance 
measure per tool and parameter setup for all subsequent evaluation steps.

Using this approach, we found that bdgdiff from MACS2, MEDIPS [34], and PePr [35] 
showed the highest median performance independent of peak shape or regulation sce-
nario (Fig. 3a). Yet, specific parameter setup combinations in several tools yielded supe-
rior performance for particular scenarios (Additional file  1: Fig. S3a, b). For example, 
bdgdiff/MACS2 was outperformed by EpiCenter [36] in identifying broad marks with a 
50:50 regulation scenario or by edgeR [37] in finding differential TF peaks with a 50:50 
regulation scenario (Additional file 1: Fig. S3b). To obtain more detailed insights into the 
performance of DCS analysis tools under specific conditions, we first focused on their 
performance depending on the peak shape. Highlighting the optimal parameter setup 
for each tool in a density plot of all AUPRC values revealed a linear relationship between 
AUPRC values in the 50:50 and 100:0 scenarios for both TFs and sharp marks, with the 
exception of a few outliers (Fig. 3b, left and middle panels). In contrast, comparison of 
AUPRC values from datasets with broad marks showed that a substantial number of 
tools performed better in the 50:50 regulation scenario (Fig. 3b, right).

DiffBind [38], bdgdiff/MACS2, edgeR, or DESeq2 [39] were prominently repre-
sented among the top five tool parameter setup combinations based on AUPRC val-
ues across all conditions (Fig. 3c, top tools with exact parameter setups are shown in 

Fig. 2  Performance of simulated and sub-sampled input data. a Log2-fold change of AUPRC values obtained 
from DCSsim simulated and DCSsub sub-sampled data. Values >0 indicate a better performance based on 
AUPRC for simulated data and <0 indicates a higher AUPRC for sub-sampled input. The overall difference for 
all DCS tools is shown on the left (bar with gray background). Tools were ordered by their median log2-fold 
change. b Comparison of AUPRC values of simulated and sub-sampled data for peak-dependent (n = 431) vs. 
peak-independent (n = 1363) DCS tools. P-value two-sided Wilcoxon rank sum test. Box plot limits, 25% and 
75% quantiles; center line, median; whiskers, 1.5× interquartile range
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Additional file 1: Fig. S3b). HOMERpd [40] (peak-dependent run) and DiffBind, both 
tools with previous peak calling via MACS2 or SICER2, yielded very good results for 
the 100:0 scenarios, irrespective of peak shape. Finally, MEDIPS performed very well 
in the analysis of sharp marks.

Fig. 3  Performance of benchmarked DCS tools based on AUPRC values. a Overview of AUPRC values per 
DCS tool for all test scenarios compared to random regions (see “Methods”), ranked by median AUPRC. 
Box plot limits, 25% and 75% quantiles; center line, median; whiskers, 1.5× interquartile range. b Density 
plots of AUPRC values per scenario for TFs (left), sharp (middle), and broad marks (right). The two (one for 
each regulation scenario) top-performing parameter sets per DCS tool are highlighted as colored symbols, 
remaining data points are visualized as density clouds. c AUPRC values of the top five DCS tools parameter 
sets per scenario (TF left, sharp mark middle, and broad mark right column; 50:50 regulation scenario top 
and 100:0 bottom row). Colored boxes indicate peak caller, if applicable and if default or adjusted parameter 
setups were used; whiskers, standard error of the mean
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To extend the results obtained from the AUPRC analyses, we interrogated how well 
the predicted differential regions matched the reference. As DCS tools rank their results 
based on various metrics, such as p-value, FDR, or diverse scores, it is not possible to 
rank predicted regions using a uniform threshold. Therefore, we focused on the top 300 
predicted regions, as at least 300 differential regions were classified by the simulation or 
sub-sampling procedures in all test cases. We calculated the false discovery rate (FDR) 
as the fraction of false positive bp and the false omission rate (FOR) as the fraction of 
false negative bp in individual peaks (Fig. 4a). To measure how precise individual DCS 
tools predicted reference regions, we calculated the percentages of predicted bp that are 
shorter or longer than the respective reference region in significantly different regions 
(Fig.  4a). As peak-dependent tools can only work with the input regions they receive 
from peak calling algorithms, several combinations did not yield meaningful results. For 
example, differential TF peaks could not be accurately predicted with edgeR subsequent 
to peak calling with SICER2 (Additional file  1: Fig. S4a) as this tool was designed for 
calling broad peaks. Furthermore, as a subset of DCS tools depends on a predefined win-
dow size, this affects their predictions. For instance, when EpiCenter was executed with 
broad mark data, all parameter setups were tested. A very narrow window size of 100 
(parameter setups 1 and 3) resulted in a high number of predicted regions and only the 
full dynamical expansion window parameter (parameter setup 2) predicted regions that 
closely resembled the sub-sampled reference (Additional file 1: Fig. S4b). The FDR was 
below 0.2 in all cases and even lower for most histone marks, while the FOR was lower 
than the FDR across most samples (Fig. 4b). This was caused by the relatively large part of 
the chromosome that was devoid of ChIP-seq signals. The FOR increased with broader 
peak shapes. The fraction of too short predictions was increased for sharp and broad his-
tone marks, while the percentages of too long or too short predictions were balanced for 
TF peaks (Fig. 4b). Broad marks at a 100:0 regulation scenario represented an exception: 
here we found that HOMERpd, DiffBind, and DESeq2 yielded higher FDR values and 
an increase in too long predictions. In contrast, MEDIPS and MAnorm2 [41] generated 
higher FOR values and higher percentages of too short predictions. This is likely caused 
by different peak calling strategies leading to the best AUPRC results in this test set. In 
the top-ranking DCS tool-peak caller combinations in this scenario, SICER2-derived 

Fig. 4  Accuracy profiles of DCS tools. a Schematic representation of accuracy profiles. Rows with yellow 
background show simulated or sub-sampled ChIP-seq signals. The reference region highlights the sample 
color with the higher signal. Regions with no difference are depicted in gray. The predicted regions from 
a DCS tool are highlighted with green and the calculated accuracy metrics with blue background. We 
investigated false positives, false negatives, and too long and too short regions, representing the false positive 
and false negative base pairs (bp), respectively with the constraint that the predicted regions overlapped 
with a reference region. b Bar charts show the false discovery rate (FDR), the false omission rate (FOR), the 
percentage of too short, and the percentage of too long bp for the best-performing parameter sets of the 
top 5 DCS tool parameter combinations per scenario (from left/5th to the right/1st) based on AUPRC. TFs 
(left), sharp marks (middle), and broad marks (right) in the columns and 50:50 regulation (top) as well as 
100:0 regulation (bottom) in the rows. Whiskers represent the standard deviation. c Example coverage plot of 
DCSsub sub-sampled H3K27ac reads (samples in row 1 (red) and 2 (blue)) representing sharp marks with the 
respective reference regions (row 3). In row 3 upregulation in sample 1 is indicated in red, downregulation 
in blue. Rows 4 to 8 show predicted regions from the best parameter setups of the top 5 DCS tools for sharp 
mark data and 50:50 regulation. The height of predicted regions represents the − log10 of p-value, adjusted 
p-value, or FDR or the score derived from the respective DCS tool. Higher bars represent higher confidence in 
the indicated region

(See figure on next page.)
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peaks were used for the analyses with HOMERpd, DiffBind, and DESeq2, and MACS2 
peaks were used for MAnorm2, while MEDIPS is a peak-independent tool. Hence, in 
this scenario, peak calling with SICER2 on broad mark data increased the fraction of 
false positives and too long predictions but decreased the fraction of false negatives and 
too short predictions for the top DCS tool setups. Thus, these data show that inaccura-
cies in the prediction of genomic regions are asymmetrically distributed depending on 
the DCS tool and peak caller (Fig. 4c, Additional file 1: Fig. S4c, d).

Fig. 4  (See legend on previous page.)
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Higher AUPRC positively correlates with higher signal‑to‑noise ratio

Another important aspect in DCS analysis is the signal-to-noise ratio of the investigated 
data. This parameter is typically assessed by the fraction of reads in peaks (FRiP) [42] 
which represents the ratio of mapped reads within called peaks to all usable reads in the 
sample. To test how the benchmarked DCS tools handle datasets with different signal-
to-noise ratios, we simulated ChIP-seq data with a 50:50 regulation scenario. We created 
datasets with TF, sharp, and broad mark peak shapes with half, two, and three times the 
level of background signal (i.e., the noise) of the original test sets. For the evaluation, 
we chose the top 5 DCS tools for the original six test scenarios (Fig. 3c). As expected, 
decreasing the background noise resulted in a homogeneous increase of performance 
for the majority of DCS tools (Fig. 5a, Additional file 1: Fig. S5a). However, there were 
some exceptions: The AUPRCs for HOMERpd were largely unaffected by the level of 
background noise. Normr, EpiCenter, and DiffBind exhibited lower AUPRCs associated 
with low noise when sharp marks were analyzed, and no consistent pattern of correla-
tion between median AUPRC and noise level was observed for MAnorm2 and QChIPat 
in the analysis of TF peaks (Additional file 1: Fig. S5a).

While these experiments allowed us to precisely control the global signal-to-noise 
ratio, the background noise is often unequally distributed in real datasets. To inves-
tigate the effect of this on DCS analysis, we analyzed additional sets of real ChIP-seq 
data with different signal-to-noise ratios. For TF data, we included ChIP-seq results for 
STAT6 and PU1 [43], which are factors involved in the differentiation of hematopoietic 
cell types. For additional sharp marks, we chose ChIP-seq data for H3 lysine 9 acetyla-
tion (H3K9ac) (Wang Y, Sun Z: Gestational choline supplementation improves cross-
generational mood by epigenetic upregulation of Nr3c1, unpublished) and H3 lysine 4 
trimethylation (H3K4me3) [43], which are histone modifications associated with tran-
scriptional activation. As broad marks, we selected ChIP-seq data for H3 lysine 27 

Fig. 5  Influence of FRiP on the performance of DCS tools. a AUPRCs of the top 11 DCS tools (based on 
AUPRC for the initial six shape and regulation scenarios) depend on the background noise. Boxplots per DCS 
tool are ordered by noise level, from high to low. b FRiP in the sub-sampled datasets. Darker color represents 
higher FRiP. Top panel, TFs; middle panel, sharp marks; bottom panel, broad marks. Whiskers indicate the 
standard deviation. c AUPRCs for sub-sampled ChIP-seq data from different TFs and histone marks depend on 
FRiP. Boxplots per DCS tool are ordered by FRiP from low to high. Top panels, TFs; middle panels, sharp marks; 
bottom panels, broad marks. Box plot limits, 25% and 75% quantiles; center line, median; whiskers, 1.5× 
interquartile range
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trimethylation (H3K27me3) [44], which is a marker for gene repression and H3 lysine 79 
dimethylation (H3K79me2) [45], which is closely correlated with transcriptional elonga-
tion. As expected, AUPRCs of most DCS tools increased with higher FRiP for TF data-
sets (Fig.  5b, c, Additional file  1: Fig. S5b). The only exception was MAnorm2, where 
the median AUPRC was decreased for the dataset with the highest FRiP. Although the 
differences in FRiP were larger in sharp mark data than in the TF sets, no uniform cor-
relation of AUPRC values with higher FRiPs was observed (Fig. 5b, c, Additional file 1: 
Fig. S5b). For broad histone marks, we noticed stable or even decreased AUPRCs for 
datasets with higher FRiP (Fig. 5b, c, Additional file 1: Fig. S5b). Notably bdgdiff from 
MACS2 received lower AUPRC for the sub-sampled broad mark samples with higher 
FRiP. In summary, these experiments show that increasing FRiP is not always positively 
correlated with the performance of DCS tools.

Chromosome characteristics influence the performance of DCS tools

Another important aspect in DCS analysis is the characteristics of ChIP-seq signals 
deriving from chromosomes that differ in size and nucleotide composition. To test the 
influence of these parameters, we simulated peak sets for TFs, sharp and broad marks 
with a 50:50 regulation from four additional mouse chromosomes. As our initial analy-
ses were based on chromosome 19 (61.431.566 bp, 43% GC), which represents the short-
est mouse chromosome, we added the longest chromosome (chr1: 195.471.971 bp, 41% 
GC). We also added three chromosomes with divergent size and GC content (chrX: 
171.031.299 bp, 39% GC; chr11: 122.082.543 bp, 44% GC; chr8: 129.401.213 bp, 42% GC) 
(Additional file 1: Fig. S6a). Results for the top DCS tools of the initial analysis showed 
that AUPRCs were relatively stable, indicating that DCS tool performance is largely 
unaffected by diverging chromosome parameters (Additional file 1: Fig. S6b). Notably, 
analysis of chromosome X with several tools yielded slightly decreased AUPRC values 
for TFs, sharp and broad marks.

To further investigate the uniformity of ChIP-seq signals between chromosomes, 
we also sub-sampled ChIP-seq data for C/EBPa (TF), H3K27ac (sharp mark), and 
H3K36me3 (broad mark) from five representative chromosomes of the mouse genome. 
Despite a higher degree of heterogeneity, differences in AUPRCs between chromosomes 
from the sub-sampled data were comparable to the results obtained with simulated data 
(Additional file 1: Fig. S6c). This included the exceptional behavior of chromosome X. 
Combination of the results from the simulation and the sub-sampling confirmed that 
neither size nor GC content strongly influenced the performance of DCS tools (Fig. 6). 
The slight reduction in AUPRCs for chromosome X was preserved in the majority of 
tools and QChIPat resulted in the most heterogeneous distribution of AUPRCs. Lastly, 
no obvious correlation between chromosome length or GC content and the AUPRC of 
the top-ranking tools could be observed (Additional file 1: Fig. S6d). In summary, these 
analyses show that chromosome and ChIP-seq signal characteristics affect the AUPRC 
of the top-ranking tools, while we did not observe any clear advantage of specific tools 
for particular scenarios and/or settings.
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Different DCS tools show varying computational requirements

Next, we assessed the runtime and memory requirements of each computational tool 
for DCS analysis. Whereas the majority of tools completed the analysis of the initial 
small test datasets within minutes, three tools required more than 1 h of processing 
time (Fig. 7a). All tools were run with a single CPU, with the exception of GenoGAM 
and MultiGPS [46] for which five threads were used to complete the analysis in a rea-
sonable time frame. Furthermore, the time required for preparation and/or reformat-
ting of input files was different for the investigated tools. However, on average, less 
than a minute was required for this step (Additional file  1: Fig. S7a). The majority 
of tools required between 100 MB and 2 GB of memory to process the benchmark 

Fig. 6  Chromosome characteristics and signal distribution influence AUPRC. Combined AUPRCs from 
simulated and sub-sampled data of the top 11 DCS tools (based on AUPRC of the initial six shape and 
regulation scenarios) for five chromosomes of mm10 (chr1, chr8, chr11, chr19, and chrX) for TFs, sharp, and 
broad marks are shown. Chromosomes per DCS tool are ordered by length, from short to long. Top panel, TFs; 
middle panel, sharp marks; bottom panel, broad marks. Box plot limits, 25% and 75% quantiles; center line, 
median; whiskers, 1.5× interquartile range
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datasets (Fig.  7b). Only MultiGPS, GenoGAM, and MMDiff2 [47] required signifi-
cantly more memory, ranging from 17 to 34 GB. As expected, most tools required 
less memory and completed faster when processing TF peaks in comparison to sharp 
or broad marks, as the latter comprised 2.0- to 2.4-fold more reads (Additional file 1: 
Fig. S7b, c).

Overview of the performance of DCS tools highlights individual strengths and weaknesses

To obtain a comprehensive overview of the performance of individual DCS tools, we 
highlighted the AUPRCs for the top parameter setup per tool for each regulation sce-
nario and peak shape (Fig. 8a). We also combined top AUPRC values for peak shapes, 
regulation scenarios, and over all datasets (Fig. 8a). In addition, we calculated the average 
performance over all parameter setups per tool (Additional file 1: Fig. S8a). Furthermore, 
we visualized the accuracy profiles and the stability metrics, which include the stand-
ard deviation between the five independent predictions and the number of non-suc-
cessful runs, as average per tool (Fig. 8a, Additional file 1: Fig. S8b). The computational 

Fig. 7  Runtime and memory requirements of benchmarked DCS tools. a Average runtime and b memory 
consumption of all benchmarked DCS tools over the six tested scenarios. Due to their extensive runtimes, 
GenoGAM and MultiGPS were executed with 5 workers. Whiskers indicate standard error of the mean

Fig. 8  DCS tool performance and guidelines for DCS tool selection. a Heatmap summarizing DCS 
tool performance. Columns represent top AUPRC values, accuracy profiles, stability, runtime, memory 
consumption, and mean DCS score of the benchmarked DCS tools. The AUPRC of the best parameter setup 
per DCS tool is shown for peak shape and regulation scenarios and their respective combinations. All other 
metrics are shown as average of all parameter setups per DCS tool over all test scenarios. Standard deviations 
were calculated between AUPRCs of the simulated and sub-sampled replicates. The number of NA results 
summarizes all failed and faulty execution runs or runs with empty outputs. Preparation time represents the 
time to process the input files preceding DCS prediction. Tools were ordered by their mean DCS score over 
all test sets. b, c Decision trees listing top-performing parameter setups per DCS tool based on DCS score to 
guide investigators towards the five top-ranking DCS tools and their parameter setups depending on peak 
shape and regulation scenario. c Decision tree for situations where shape, regulation, or both are unknown. 
Here, the ranking is based on DCS score of the combined regulation scenarios for TFs, sharp, and broad 
marks, the combined peak shapes for 50:50 and 100:0 regulation and over all tested scenarios for situations 
where shape and regulation are unknown. Colored boxes indicate the applied peak caller for the respective 
parameter setup and if default, default with custom windows, or adjusted parameters should be used. For 
detailed information on the setups, see Additional file 4: Table S3 and Additional file 6: Table S5

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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requirements are represented as average runtime, preparation time, and memory usage. 
This global analysis revealed that the majority of tools showed a solid performance. The 
top 10 tools based on the top overall AUPRC values were DiffBind, bdgdiff/MACS2, 
MEDIPS, MAnorm2, edgeR, ChIPComp [48], DESeq2, DIME [49], HOMERpd (peak-
dependent run), and HMCan [50].

MMDiff2, GenoGAM, and DBChIP represent examples of tools that yielded higher 
AUPRC for datasets with TF peaks in comparison to other peak shapes [47]. Conversely, 
e.g., ChIPDiff [48] and QChIPat [49] predicted sharp and broad peaks with a better per-
formance than TF peaks. Increased AUPRC values for broad over sharp and TF peaks 
were observed for SICER2. This was expected, as this tool was initially designed for the 
analysis of histone mark peaks.

Two patterns emerged when the performance of DCS tools was compared based on 
the biological scenario. HOMER and HOMERpd (executed with previously called peaks) 
showed increased AUPRC values in the 100:0 scenarios, while RSEG [51], MAnorm2, 
and normR [52] yielded better results for the 50:50 regulation scenario. In particular, 
RSEG was not able to successfully deal with a global downregulation of ChIP-seq signals 
in one sample.

The FDR values ranged between 0.026 and 0.761 for all investigated tools. Data from 
SICER2, RSEG, GenoGAM, ChIPnorm, csaw, uniquepeaks, and NarrowPeaks generated 
FDR values higher than 0.5. FOR rates were between 0.009 and 0.029, with the maxi-
mum value of 0.078 represented by RSEG as the only outlier. When focusing on pre-
dictions that were too long, RSEG showed increased values. However, this was due to 
aberrant results from the 100:0 scenario. Without this outlier, the FOR values ranged 
from 0.0001 to 7.24%. The fraction of predicted regions that were shorter than the refer-
ence was between 0.002 and 0.31%. The highest values arose from DBChip and Multi-
GPS with 0.31% and 0.29%, respectively. The standard deviation of the AUPRCs between 
replicates was generally low, ranging from 0.008 (ChIPDiff) to 0.061 (csaw). There were 
no empty output files or failed execution runs for most tools, except for a few failed runs 
with MMDiff2 (14.6%) and NarrowPeaks (7.6%). MMDiff2 memory allocation failed for 
individual peak files for broad or sharp histone marks and NarrowPeaks sporadically 
exited with inconclusive error messages.

A guide to selecting optimal DCS tools depending on peak shape and regulation scenario

While the AUPRC values represent the performance of a given DCS tool/setup with 
high precision, the stability metrics, runtime, and memory usage also need to be taken 
into account for the practical application. Therefore, we introduce a weighted score 
(Additional file 1: Fig. S8b, for weights see “Methods”) that combines all aforementioned 
metrics. Assuming that for the practical application of a DCS tool precision and recall 
are the most important factors, the DCS score prioritizes AUPRC over runtime and 
memory consumption. Runtime was given more weight than preparation time, number 
of NAs, and standard deviation (values used for Additional file 1: Fig. S8a in Additional 
file 5: Table S4 and Additional file 6: Table S5). We utilized the resulting values to guide 
investigators towards the optimal choice and setup of a DCS tool that is tailored for 
the type of data under investigation in two decision trees (values and ranking in Addi-
tional file 6: Table S5). The first tree shows the top five DCS tool setups for different peak 
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shapes and regulation scenarios (Fig. 8b). In the second tree, we highlight the top five 
DCS tool setups for the analysis of ChIP-seq datasets for which peak shape and/or regu-
lation is unknown (Fig. 8c).

Discussion
While several publications have compared small subsets of software tools for DCS anal-
ysis [31, 32, 35, 36, 41, 46–48, 50, 52–61], only one study has investigated a larger set 
of 14 tools at a low level of comprehensiveness [62]. In this work, we set out to bench-
mark available DCS tools by investigating their predictions on in silico simulated and 
sub-sampled genuine ChIP-seq data representing the three most prominent peak shapes 
and regulation scenarios. Using this setup, we provide a comprehensive characterization 
of 33 DCS tools and approaches through AUPRCs together with information about their 
stability, runtime, and memory usage. By merging these parameters into a combined 
DCS score, we provide decision trees that will help to guide biomedical scientists, biolo-
gists, and bioinformaticians alike, identifying the optimal tool for comparative analysis 
of ChIP-seq data.

Based on the final DCS score, we did not identify a single DCS tool that showed supe-
rior performance across all regulation scenarios and peak shapes. In addition, we found 
that the choice of parameter setup among individual DCS tools could have a massive 
influence on the accuracy of the results. Yet, multiple tools robustly ranked among the 
best candidates in many conditions tested by us. DCS analysis using previously called 
peaks showed only a slight advantage over peak-independent tools. Bdgdiff from 
MACS2 clearly stood out as one of the most robust tools across different scenarios and 
input parameters. In this case, the quality of the results was mostly dependent on the 
peak calling setup to match the peak shape of the analyzed data. However, robust peak 
calling was a prerequisite for optimal performance in differential peak prediction for all 
tools.

As expected, a decrease in noise led to an increase in AUPRC values in both simulated 
and sub-sampled data. While this correlation was very high when TF peaks were ana-
lyzed, it was less conserved for sharp marks and almost absent upon evaluation of broad 
mark peak sets. In particular, the performance of MACS2 dropped with increasing FRiP 
for broad marks. The reason for this might be that MACS2 was designed to work with 
TFs and sharp marks. Thus, irrespective of the FRiP, it is possible that peaks, subsec-
tions of peaks, or summits of particular broad mark ChIP-seq data (e.g., H3K36me3) 
feature characteristics, which MACS2 cannot process in an efficient fashion. In general, 
the linkage of AUPRCs to the individual characteristics of histone mark ChIP-seq data-
sets appeared to be stronger than to the respective FRiP.

Consistent differences in DCS tool performance between chromosomes were only 
observed when autosomes were compared to chromosome X. The lower AUPRC in 
ChIP-seq data derived from the X-chromosome might result from higher numbers of 
unknown bases (number of Ns: 4.41% in chrX vs. 2.99% mean of mm10), scaffolds, and 
unspanned gaps in its assembly in mm10. In particular, QChIPat yielded very hetero-
geneous results between chromosomes for different peak shapes. This could be caused 
by the species parameter included in this tool, which is limited to the whole genomes 
of mouse or human. However, as in typical DCS analyses all chromosomes of a given 
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species are investigated, this effect might be mitigated in real-life scenarios. In general, 
however, these results indicate that for optimal tool performance, it is recommended to 
appropriately adjust the parameters specifying genome length, effective genome size, or 
species.

To aid investigators in their choice of the most appropriate tool for DCS analysis, we 
present the most suitable tool combinations for individual peak shapes and scenarios 
that were simulated and sub-sampled in our study. We combined our assessment criteria 
to suggest tools that are best suited to analyze ChIP-seq data of unknown peak shape 
and/or regulation scenario. To investigate ChIP-seq signals with mixed peak shapes, 
we recommend using the respective top-ranking tools. As correct peak detection is a 
prerequisite for high AUPRCs, concurrent peak calling with different setups is also an 
option, as this can be used to match the major peak shape types. For this case, users are 
advised to stick to the suggested peak-dependent DCS analysis tools in the respective 
regulation scenario with unknown peak shapes.

Despite their good performance in selected scenarios, tools applying predefined bin- 
or window-sizes like MEDPIS, normR, QChIPat [60], or EpiCenter predicted multiple 
short regions per individual broad peak region. Predictions from these tools are linked 
to the predefined bin size, which can be several orders of magnitude shorter than the 
actual peaks. While the sum of all short predictions may provide sufficient coverage 
of the reference region, this situation might lead to ambiguous situations in the down-
stream analysis of data, e.g., in peak annotation and motif enrichment analysis.

Our findings and recommendations are expected to be transferable to the comparative 
analysis of NGS technologies that produce coverage signals similar to ChIP-seq, such as 
DNase-seq [63], Mnase-seq [64], FAIRE-seq [65], DamID-seq [66–68], and CUT&RUN 
[69]. Also in differential ATAC-seq [70], the type of applied normalization was shown 
to greatly influence the identification of differentially accessible genomic regions [71]. 
As ATAC-seq signals often share characteristics of sharp mark ChIP-seq peaks, investi-
gators might choose the tools, which showed best performance in this section, such as 
MEDIPS, bdgdiff/MACS2, or DiffBind for the analysis of ATAC-seq data. Furthermore, 
in single-cell ATAC-seq [72, 73] data, it might be appropriate to stick to the guidelines 
for sharp marks without a fixed regulation scenario. Consequently, our recommenda-
tions are also applicable for single-cell ChIP-seq [11, 74] data analysis. As the regulation 
scenarios could be diverse, we suggest using the tools that show highest accuracy in situ-
ations where only the peak shape is known.

Conclusions
This benchmarking study and our recommendations represent a comprehensive guide-
line for the choice and setup of the optimal software for DCS analysis that is tailored 
to the data at hand. Our recommendations cover the most prevalent peak shapes and 
the most relevant biological scenarios. This work is expected to benefit all investigators 
applying DCS analysis and will lead to improvements in the identification and character-
ization of protein-DNA interactions. Hence, this will help in the identification of molec-
ular mechanisms of gene regulation in health and disease.
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Methods
DCSsim

DCSsim generates in silico ChIP-seq reads for two samples with two or more replicates. 
It uses a user-defined reference sequence with additional control input reads. Spike-in 
reads from a user-defined additional species can be added. DCSsim was established by 
object-orientated programming based on a script created for the THOR manuscript 
[61] with the following modifications: A modified version of the weight distribution 
was used for input generation. We added read objects, which was better suited for the 
object-oriented programming style used by us. We extended the process of how reads 
were distributed into two samples through the beta distribution and the dispersion into 
replicates using the Dirichlet distribution. We also added the option to change param-
eter values, which enabled us to simulate different scenarios and implemented multi-
threading support.

Clusters of binding sites in this context are sets of one or more protein-DNA interac-
tions in close proximity in the genome sequence. Clusters were initialized by picking 
a random position in the provided genome sequence. The number of proteins in one 
cluster was drawn from a multivariate normal distribution and positions were checked 
against a blacklist, which can be provided by the user. In the next step, the number of 
proteins at the defined positions was initialized. Inside a protein object, the number 
of fragments was drawn from a combination of a lognormal and a gamma distribution 
and fragments were distributed into two samples via a beta distribution. The number of 
fragments was scaled based on the results of a Laplace distribution. Alternatively, beta 
results were scaled based on an exponential distribution. The first option does not touch 
the (beta) distribution into the two samples, while the latter option does not change 
the number of fragments. There is also the possibility to apply no scaling. Next, indi-
vidual fragments were initialized and distributed to sample 1 and sample 2 as well as into 
the defined number of replicates based on the result of the beta distribution. This was 
achieved via a Dirichlet distribution, which is the multivariate version of a beta distribu-
tion. Every fragment received a random shift in its position, which can be modified via 
a set of parameters. In addition, background noise was added to the samples and their 
replicates. This was done via weighted bins, which were also used to create the noise in 
input objects for both samples. Noise weights were sampled from a gamma distribution. 
DCSsim is also able to construct spike-in reads from different organisms using a similar 
approach as is used for generating input samples. Finally, reads were randomly chosen 
from both ends of the fragments and written to fasta files together with noise and spike-
in reads. The positions of peaks as well as their regulation status were stored in bed files, 
and a general report with tables and histograms was stored in pdf format.

DCSsim supports multi-threading as well as simulating in batches to account for lim-
ited memory space on the used machine. A set of parameter simulation scripts that 
enable distribution sampling without creating reads but creating diverse histograms and 
plots to save time for parameter estimation can be found at https://​github.​com/​Edert/​
DCSsim.

https://github.com/Edert/DCSsim
https://github.com/Edert/DCSsim
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Simulation

DCSsim and DCSsub parameters were chosen to match real ChIP-seq experiments. For 
each of the DCS scenarios, we performed five simulations creating independent test sets. 
We applied DCSsim for chromosome 19 of the mouse genome sequence (mm10) with 
repeat-masked regions greater than 1 kb as a blacklist. We simulated 1000 peaks in two 
replicates per sample. The final reads had a length of 50 bp. The minimum reads per 
region was set to 10 reads, and a threshold of 0.7 for being differentially occupied was 
used. For tools capable of handling scaling factors, we also simulated spike-in reads from 
Drosophila melanogaster.

For TF peaks, fragments were designed to have a mean length of 200 bp with a stand-
ard deviation of 50. Fragment count parameters based on the fits of the real ChIP-seq 
data were --frag-count-sh 2.23281 --frag-count-sc 12.43632 --frag-count-op 0.5 --frag-
count-om 3.7 --frag-count-os 0.9. Protein counts per cluster were set to 1, and the pro-
tein size for TF peaks was 400 bp. Beta for the 50:50 scenario was set to 0.5|0.5 and 
6.0|0.5 for the 100:0 scenario. Scaling was set to “frag” and exponential distribution 
parameters: --frag-count-ex-loc 10 --frag-count-ex-scale 200. Background noise was set 
to 0.75 and spike-in was true with the Drosophila melanogaster chromosome 6 (dm6_
chr2L) and a coverage of 0.25.

For sharp marks, all parameters were similar to those of TF peaks except the fragment 
count parameters were as follows: --frag-count-sh 1.35985 --frag-count-sc 56.71249 
--frag-count-op 0.5 --frag-count-om 7.2 --frag-count-os 0.9 and protein size was 2000 
bp. Scaling was set to frag and --frag-count-ex-loc 10 --frag-count-ex-scale 5000. Frag-
ment distances were on and set to --frag-dist-muno-mean=900,900 --frag-dist-muno-
cov “50000,0;0,80000”. Background noise was set to 1.5.

Broad mark peaks were also simulated like TF peaks with the difference that the 
fragment count parameters were as follows: --frag-count-sh 1.72598 --frag-count-sc 
210.25902 --frag-count-op 0.5 --frag-count-om 6.6 --frag-count-os 0.9 and protein size 
was 8000 bp. Scaling was --frag-count-scaling=“frag” --frag-count-ex-loc 10 --frag-
count-ex-scale 2500. Fragment distances were switched on and --frag-dist-muno-
mean=3000,5000 --frag-dist-muno-cov “1000000,0;0,1000000”. Background noise was 
set to 1.5.

For the different FRiP scenarios, we used the same parameters as described above and 
set --back-avg to 0.375, 1.50, and 2.25 for 0.5×, 2×, and 3× background signal respec-
tively for TFs. For sharp marks and broad marks, we set --back-avg to 0.75, 3.0, and 4.5. 
The four additional chromosomes were also simulated as described above and the -c 
parameter was set to chr1, chr8, chr11, and chrX depending on the chromosome used 
for the simulation.

DCSsub

DCSsub generates DCS reads for two samples in two or more replicates. This is done by 
non-random sub-sampling data from one genuine ChIP-seq bam file plus one or more 
ChIP-seq input control bam files. For all described experiments, the ChIP-seq bam file 
was obtained by merging multiple alignment files (replicates) of the same TF or his-
tone mark (for more details see “Sub-sampling” section) via BEDtools [75] merge. As 
DCSsub uses a more or less reduced fraction of the original sequence reads from the 
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supplied alignment bam files, we refer to the output data as sub-sampled. Only regions 
listed in the supplied bed file were processed into differential regions. For each region, 
the overlapping and aligned reads were included into the sampling pool. The number 
of fragments was sampled in the same way as in DCSsub (i.e., a combination of lognor-
mal and gamma distributions) and also the distribution into two samples and replicates 
was achieved as previously described (based on beta and Dirichlet distributions, respec-
tively). The regions together with the information about differential regulation were 
stored in a bed file, which was then used for the evaluation of the DCS tools. For the 
complement regions of the input bed file (the regions not listed in the regions bed file), 
only a simple upper threshold was applied to limit the noise to a user-defined maximum. 
The input was created by averaging the coverage over all supplied input bam files and 
then reads were randomly selected. A set of parameter estimation scripts was created 
to aid the users in defining the parameter settings without creating bam and bed out-
put files but producing informative plots and histograms (https://​github.​com/​Edert/​
DCSsub).

Sub‑sampling

We used alignment data against chromosome 19 of the mouse reference (mm10) 
sequence from three independent ChIP-seq experiments: C/EBPa [21] (GSE117780: 
GSM3308661, GSM3308663 as C/EBPa ChIP-seq data, GSM3308662, GSM3308664 
as input control), H3K27ac [24] (GSE158727: GSM4809077, GSM4809078 as H3K27ac 
ChIP-seq data, GSM4809082, GSM4809081 as input control), and H3K36me3 [25] 
(GSE110521: GSM2995177, GSM2995178, GSM2995183, GSM2995184 as H3K36me3 
ChIP-seq data, GSM2995174, GSM2995171 as input control) for TF, sharp mark and 
broad mark signals, respectively. Quality control parameters including metrics proposed 
by the ENCODE [76] and Roadmap Epigenomics [18] consortia and raw sequence read 
numbers for the genuine ChIP-seq data and the merged files used for DCSsub are shown 
in Additional file 2: Table S1. QC metrics for the aligned bam files were calculated with 
ssp (version 1.2.2) [77]. The merged bam files (BEDtools merge) per signal shape in com-
bination with the respective input control bam files and the regions as bed files were 
used as input for DCSsub. For the region-bed files of C/EBPa and H3K27ac ChIP-seq 
data, peaks from MACS2 peak calling in mm10 chromosome 19 were filtered for a score 
bigger than 100 and 130, respectively. For the H3K36me3 regions, peak calling was per-
formed with SICER2 and peaks were filtered for an FDR ≤ 0.01. For each of the DCS 
scenarios, five sub-sampling runs were performed to obtain five independent datasets. 
For the C/EBPa ChIP-seq data, we set fragment scaling on and fragment number scaling 
parameters --frag-count-ex-loc 10 --frag-count-ex-scale 200 were applied. Beta param-
eters were 0.5|0.5 for the 50:50 and 6.0|0.5 for 100:0 scenarios. The threshold for differ-
ential peaks was set to 0.7 with a minimum of 10 reads. The background was set to 0.9. 
For the H3K27ac ChIP-seq data, we used --frag-count-ex-loc 10 --frag-count-ex-scale 
5000 and a background of 0.7. For H3K36me3 data, we applied --frag-count-ex-loc 10 
--frag-count-ex-scale 2500 and a background percentage of 0.1.

For the additional genuine ChIP-seq data with lower and higher FRiP, we used 
data from GSE159627 [43] (GSM4836208, GSM4836209 as STAT6 ChIP-seq data, 
GSM4836252, GSM4836253 as PU1 ChIP-seq data, GSM4836144, GSM4836145 

https://github.com/Edert/DCSsub
https://github.com/Edert/DCSsub
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as H3K4me3 ChIP-seq data and GSM4836077 as input control). H3K9ac ChIP-seq 
data was used from GSE84314  (Wang Y, Sun Z: Gestational choline supplementa-
tion improves cross-generational mood by epigenetic upregulation of Nr3c1, unpub-
lished) (GSM2231391, GSM2231392 as H3K9ac ChIP-seq data and GSM2231389, 
GSM2231390 as input control), H3K4me3 ChIP-seq data from GSE159627 [43] 
(GSM4836144, GSM4836145 as H3K4me3 ChIP-seq data and GSM4836077 as input 
control), H3K27me3 ChIP-seq data from GSE150182 [44] (GSM4542845, GSM4542846 
as H3K27me3 ChIP-seq data and GSM4542826, GSM4542828 as input control), and 
H3K79me2 ChIP-seq data from GSE134083 [45] (GSM3936447, GSM3936448 as 
H3K79me2 ChIP-seq data and GSM3936504 as input control). For PU1 and STAT6 sub-
sampling, we used the same parameters as described above for TF. For STAT6, we set 
–frag-count-ex-scale to 2500. For H3K4me3 and H3K9ac, we used the same parameters 
as described for H3K27ac. We sub-sampled H3K27me3 and H3K79me2 as described for 
H3K36me3.

To sub-sample additional chromosomes, we applied the same parameters as described 
for C/EBPa, H3K27ac, and H3K36me3 ChIP-seq datasets, and used input control data-
sets from the same experiments. We adapted the -c parameter according to the chromo-
some (chr1, chr8, chr11, and chrX), and set the chromosome length accordingly (chr1 
195471971, chr8 129401213, chr11 122082543, and chrX 171031299).

Processing

We used ART [78] (version 2.5.8) on the fasta output files of DCSsim to simulate an Illu-
mina HiSeq 2500 sequencing machine (parameters: art_illumina -ss HS25 -l 50 -c 1 -na). 
Then the simulated and sub-sampled reads were processed with the same shell-based 
pipeline.

Quality filtering and trimming, as well as length filtering, was done with PRINSEQ-lite 
[79] (parameters: -out_bad null -min_len 30 -min_qual_mean 30 -ns_max_n 5 -trim_
tail_right 8 -trim_tail_left 8 -trim_qual_right 30 -trim_qual_left 30 -trim_qual_window 
5). Alignment against the mouse reference genome sequence (mm10) and alignment of 
the spike-in data against the Drosophila melanogaster genome (dm6_chr2L) was per-
formed with bwa [80] (version 0.7.15-r1140). Results were processed and split into the 
respective species with samtools [81] (version 1.7). As all reads from the simulation and 
sub-sampling are meant to stem from the ChIP-seq signal and no additional PCR ampli-
fication simulation step was implemented, we kept duplicate single-end reads.

Signal to noise metrics

We used SSP [77] to calculate the normalized strand coefficient and background uni-
formity and the plotFingerprint function from deepTools [82] to retrieve the Jensen-
Shannon distance and CHANCE divergence for genuine ChIP-seq data, sub-sampled 
(DCSsub), and simulated (DCSsim) signals.

Prediction

Peaks were called with JAMM [30] (version 1.0.7rev6), MACS2 [28] (version 2.2.6), and 
SICER2 [29] (version 1.0) on the simulated and sub-sampled data (Additional file  4: 
Table S3). JAMM and SICER2 were executed with a sharp and broad setup, resulting in 
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eight peak files per simulated and sub-sampled sample (broad and sharp peak calling for 
two replicates of samples 1 and 2). For JAMM, the parameters were -r peak and -r win-
dow -b 1000 -w 1. SICER2 was applied with window 50, gap 100 and window 100, gap 
200, for sharp and broad peak calling respectively. For MACS2, we used default param-
eters and a -q of 0.05. The --broad option was switched off in one run and on in the 
second. The --nomodel parameter was set with a --extsize of 200. We used the default -g 
value that did not influence of the outcome, see Additional file 1: Fig. S1i. This resulted 
in 4 peak files per comparison and in sum 16 peak files (broad and sharp, model and 
nomodel, two replicates for samples 1 and 2). Peak-dependent tools were executed with 
the bam files obtained from simulation and sub-sampling. Each peak calling setup was 
then included individually. For each DCS tool (all tools and program versions available 
on September 10, 2020, see Additional file 3: Table S2), we created an individual wrapper 
shell script, which converts the input bam and bed files into a file format the respective 
tool requires as input. The time span required by this conversion was saved as prepa-
ration time. If required, the virtual environment for the currently tested software was 
loaded before the tool was applied. After successful prediction, the runtime was stored 
per parameter setup. The individual parameter setups are shown in Additional file  4: 
Table  S3. Output files were converted into bed format and finally all temporary files 
were removed. Results were stored in one output bed file with peak positions, their log2 
fold-change, and the respective p-value, FDR, or score. In addition, a file with runtimes 
in seconds per parameter setup was created. All tools with the exception of MMDiff2 
(extensive memory consumption), ChIPnorm (commercial Matlab software required), 
GenoGAM, HMCan, and MultiGPS (due to long runtimes, 5 threads were used for these 
three tools) were run with a single thread on an Intel(R) Xeon(R) CPU E5-2609 v4 @ 
1.70 GHz with 64 GB memory. The mentioned exceptions were executed on an Intel(R) 
Xeon(R) CPU E5-2603 v3 @ 1.60 GHz with 128 GB memory.

Evaluation

BEDtools [75] was used for preprocessing, and then the R libraries ROCR [83] and flux 
[84] were applied for curve and AUPRC calculation. In this iterative process, predicted 
peaks were first sorted according to p-value, FDR, or score, depending if lower or higher 
values represent better results. Then these scores were processed successively, and in 
each step the true positive, false positive, condition positive, and condition negative bps 
were calculated and stored. The resulting values were used to create precision-recall 
curves.

Random classifier

To compare the AUPRC values from the analysis of DCS tools to values from a random 
peak prediction, we randomized existing peak data by random shuffling of peak posi-
tions or p-values and their position and created completely random peak regions with 
the same mean length (Fig.  3a, Additional file  1: Fig. S3a, Additional file  4: Table  S3). 
To compare the AUPRCs of the benchmarked tools to random region predictions, we 
created a set of random predictors (Additional file 4: Table S3) that were based on the 
regions obtained from the simulation and sub-sampling. We applied them on two sce-
narios and three peak shapes with five replicates each to create dependent random 
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regions, independent random regions, and completely random regions. For the depend-
ent random prediction, we took simulated and sub-sampled regions, assigned randomly 
shuffled p-values, random p-values between zero and one, and assigned random p-val-
ues with the same ratio of changing versus non-changing regions. A random shuffling of 
the regions inside mm10 chromosome 19 with BEDtools was also performed and data 
were combined with a 20% increased and 20% decreased region length. For independent 
random prediction, we created 1000 random regions with the same mean region length 
of the simulated or sub-sampled template with BEDtools. We then assigned random 
p-values between zero and one and applied the same ratio of changing regions. We did 
the same for 500 and 2000 simulated regions and for 20% increased and 20% decreased 
region length. We processed the resulting regions together with the predictions of all 
DCS tools and used the resulting AUPRCs for comparisons.

Accuracy profiles

The top 300 predicted differential peaks (i.e., predicted regions sorted by the tool-spe-
cific quality metric like p-value, FDR, or score) per tool parameter setup were compared 
to the simulated as well as sub-sampled reference peaks. We chose 300 regions to cap-
ture predictions of differential regions only. The minimum number of simulated differ-
ential regions was 347. False negatives were calculated by simply summing up all bp in 
simulated or sub-sampled regions that changed without being predicted. False positives 
were counted by adding the bp of predicted regions without counterparts in changing 
regions in the simulated or sub-sampled reference. For the FDR, the number of false pos-
itives was divided by the sum of bp of all predicted regions. The FOR was calculated by 
dividing all false negatives by the sum of not predicted bp, which is the length of chr19 
minus the sum of all predicted regions. We subtracted the overlap of individual predic-
tions versus the reference in bp and the number of bp covered by regions not overlap-
ping between these two sets from the total length of all predicted regions to obtain the 
“too long” measure. Similarly, the “too short” measure was calculated by subtracting the 
overlap of predictions with true changing regions in bp from the length of all changing 
reference regions overlapping (≥ 1 bp) with any predicted region in bp. We calculated 
the percentages for “too long” and “too short” by dividing the values by the length of all 
simulated or sub-sampled regions in the reference that changed between samples. All 
region overlaps were determined by BEDtools.

Stability metrics

As standard deviation, we calculated the standard deviation of the AUPRC between all 
replicates of a specific tool parameter setup and used the mean of all parameter setups 
per tool. The number of NA results summarizes all failed runs or runs without output 
per tool. For the final score calculation, each metric was calculated on parameter setup 
level.

DCS score

We combined the AUPRC, the stability metrics (standard deviation and number of 
NAs), runtime, preparation time and memory consumption for each scenario, tool, and 
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setup combination into one score. We normalized the stability metrics, runtime, prepa-
ration time, and memory values via the R library effect size [85] to a range of 0 to 1. 
For the final score, we summed up the metrics using the following weights: AUPRC 1.6, 
standard deviation and number of NAs 0.2, runtime 0.4, preparation time 0.2, and mem-
ory consumption 0.4.

Heatmaps, scatter plots, and coverage visualization

We applied deepTools [82] bamCoverage to generate bigWig files and bamCoverage in 
combination with computeMatrix and plotHeatmap to create the ChIP-seq heatmaps. 
The combined heatmap of all AUPRCs, accuracy profiles, stability metrics, runtime, 
and memory consumption was created with the R library ComplexHeatmap [86]. As 
we inverted the range (1-value) for the normalized stability metrics, runtime, prepara-
tion time, and memory consumption, a low value means good performance. For all other 
bar-, box-, and scatter plots, we used ggplot2 [87]. For the coverage visualization in com-
bination with predicted DCS regions, we applied trackViewer [88].

Statistical analysis

All statistical analysis was done in R. For the log2 fold-change between simulation and 
sub-sampling AUPRCs, we first used the Shapiro-Wilk test for normality. As the null 
hypothesis (normal distribution) was rejected, we applied the two-sided Wilcoxon rank 
sum test.
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