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Abstract

Differential abundance analysis is at the core of statistical analysis of microbiome data.
The compositional nature of microbiome sequencing data makes false positive control
challenging. Here, we show that the compositional effects can be addressed by a
simple, yet highly flexible and scalable, approach. The proposed method, LinDA, only
requires fitting linear regression models on the centered log-ratio transformed data,
and correcting the bias due to compositional effects. We show that LinDA enjoys
asymptotic FDR control and can be extended to mixed-effect models for correlated
microbiome data. Using simulations and real examples, we demonstrate the
effectiveness of LinDA.

Keywords: Compositional effect, Differential abundance analysis, False discovery rate,
Multiple testing

Background
The role of the human microbiome in health and disease has been intensively studied
over the past few years, see, e.g., [1, 2], for several reviews. Potentially pathogenic or pro-
biotic microorganisms can be identified by analyzing their abundances in a microbial
ecosystem (e.g., the human gut) with respect to some covariate of interest such as disease
status. Current prevailing technologies for studying the human microbiome use metage-
nomic sequencing, where either the DNA of a taxonomically informative gene (e.g., 16S
rRNA) or all the genomic DNA in the microbial genome is sequenced. After obtaining
the raw sequencing reads, the reads can be clustered into operational taxonomic units
(OTUs), denoised into amplicon sequence variants (ASVs), or mapped to a microbial ref-
erence database (taxa) using existing bioinformatics pipelines such as UPARSE, DADA2,
and MetaPhlAn [3–5]. For simplicity, we use the term taxon (pl. taxa) to represent any
taxonomic unit (OTU/ASV/taxon) from a bioinformatics pipeline. Therefore, after bioin-
formatics processing, we have an abundance table recording the frequencies of detected
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taxa in the samples, together with a meta data table capturing the sample-level informa-
tion. Differential abundance analysis is then carried out based on the abundance andmeta
data table.
Ideally, we want to measure the absolute abundance of the microorganisms, i.e., the

number of microorganisms per unit area/volume at the microbial ecosystem, and differ-
ential abundance analysis is performed on the absolute abundance data. However, the
data from a sequencing experiment only captures the relative abundance (compositional)
information since the total sequence read count, also known as sequencing depth or
library size, does not reflect the total microbial load in the specimen due to the complex
chemistry involved in sequencing [6, 7]. Although there are several experimental tech-
niques such as qPCR, spike-in and flow cytometry that can be used to achieve absolute
abundance measurement, the severe limitations of these techniques prevent their wide
adoption [8]. Therefore, the prevailing sequencing protocol is still only able to measure
the relative abundances. Drawing inferences about the changes on the unknown absolute
abundance based on the measured relative abundance data is challenging due to missing
the total microbial load information. The increase or decrease in the abundance of some
taxa with respect to a covariate of interest automatically results in changes in the relative
abundances of all other taxa, a statistical phenomenon known as compositional effects.
Therefore, using the standard statistical techniques such as two-sample t-test, Wilcoxon
rank sum test, and linear regression analysis ignoring the compositional nature of the data
could lead to a large number of false discoveries.
For the differential abundance problem to be well defined, one has to make assump-

tions. One major assumption is that the differential signal is sparse, i.e., only a small
proportion of taxa are associated with the covariate of interest. Although many studies
have supported the sparse signal assumption, there are also studies support dense signal
hypotheses, where a large number of taxa are differential with small effect sizes [9, 10].
Therefore, the validity of a method and the definition of true or false positive depends
on the specific assumption one is willing to accept. Here our goal is to provide a statis-
tical tool that could be potentially useful for pinpointing top candidate taxa for further
biological validation.
To address compositional effects in differential analysis, one popular approach is robust

normalization. It involves calculating a normalizing factor (scale factor), which is robust
to a small number of differential taxa and could well capture the sequencing effort for
the non-differential part. Therefore, dividing by such a normalizing factor will bring the
abundance of the non-differential taxa to the same scale while retaining the differences
for those differential ones. Assuming the number of differential taxa is small, different
strategies have been used to calculate a robust normalizing factor including TMM, RLE,
CSS, and GMPR [11–14]. We list these methods in Additional file 1: Table S1. In contrast,
the naive total sum scaling (TSS) normalization, which divides the counts by the library
size, is not a robust normalization method [14].
These normalization techniques can be combined with different statistical procedures

in differential abundance analysis. For example, we can divide the counts by the normal-
izing factor from the normalization techniques in Additional file 1: Table S1 and then
apply standard statistical tools based on the normalized data. The normalizing factor
could also be included as an offset in regression models such as edgeR [15], DESeq2 [16],
MicrobiomeDDA [17], and metagenomeSeq [13], where the TMM, RLE, GMPR, and CSS
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normalization are the accompanying normalization methods. The recently developed
MaAsLin2 [18] uses log linear models on the normalized abundance data. Different nor-
malization approaches including TSS, TMM, CSS, and CLR are options in MaAsLin2. A
variant to the robust normalization approach is to find a reference taxon or a set of refer-
ence taxa, which are assumed to be non-differential with respect to the covariate of inter-
est. The data are then normalized by the count of the reference taxon (or the sum of the
counts of the reference taxa). This strategy was used in RAIDA [19] and DACOMP [20].
Another line of methods to tackle the compositional effect uses (log) ratio approach

since only ratios are well defined for compositional data [21]. The ALDEx2 method by
[22] uses the centered log-ratio (CLR) transformation, where the counts of a sample
are divided by their geometric mean before taking logarithms. Differential abundance
analysis is then performed usingWilcoxon rank sum test or t-test based on the CLR trans-
formed data. In the CLR approach, the geometric mean can also be regarded as a robust
normalizing factor. The ANCOM proposed by [23] computes the pairwise ratios of the
relative abundances and identifies the taxa with the most differential ratios. This is based
on the observation that the abundance ratios for those differential taxa to other taxa are
all differential assuming distinct effect sizes while the ratios for those non-differential taxa
are mostly non-differential. Therefore, by analyzing the pattern of the pairwise ratios, one
could distinguish the differential taxa from a background of non-differential taxa with
high accuracy. Recently, a bias-corrected version of ANCOM (called ANCOM-BC) has
been proposed [24], which uses a linear regression framework based on log-transformed
taxa count and estimates the unknown bias term due to the compositional effect through
an EM algorithm.
In the work of [25, 26], the authors evaluated several popular methods in differential

abundance analysis (ANCOM-BC/MaAsLin2 not included) and showed that the inflation
of the false discovery rate (FDR) is still a ubiquitous problem, and no method is satis-
factory in all aspects. A method that is computationally efficient, relatively robust and
powerful, and flexible enough to allow covariate adjustment and application to correlated
microbiome data is still lacking in the field. In this paper, we propose a linear regression
framework for differential abundance analysis (LinDA) to fill the methodological gap.
LinDA involves three simple steps that can be carried out efficiently. First, it runs linear
regressions using the CLR-transformed abundance data as the response. Then it identifies
a bias term due to the compositional effect and corrects for the bias using the mode of the
regression coefficients across different taxa. Finally, it computes the p values based on the
bias-corrected regression coefficients and applies the Benjamini-Hochberg (BH) proce-
dure to control the FDR.We rigorously prove the asymptotic FDR control of the proposed
method, making it the first procedure that enjoys a theoretical FDR control guarantee.
Our approach is related to ANCOM-BC but differs in several aspects. (i) Our derivation
provides a clear interpretation of the bias term and suggests a simple way to correct it. (ii)
Our procedure does not involve the EM algorithm and can be 100–1000 times faster than
ANCOM-BC in our numerical studies. (iii) Our method can be directly extended to the
mixed-effect models. Longitudinal and repeatedmeasurement-basedmicrobiome studies
have been increasingly common [27, 28] but statistical tools for correlated microbiome
data analysis remain scarce. LinDA can analyze the correlated microbiome data using the
classic linear mixed-effects models. Through extensive simulation studies and real data
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analyses, we show that the new method outperforms the state-of-the-art approaches in
terms of FDR control and power.

Results
Numerical studies

Setups

We conducted comprehensive simulations to evaluate the performance of the proposed
method under different setups. We set m = 500 as the baseline for the number of taxa,
which is similar to the number of tests at the species level for a typical microbiome study.
We investigated the sample size n = 50, 200 representing small and large sample sizes,
respectively. More combinations of m and n were studied in additional settings. We gen-
erated the absolute abundances from the log normal distribution and considered three
cases for the covariate of interest and confounders: the covariate of interest follows the
Bernoulli distribution and no confounder (denoted as C0), the covariate of interest follows
the standard normal distribution and no confounder (C1), and the covariate of interest
follows the Bernoulli distribution and two confounders (C2). In addition to the basic set-
ting (log normal abundance distribution, denoted as S0), we investigated other settings
to study the robustness of the proposed method including zero-inflated absolute abun-
dances (S1), correlated absolute abundances (S2), gamma abundance distribution (S3),
smaller m (S4), smaller n (S5), 10-fold difference in library size (S6), negative binomial
abundance distribution (S7) and correlated microbiome data generated by mixed-effect
model (S8). See the “Detailed setups for numerical studies” section for more details.

Competingmethods

We compared our method with ANCOM-BC, ALDEx2, DESeq2, edgeR, metagenome-
Seq and MaAsLin2. For DESeq2 and edgeR, we replaced their native normalization
methods with GMPR normalization, which was shown to improve the power and
false positive control in differential abundance analysis [14]. For metagenomeSeq, there
are two implementations, fitZig and fitFeatureModel, in the R Bioconduc-
tor package metagenomeSeq. Currently, fitFeatureModel is only applicable to
binary covariate case (C0). We use metagenomeSeq2 and metagenomeSeq to denote the
fitFeatureModel and fitZig procedures, respectively. We also compared with the
standard non-parametric methods: Wilcoxon rank sum test for case C0 (a binary covari-
ate) and Spearman correlation test for case C1 (a continuous covariate), both with the
GMPR normalized data.
For the proposed method, we considered two zero-handling approaches. The first

approach adds a pseudo-count of 0.5 to all the counts, which is widely used inmicrobiome
data analysis on the log scale. However, it has been shown to be problematic under certain
situations [20].We thus designed a new imputation-based approach, where the zeros were
imputed by Ns/(maxk:Yik=0Nk) for ith taxon in sth sample, where Ns denotes the library
size (sequencing depth) of sth sample and Yik denotes the read count of ith taxon in kth
sample. In other words, zeros were imputed differently according to the library size of the
sample, and zeros in the sample with a larger library size were replaced with larger frac-
tions. In this imputation approach, we treat zeros as left-censored missing data. Suppose
we only know the library sizes, then a natural strategy is to impute zeros in proportion to
the library size with the sample of the largest library size receiving a fractional count close
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to 1 (in our approach, we simply set it as 1). The purpose of the imputation strategy is
to reduce false positives when the library size is correlated with the covariate of interest.
As shown in the simulation studies, the pseudo-count approach worked sufficiently well
in most settings except the setting S6, where the library size between the groups differed
by 10-folds. In contrast, the imputation approach reduced the false positive rate exten-
sively for the setting S6 (Additional file 2: Fig. S1). However, it was slightly less powerful
than the pseudo-count approach when the library size was a not confounder (Additional
file 2: Fig. S2). Thus, in the implementation, we used an adaptive approach: we first tested
the association between the covariate of interest and the library size. If the p value was
smaller than 0.1, we used the imputation approach conservatively; otherwise, we used the
pseudo-count approach. Additional file 2: Fig. S1 and S2 show that the adaptive method
controls the false positives when the library sizes are very different among groups while
retaining the power when the library sizes are similar.
The proposed LinDA method can be viewed as a three-step procedure: CLR-OLS-BC

(OLS stands for ordinary least squares and BC stands for bias correction), which can be
easily extended to the linear mixed-effects model using CLR-LMM-BC (LMM stands for
linear mixed-effect model). In the setting S8 (correlated microbiome data), we compared
CLR-LMM-BC to CLR-OLS-BC, CLR-OLS, and CLR-LMM to demonstrate the utility of
LinDA for correlated microbiome data analysis.

Results

Weuse S0C0 (log normal abundance distribution, a binary covariate) to denote the setting
S0 (log normal abundance distribution) with the covariate design C0 (a binary covariate)
and likewise for other setups. For S0, we studied all the three covariate designs (C0–
C2), and for S1–S8, we only performed C0 for demonstration. We found that DESeq2,
edgeR and metagenomeSeq had severe FDR inflation under most settings. To increase
the readability of the results (presented in figures), we did not include them in the main
comparison and focused on the comparison between LinDA, ANCOM-BC, ALDEx2,
metagenomeSeq2, MaAsLin2 and Wilcoxon (Figs. 1 and 2 and Additional file 2: Fig.
S1–S15). Full results of all methods are presented in Additional file 2: Fig. S20–S30.
We first point out that MaAsLin2 with CLR normalization is essentially the same as

the CLR-OLS procedure we described earlier. Additional file 2: Fig. S3 compares LinDA,
CLR-OLS, MaAsLin2-TSS, MaAsLin2-TMM,MaAsLin2-CSS andMaAsLin2-CLR under
the setting S0C0 (log normal abundance distribution, a binary covariate). We can see
that MaAsLin2-CLR is close to CLR-OLS, both of which suffer from FDR inflation.
We included MaAsLin2 with its default configuration (i.e., TSS normalization) in our
comparisons below.
Figure 1 and Additional file 2: Fig. S4 and S5 show the results of the competing meth-

ods under the log normal abundance distribution with three covariate designs: a binary
covariate (S0C0), a continuous covariate (S0C1), and a binary variable of interest with
confounders (S0C2), respectively. Generally speaking, LinDA and ANCOM-BC have the
best FDR and power trade-off. Under C0 and C2 (Fig. 1 and Additional file 2: Fig. S5),
both methods control the FDR around the target level, and ANCOM-BC is slightly more
powerful than LinDAwhen the sample size is small. However, under C1 (Additional file 2:
Fig. S4), LinDA controls FDR at the target level at both sample sizes while ANCOM-BC
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Fig. 1 Performance comparison (S0C0: log normal abundance distribution, a binary covariate). Empirical false
discovery rate (A) and true positive rates (B) were averaged over 100 simulation runs. Error bars (A) represent
the 95% confidence intervals (CIs) of the method LinDA and the dashed horizontal line indicates the target
FDR level of 0.05

has slight FDR inflation when the sample size is small. LinDA is also slightly more pow-
erful than ANCOM-BC at a small sample size. The Wilcoxon rank sum test based on
GMPR normalized data and MaAsLin2 perform well under C0 (a binary covariate, Fig. 1)
with slightly inflated FDR at larger effect sizes and reasonable power across settings. In
contrast, for a continuous covariate (C1, Additional file 2: Fig. S4), the Spearman rank cor-
relation test andMaAsLin2 have large FDR inflation when the signal is dense.When there
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Fig. 2 Performance comparison (S3C0: gamma abundance distribution, a binary covariate). Empirical false
discovery rate (A) and true positive rates (B) were averaged over 100 simulation runs. Error bars (A) represent
the 95% CIs of the method LinDA and the dashed horizontal line indicates the target FDR level of 0.05

are confounders (C2, Additional file 2: Fig. S5), Wilcoxon has severe FDR inflation when
the sample size is large due to its inability to adjust for confounders, while MaAsLin2
provides acceptable results as under C0. ALDEx2 is a conservative method, which offers
the strongest FDR control but is much less powerful. metagenomeSeq2 performs well
when the signal is sparse but fails to control the FDR when the signal is dense. We also
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studied the effect of zero inflation and the correlations among taxa (S1C0 and S2C0, Addi-
tional file 2: Fig. S6 and S7), where we observed similar patterns such that LinDA and
ANCOM-BC had overall the best performance among the compared methods.
Since LinDA assumes a log normal distribution of the absolute abundance, it is inter-

esting to evaluate its performance when the log normal assumption is violated. We thus
simulated the absolute abundance data using a gamma distribution (S3C0), and the results
are depicted in Fig. 2. It shows that LinDA controls the FDR close to the target level and
has the highest power.When the signal is dense (20%), ANCOM-BC has a noticeable FDR
inflation while ALDEx2, metagenomeSeq2, MaAsLin2 and Wilcoxon have severe FDR
inflation when the signal is dense.
With a smaller number of taxa (m = 50, S4C0, Additional file 2: Fig. S8), ANCOM-BC

controls the FDR and the power is also high. LinDA is the most powerful but it has slight
FDR inflation. metagenomeSeq2, MaAsLin2, and Wilcoxon control the FDR but are less
powerful in the case of sparse signal. However, when the signal is dense, they could not
control the FDR properly.When the sample size is very small (n = 20 or 30, S5C0), LinDA
controls the FDR around the target level and maintains high power (Additional file 2: Fig.
S9). ANCOM-BC and metagenomeSeq2 have large FDR inflation and the inflation seems
to increase as the sample size gets smaller. MaAsLin2 and Wilcoxon are much less pow-
erful and ALDEx2 has virtually no power. Under the setting S6C0, where the sequencing
depth differs by 10-folds, only ALDEx2 and our proposed method with adaptive zero-
handling approach are able to control the FDR (Additional file 2: Fig. S10). LinDA achieves
a better performance in both the FDR control and power than ALDEx2. It is interest-
ing that ALDEx2 performs better under S6C0 than under other settings. We point out
here that when we implemented ANCOM-BC, we disabled its zero treatment. To fur-
ther investigate whether its zero treatment option improves its performance, we also run
the procedure enabling its zero treatment (zero_cut = 0.9, lib_cut = 1000, struc_zero =
TRUE), and found the results were very similar (S6C0, Additional file 2: Fig. S11).
Under the previous simulation settings, we found that DESeq2 and edgeR had the worst

false positive control (Additional file 2: Fig. S20–S28). As the two methods assume nega-
tive binomial distribution for the counts, it is interesting to see their performance when
the data are generated by their assumed model (S7C0). Additional file 2: Fig. S29 shows
that DESeq2 and edgeR (and metagenomeSeq) remain to have serious FDR inflation,
indicating that the normalization approach to address the compositional effect is not suf-
ficient. In contrast, LinDA and ANCOM-BC perform the best among competitors as in
other settings, and ANCOM-BC achieves higher power than LinDA (Additional file 2:
Fig. S12).
Finally, we applied LinDA to correlated microbiome data (S8C0), where the other com-

peting methods except MaAsLin2 are not applicable to correlated samples. Additional
file 2: Fig. S13 and S14 compare the methods CLR-LMM-BC (LinDA-LMM), CLR-
OLS-BC (LinDA-OLS), CLR-LMM, CLR-OLS, and MaAsLin2 for correlated data. In the
scenario of comparing the pre-treatment and post-treatment samples (S8.1, Additional
file 2: Fig. S13), we could clearly see that ignoring the bias tremendously increases the FDR
level especially under dense signals (LinDA-LMM vs CLR-LMM). In addition, LinDA-
LMM is more powerful than LinDA-OLS due to its ability to exploit the correlation
between pre- and post-treatment samples. Under the replicate sampling setting (S8.2,
Additional file 2: Fig. S14), we see that the LinDA-OLS has significant FDR inflation by



Zhou et al. Genome Biology           (2022) 23:95 Page 9 of 23

Table 1 Runtime (in second) comparison under different settings (R version 4.0.3 (2020-10-10);
Platform: x86_64-pc-linux-gnu (64-bit); CPU: E5-2670 v2 @ 2.50GHz; Memory: 67.7 GB). The result is
based on one simulation run. The“elapsed” from the R command system.time() was used

S0C0 S0C1 S0C2

LinDA ANCOM-BC LinDA ANCOM-BC LinDA ANCOM-BC

m = 500 n = 200 0.454 21.835 0.218 22.057 0.206 64.519

n = 10, 000 6.844 162.218 4.043 163.552 5.073 216.564

m = 5000 n = 200 1.598 184.972 1.607 162.611 1.615 599.985

n = 10, 000 28.253 5135.393 15.314 5157.148 15.494 5506.353

treating the replicate samples as independent ones. In contrast, LinDA-LMM controls
the FDR at the target level. MaAsLin2 control the FDR under both settings but is less
powerful than LinDA-LMM.
Based on the presented simulation settings, we summarize that LinDA and ANCOM-

BC have overall the most robust performance among the methods evaluated. However,
ANCOM-BC is computationally intensive. As shown in Table 1, LinDA could be 100–
1000 times faster than ANCOM-BC, making LinDA a highly scalable method in practice.
In addition, the extension of LinDA to the mixed-effect models is easily carried out and
performs well.

Real data applications

Datasets

We applied LinDA and the competing methods to three real datasets with independent
samples from the studies of C. difficile infection (CDI, [29]), inflammatory bowel disease
(IBD, [30]), and rheumatoid arthritis (RA, [31]). To demonstrate the use of LinDA on cor-
relatedmicrobiome samples, we applied LinDA to a dataset from the study of the smoking
effect on the human upper respiratory tract (SMOKE, [32]). We used the microbiome
samples from the throat for illustration, where each subject has two samples from the left
and right sides of the throat. The CDI and RA datasets were provided by the authors while
the IBD and the SMOKE datasets were downloaded from the Qiita database [33] with the
study ID 1460 and 524. All the datasets have binary phenotypes. Antibiotics use is the
confounder for the IBD dataset (p = 0.03 and OR = 0) while sex is the confounder for the
SMOKE dataset (p = 0.02 and OR= 2.26). They will be adjusted in methods that are capa-
ble of covariate adjustment. We excluded samples with less than 1000 read counts and
taxa which appear in less than 10% of the samples. The basic characteristics for the four
filtered datasets are summarized in Table 2. We compared the detection power as well as
their overlap patterns for LinDA, ANCOM-BC, ALDEx2, metagenomeSeq2, MaAsLin2,
andWilcoxon. Specifically, we compared the number of discoveries at different FDR levels

Table 2 Characteristics of four real microbiome datasets. NORA represents new-onset untreated
rheumatoid arthritis. The second and the third columns respectively list the number of taxa and
sample size of each filtered dataset (prevalence ≥10%, library size ≥1000)

m n u c

CDI 123 183 CDI/Diarrhea control (94 v.s. 89)

IBD 579 81 Crohn’s disease/Healthy (62 v.s. 19) Antibiotic use (n/y, 48 + 19 v.s. 14 + 0)

RA 438 72 NORA/Healthy (44 v.s. 28)

SMOKE 209 132 Smoke (n/y, 67 v.s. 65) Female/Male (31 + 16 v.s. 36 + 49)
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Fig. 3 Number of discoveries v.s. target FDR level (0.01–0.25) for the three real datasets

(0.01–0.25) and used UpSet plot [34] to show the overlap at the target FDR of 0.1.We used
winsorization at quantile 0.97 to reduce the impact of potential outliers as recommended
in [17].

Results

For the CDI dataset, LinDA or MaAsLin2 made the most discoveries at different FDR
levels (Fig. 3). At 10% FDR, LinDA discovered eight and MaAsLin2 discovered six taxa
associated with CDI. In contrast, ANCOM-BC, ALDEx2, andWilcoxon discovered three
while metagenomeSeq2 discovered two. As discussed in [29], subjects with CDI were
more likely to have the bacterial family Lachnospiraceae and Erysipelotrichaceae. LinDA
found one more taxon belonging to Lachnospiraceae than other methods (blue bars in
Fig. 4). Besides, LinDA, MaAsLin2, and Wilcoxon found one differential taxon belonging

Fig. 4 Overlaps of differential taxa with target FDR level of 0.1 for the four real datasets
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to Erysipelotrichaceae while the other three methods did not identify any (orange bar
in Fig. 4). For the IBD dataset, LinDA detected a similar number of taxa as ANCOM-
BC and MaAsLin2. Wilcoxon rank sum test detected a large number of taxa associated
with the disease status, but this could be due to the confounding effects of antibiotics use
since it could not adjust for covariates. From Fig. 4, we observe that most discoveries by
LinDA are shared by ANCOM-BC, MaAsLin2, or Wilcoxon. For the RA dataset, LinDA
detected a similar number of taxa as ANCOM-BC and more taxa than other methods.
The differential taxa detected by LinDA and ANCOM-BC largely overlapped. Overall, the
results are consistent with the simulation studies.
Finally, we applied LinDA-LMM and MaAsLin2 to the SMOKE dataset, where each

subject has two replicate samples from the throat. The aim is to identify smoking-
associated taxa adjusting for the sex. To account for the correlation between the replicate
samples, we included a subject-level random intercept in LinDA-LMM. As a comparison,
we also applied LinDA-OLS and MaAsLin2 to the right and left throat samples sepa-
rately. LinDA-OLS based on the left or right throat samples alone discovered 12 and 15
differential taxa at 10% FDR. When both left and right samples were used in LinDA-
LMM, 21 differential taxa were identified, covering the majority of the taxa identified
based on the left or right throat samples alone (Fig. 4). In addition, LinDA-LMM detected
five taxa that were missed by analyzing the left or right samples separately. Compared
to MaAsLin2, LinDA-LMM discovered seven more differential taxa. Therefore, LinDA-
LMM provides a convenient way to analyze correlated microbiome datasets and enjoys
the power improvement by analyzing all samples together.
To visualize the results, LinDA provides a function to generate the effect size plot and

volcano plot for differential taxa. Additional file 2: Fig. S16–S19 display the effect size
plots of differential taxa at FDR level of 0.1 and volcano plots for the four datasets, respec-
tively. In the effect size plots (Additional file 2: Fig. S16A–S19A), the taxa in black are
detected by LinDA and taxa in red are detected solely by LinDA. In Additional file 2:
Fig. S16A (CDI), the taxa in blue are missed by LinDA but detected by one or more
other methods. In Additional file 2: Fig. S17A (IBD) and S18A (RA), the taxa in blue are
missed by LinDA but detected by two or more other methods. No taxa are detected by
MaAsLin2 but missed by LinDA-LMM for the SMOKE dataset. Based on the effect size
plots for the CDI, IBD and RA datasets, we can see that, for the taxa solely detected
by LinDA, the effect sizes tend to be underestimated without bias correction and bias
correction improves the power in these cases. On the contrary, for the taxa missed by
LinDA, the effect sizes tend to be overestimated without bias correction. In addition, we
observe that the differential taxa for the IBD, CDI, and RA datasets are more unbalanced
(i.e., more negative or positive associations) while the differential taxa for the SMOKE
dataset are relatively balanced (i.e., similar numbers of negative and positive associa-
tions). Indeed, the effect size plots, where we plot both the debiased and un-debiased
coefficients, revealed larger biases for the IBD, CDI, and RA datasets.

Discussion
Differential abundance analysis is at the core of the statistical analysis of microbiome
data. Microbiome data are compositional in nature and all we know are the relative abun-
dances, making the identification of differentially abundant taxa at the ecological site
particularly challenging [6, 7]. Numerous differential abundance analysis methods have
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been proposed focusing on addressing the compositional effects [13, 15–17, 19, 20, 22–
24]. Among all the competing methods, ANCOM-BC is the state-of-the-art method, it
has been demonstrated to be more robust and powerful than the competing methods.
However, there are two drawbacks of ANCOM-BC. First, it is computationally inten-
sive for large-scale microbiome datasets such as the AmericanGut dataset. Due to the
huge inter-subject variation, large-scale microbiome studies have been increasingly pop-
ular, resulting in larger sample sizes. On the other hand, metagenomic sequencing has
become increasingly deeper to have a high-resolution view of the microbiome, lead-
ing to an unprecedented number of new microbial features. To meet the analysis need
for such large-scale datasets, a computationally efficient tool is much needed. Secondly,
ANCOM-BC is not applicable to correlated/clustered microbiome datasets such as those
from family/longitudinal microbiome studies or studies with paired and repeated mea-
surements [27, 28]. Longitudinal microbiome analysis, which enables the study of the
trajectory of the microbiome as well as controls for potential confounders, has been
increasingly employed in human microbiome studies. Unfortunately, statistical tools for
longitudinal microbiome studies are scarce. In contrast, LinDA is computationally effi-
cient since it only involves fitting regular linear regression models and could be easily
scaled to hundreds of thousands of taxa. Moreover, the extension of LinDA to linear
mixed-effects models (LMM) is straightforward and we have highly efficient tools such
as the R lme4 package [35] for fitting LMM. Therefore, differential abundance analysis
of correlated/clustered microbiome datasets could be easily performed using LinDA. Our
framework also gives more insights into the CLR-based approach, which has been widely
used in compositional data analysis [21]. However, the bias of CLR regression models
has not been formally recognized to our best knowledge. Our framework justifies the
use of CLR regression and provides a solution to correct the bias associated with CLR
regression.
In the simulation, we found thatWilcoxon rank sum test andMaAsLin2 showed similar

FDR/power curves and performed fairly well in most settings. As we mentioned earlier,
MaAsLin2 is based on log linear models on the normalized count data, and it is essentially
a two-sample t-test when no confounders are included, which explains why MaAsLin2 is
close to Wilcoxon rank sum test. However, when we simulated an even stronger compo-
sitional effect by drawing the differential taxa from the top 25% most abundant taxa, we
found thatWilcoxon rank sum test andMaAsLin2 began to break down (Additional file 2:
Fig. S15). ANCOM-BC was overall robust and powerful, but it had inflated type I error at
small sample sizes. metagenomeSeq2 did not perform well when the signal was dense and
was generally less powerful than ANCOM-BC and LinDA. ALDEx2 was the most conser-
vative method: its strong FDR control was at the expense of statistical power. LinDA was
as competitive as ANCOM-BC inmost settings. It had better FDR control than ANCOM-
BC when the sample size was small or the covariate of interest was continuous. However,
LinDA had some FDR inflation when the number of taxa was small. Under a very strong
compositional effect (Additional file 2: Fig. S15), LinDA also showed some FDR inflation
but overall it had the best FDR and power trade-off.
When the library size was associated with the covariate of interest, all existing meth-

ods had severe type I error inflation. Fortunately, such association is detectable and if
we see a significant association, rarefaction should be used for those methods. Although
rarefaction controls the effect of uneven library sizes, it discards a significant portion of
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the reads and thus loses much information in the data. When there are many samples
with small library sizes, the users have to decide whether to retain more reads or more
samples. In LinDA, we implemented a heuristic imputation method, where the imputed
values are proportional to the library sizes. This procedure makes the imputed data after
CLR transformation independent of the library size and substantially reduces the inflated
type I error due to library size confounding.
Although the presented simulation settings could give basic insights into the perfor-

mance of various methods, such model-based simulations might not be able to capture
the full characteristics of the real microbiome data. It is very likely that the performance
of the compared methods will change using a different simulation framework. Moreover,
our simulation strategy purposely creates strong compositional effects, where all differ-
ential taxa show the same direction of change. Such setting is used to test the limit of
the various methods in addressing the compositional effects. However, in real data, the
compositional effects may not be always strong, and the FDR inflation of many methods
could be very moderate. Therefore, a future benchmarking study, which uses real data-
based simulation strategy and investigates all biologically plausible differential settings,
is much needed to have a comprehensive and objective evaluation of existing differential
abundance analysis methods.
As for all model-based approaches, LinDA has several assumptions and limitations.

First, LinDA relies on the assumption that there is a mode at 0 for the regression coef-
ficients (Condition (vi) in Theorem 1). This assumption is easy to be met if the signal is
sparse. In the simulation, we show that when the signal density is around 20%, LinDA is
still very robust. However, when the signal is extremely dense, LinDA could fail. Second,
LinDA assumes a log linear model on the absolute abundance. Although this is a reason-
able assumption, which has been widely adopted in the analysis of abundance data, the
interaction between the host and the microbiome could be more complex than the simple
log linear relationship. Analysis of the residuals from the CLR regression could provide
evidence about whether the assumption is reasonable. If themodel assumption is violated,
a permutation test or transformation of the variables may be performed. Finally, although
LinDA provides asymptotic FDR control, its finite-sample FDR control is not guaranteed.
Based on numerical simulations, we found that LinDA performed well under small sam-
ple sizes. However, we did observe some FDR inflation under a small feature size due
to inefficiency in mode estimation with few features. Therefore, we do not recommend
applying LinDA to datasets with small feature sizes (e.g., m <50) such as phylum-level
abundance data.
LinDA uses the relative abundance data and does not model the sampling variabil-

ity of the read counts. This could reduce the statistical power for those less abundant
taxa, whose sampling variability is larger than those abundant taxa. To remedy the power
loss, another multinomial sampling layer could be imposed on top of LinDA. However,
the computational complexity will be increased significantly, breaking the simplicity of
LinDA. Another approach is to perform posterior inference of the underlying propor-
tions based on a Bayes approach. Once we obtain the posterior samples, LinDA can be
applied to the posterior samples and results are then aggregated, similar in the spirit to
the multiple imputation method [36].
Besides microbiome data, LinDA could be applied to other sequencing data such as

RNA-Seq data since all sequencing data are compositional in nature [37]. Thus, LinDA
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could be an alternative for differential expression analysis if there are strong composi-
tional effects, for example, when the highly abundant genes are differential with the same
direction of change.
Finally, we comment that addressing compostionality is more relevant when ana-

lyzing individual microbial features such as differential abundance analysis, since the
major interest to biomedical investigators is to find those truly differential features
(“driver”) instead of those driven by the compositional effect (“passenger”). However, for
community-wide analysis such as distance-based analysis [38, 39], addressing the compo-
sitionality may not be necessary in order to control the type I error. This is because that
compositional effect is only relevant under the alternative hypotheses. Considering com-
positionality in the community-wide analysis has also been found to have small effects
on the statistical power [25, 40]. Additionally, in microbiome-based predictive models
[41], the relative abundances and/or their ratios could already be informative features for
prediction and addressing compositionality may not necessarily increase the prediction
accuracy significantly. Therefore, whether to address compositionality depends on the
specific problems.

Conclusions
In summary, we proposed LinDA for differential abundance analysis of microbiome
compositional data. LinDA identified a bias associated with traditional linear regression
models based on CLR-transformed abundance data and proposed a strategy to estimate
and correct the bias. LinDA can be extended to linear mixed-effects model for analy-
sis of correlated microbiome data. As a general methodology, LinDA can be applied to
differential abundance analysis of other high-dimensional compositional data.

Methods
Setup

WeuseC,C1, andC2 to denote positive constants, which can be different from line to line.
As summarized in the background, there are two ways to tackle the compositional effects
in differential abundance analysis, namely normalization and log-ratio transformation. In
this paper, we adopt the CLR transformation and develop a bias-correction procedure to
address the compositional effects. Denote the absolute abundance and the observed read
count of the ith taxon in the sth sample by Xis and Yis, respectively. For the sth sample,
the total read count of all taxa, Ns = ∑m

i=1 Yis, is determined by the sequencing depth
and DNA materials. Given Ns, it is natural to model the stratified count data overm taxa
through a multinomial distribution as

P(Y1s = y1s, . . . ,Yms = yms) = Ns!
∏m

i=1 yis!

m∏

j=1

( Xjs
∑m

i=1 Xis

)yjs
(1)

Under (1), we have

log
(

Yis
∑m

j=1 Yjs

)

= log
(

Xis
∑m

j=1 Xjs

)

+ eis, (2)

where eis denotes the estimation error, which is expected to diminish as Ns gets large.



Zhou et al. Genome Biology           (2022) 23:95 Page 15 of 23

OLS estimation

We consider the log linear model on the absolute abundance

log (Xis) = usαi + (1, c�
s )β i + εis, (3)

where cs = (cs1, ..., csd)� is the d-dimensional covariates to be adjusted, us is the covariate
of interest, and εis is the error term. Our goal is to discover taxa that are differentially
abundant with respect to us. Statistically, we want to simultaneously test the following m
hypotheses

H0,i : αi = 0 vs. Ha,i : αi �= 0.

Set εis = εis + eis. Under (2) and (3), the CLR-transformed data satisfies the following
linear model

Wis : = log
{

Yis
(
∏m

j=1 Yjs)1/m

}

= log
(

Yis
∑m

k=1 Yks

)

− 1
m

m∑

j=1
log

( Yjs
∑m

k=1 Yks

)

= log(Xis) − 1
m

m∑

j=1
log(Xjs) + eis − 1

m

m∑

j=1
ejs

= us (αi − ᾱ) + (1, c�
s )

(
β i − β̄

) + εis − ε̄s, (4)

where ᾱ = m−1 ∑m
i=1 αi, β̄ = m−1 ∑m

i=1 β i, and ε̄s = m−1 ∑m
i=1 εis. From (4), we can see

that the OLS estimator for α based on the CLR-transformed data is biased with the bias
term being ᾱ. Let ᾱi = αi − ᾱ, β̄ i = β i − β̄ , ε̄is = εis − ε̄s, and σ̄ 2

i = var(ε̄is). Denote by
α̃i, β̃ i, and σ̂ 2

i the OLS estimators of ᾱi, β̄ i, and σ̄ 2
i , respectively. We then have

(α̃i, β̃
�
i )� =

( n∑

s=1
zsz�

s

)−1 ( n∑

s=1
zsWis

)

, σ̂ 2
i = 1

n − d − 2

n∑

s=1

{
Wis −

(
α̃i, β̃

�
i

)
zs

}2
,

(5)

where zs = (us, 1, c�
s )�. We respectively let varz(·) and covz(·, ·) denote the variance and

covariance computed conditional on z1, ..., zn. It can be shown that

varz(α̃i) = ρ̂n−1σ̄ 2
i = ρ̂n−1m−1

{

(m − 2)σ 2
i + m−1

m∑

i=1
σ 2
i

}

,

covz(α̃i, α̃j) = ρ̂n−1m−1
{

−(σ 2
i + σ 2

j ) + m−1
m∑

i=1
σ 2
i

}

, for i �= j,

where ρ̂ is the (1, 1)th element of (n−1 ∑n
s=1 zsz�

s )−1.

Bias correction

In many applications, it is reasonable to assume that there is only a small portion of dif-
ferential taxa, i.e., most αi’s are equal to 0. Under this assumption, as α̃i is an unbiased
estimator for ᾱi = αi − ᾱ, the mode of α̃i is expected to be close to −ᾱ. This observation
motivates us to estimate −ᾱ by

−α̃ =
̂mode({√nα̃i}mi=1)√

n
, where ̂mode({√nα̃i}mi=1)= argmax

x∈R
1
mh

m∑

i=1
K

(
x − √

nα̃i
h

)

.

(6)
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In (6), K is a non-negative even function with
∫ ∞
−∞ K(y)dy = 1, and h is the bandwidth

parameter. Under some regular conditions, we have
√
n(α̃ − ᾱ) = oP(1)

asm, n → ∞ (see the supplementary material for the proof). Therefore, one can estimate
αi by the bias-corrected estimator α̂i = α̃i + α̃.

Testing procedure

To construct a statistic for testingH0,i, we need to find a proper estimator for the variance
of α̂i. To this end, we note that

varz(α̂i) = varz(α̃i) + varz(α̃) + 2covz(α̃i, α̃).

Since varz(α̃i) is ρ̂σ̄ 2
i /n, it dominates varz(α̃) and covz(α̃i, α̃) as n,m → ∞ under mild

conditions. Thus, we estimate the variance of α̂i by ρ̂σ̂ 2
i /n. As shown in the next section,

the studentized statistic Ti := √
nα̂i/

√
ρ̂σ̂ 2

i is asymptotically normal. However, for small
sample, we found that t-distribution provides a better approximation to the sampling
distribution of Ti. We define the p value for testing H0,i as

pi = 2Fn−d−2 (−|Ti|) , (7)

where Fn−d−2(·) denotes the cumulative distribution function of t-distribution with n −
d − 2 degrees of freedom. Based on the p values in (7), we can use the BH procedure to
control the FDR. The above discussion leads to the following Algorithm 1.

Algorithm 1 Linear models for differential abundance analysis (LinDA)
1. Step 1: Run OLS based on the CLR transformed observations and calculate α̃i and σ̂ 2

i
as in (5).

2. Step 2: Compute the bias-corrected estimates α̂i = α̃i + α̃ with α̃ defined in (6).
3. Step 3: Calculate the p values as in (7) and run the BH procedure.

Remark 1 Built upon the linear regression framework, our method could be easily
extended to the mixed-effect model:

log(Xis) = usαi + (1, c�
s )β i + r�s γ i + εis,

where γ i is the random effect and rs is the corresponding design. Mixed-effects can be used
to analyze correlated microbiome data from studies involving replicates or spatial sam-
pling as well as family-based and longitudinal microbiome studies. We suggest using the
R function lmer to estimate the parameters for the CLR-transformed data. Denote by
α̃i,lmer, σ̂ 2

i,lmer, and dfi,lmer the estimations for ᾱi, the variance of α̃i,lmer, and the degrees
of freedom of α̃i,lmer from the lmer function. We compute the bias-corrected estimates
α̂i,lmer = α̃i,lmer + α̃lmer, where α̃lmer is obtained as the same procedure used in (6). Simi-
larly, we let Ti,lmer = α̂i,lmer/σ̂i,lmer and pi,lmer = 2Fdfi,lmer(−|Ti,lmer|). The BH procedure on
pi,lmer is finally used to control the FDR.

Remark 2 Compared to the existing methods based on either normalization or CLR
transformation, our method is computationally much more efficient and can be easily
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scaled to problems with tens of thousands of taxa. Table 1 compares the computation time
of LinDA and ANCOM-BC based on simulated datasets. We observe that our method is
100–1000 times faster than ANCOM-BC. We also tested on a massive dataset of the sim-
ilar scale of the AmericanGut project [42] (m = 5000 and n = 10, 000). ANCOM-BC
completed the analysis in 85 min compared to 28 s for our method (see the column of S0C0
in Table 1). Large-scale microbiome studies have been increasingly common to overcome
the large inter-subject variability, making our method practically useful for the analysis of
big microbiome datasets.

Asymptotic FDR control

Suppose the target FDR controlling level is q. The BH procedure is equivalent to finding
the smallest t∗ such that F̂DP(t∗) ≤ q, where

F̂DP(t) = 2mFn−d−2(−t)
∑m

i=1 I

(√
n|α̂i|/

√
ρ̂σ̂ 2

i > t
) .

Here I denotes the indicator function. To show the asymptotic FDR control as m, n →
∞, we take a Bayesian perspective by assuming that the parameters αi’s are independently
generated from a common distribution. The key result is summarized in the following
theorem and technical details can be found in the supplementary note.

Theorem 1 Let ρ be the (1, 1)th element of {E(zsz�
s )}−1. Suppose the following condi-

tions are satisfied:
(i) zs’s are i.i.d.; us and csa, a = 1, ..., d, are sub-Gaussian; σmin{E(zsz�

s )} > C, where
σmin(A) represents the minimum eigenvalue of a matrix A.
(ii) σi’s are i.i.d. and P(C1 < σi < C2) = 1.
(iii) εis/σi ∼i.i.d. E =d N(0, 1) for i = 1, ...,m and s = 1, ..., n.
(iv) αi’s are i.i.d.
(v) zs, σi, εis/σi, and αi for i = 1, ...,m and s = 1, ..., n are mutually independent.
(vi) Denote by fn(·; a) the density function of

√
nαi + √

aεis for any a > 0. For large enough
n, the density fn(·; ρ) has a unique mode at 0, i.e., argmaxx∈R fn(x; ρ) = 0; for any ε > 0,
there exists a δ > 0 such thatminn inf|x|>ε |fn(x; ρ) − fn(0; ρ)| > δ.
(vii) The Fourier transform k(u) = ∫ ∞

−∞ e−ıuyK(y)dy is absolutely integrable, where ı =√−1 is the imaginary unit.
(viii) h = o(1) and 1/(mh2) = o(1).
(ix) m = o(eCn).
(x) Let S∞,n(t) = P(|E + √

nαi/
√

ρσ 2
i | > t). There exists t0 such that for large enough n,

2Fn−d−2(−t0)/S∞,n(t0) ≤ q.
Let

FDRm,n(t) = E

⎧
⎪⎪⎨

⎪⎪⎩

∑
i:αi=0 I

(

|√nα̂i|/
√

ρ̂σ̂ 2
i > t

)

1 ∨ ∑m
i=1 I

(

|√nα̂i|/
√

ρ̂σ̂ 2
i > t

)

⎫
⎪⎪⎬

⎪⎪⎭

.

Under the above conditions, we have

lim sup
m→∞,n→∞

FDRm,n(t∗) ≤ q.
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Conditions (i)–(v) help prove the consistency of the variance estimators and the mode
of the regression coefficients. By assuming that the errors follow the normal distribu-
tions (Condition (iii)), we can integrate all the relevant covariate information in a single
parameter ρ̂, which facilitates the establishment of the consistency of the kernel den-
sity estimation and hence the estimator of mode. In the simulation studies, we also
investigated the scenario of non-normal distribution. We use an example to illustrate
Condition (vi). In particular, we assume that

√
nαi follows a discrete distribution with

P(
√
nαi = an,l) = πl for l = 0, 1, where an,0 = 0, an,1 �= 0, πl > 0, and π0 + π1 = 1. To

reflect the sparsity, π0 is set to be 0.8. We choose an,1 = 2 and 5 representing weak and
strong signals, respectively. We consider two cases for the error variance: (i) σi = 1; (ii)
σi ∼ IG(a, b), i.e., σi follows the inverse-gamma distribution with the shape parameter a
and scale parameter b. As seen from Fig. 5, when the signal strength is weak, the mode
of

√
nαi + √

ρεis slightly deviates from 0 as the blue curve in the left panel indicates. For
strong signals, the mode is exactly equal to zero. As shown in [43], Condition (vii) is ful-
filled bymany commonly used kernels such as the Gaussian kernel and the uniform kernel
on [−1, 1]. Condition (ix) allows the number of taxa to be exponentially larger than the
sample size. Condition (x) ensures the existence of a cut-off value to control the FDR at
level q. A similar assumption was imposed in Theorem 4 of [44].

Detailed setups for numerical studies

The differential taxa were randomly drawn from the entire set. In particular, let Hi = 0
if the ith taxon is differentially abundant and Hi = 1 otherwise. The underlying truth Hi
was generated from

Hi ∼i.i.d. Bernoulli(γ ).

We simulated two levels of signal density (i.e., percentage of differential taxa) γ = 5%,
20%, roughly corresponding to sparse and dense signals. We assumed that the baseline
absolute abundance X(0)

is follows

log
(
X(0)
is

)
∼i.i.d. N

(
β

(0)
i , σ 2

i

)
,

and correspondingly the absolute abundance Xis were draw based on

log(Xis) ∼i.i.d. N
(
β

(0)
i + usαi + c�

s β
−(0)
i , σ 2

i

)
,

Fig. 5 Density of
√
nαi + εis . The panels on the left and right correspond to σi = 1 and σi ∼ IG(2, 1)

respectively, where IG denotes the inverse-gamma distribution. The red curve is the density of the standard
normal distribution. The blue and green curves are the densities of

√
nαi + εis with P(

√
nαi = 0) = 0.8 and

P(
√
nαi = 2) = 0.2, and P(

√
nαi = 0) = 0.8 and P(

√
nαi = 5) = 0.2, respectively
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where β
−(0)
i represents the coefficients of the confounders, i = 1, . . . ,m. Let

π
(0)
is = X(0)

is
∑m

j=1 X
(0)
js

and πis = Xis
∑m

j=1 Xjs
.

The observed OTUs data were simulated by

(Y1s, . . . ,Yms) ∼i.i.d. Multinomial(Ns,π1s, . . . ,πms).

To create a power curve, we included six effect sizes labeled as {1, 2, ..., 6} in the figures.
We made the effect sizes have the same signs for differential taxa (i.e., the differential taxa
have the same direction of change), creating a relatively strong compositional effect. Since
low-abundance taxa have much less statistical power, we up-weighted their effects so that
the power will not be dominated by those abundant ones. Specifically, for a randomly
drawn differential taxon i, we set

αi =

⎧
⎪⎪⎨

⎪⎪⎩

log(2μ)I
(
π̄

(0)
i > 0.005

)
+ log

{

2μ
(
0.005/π̄(0)

i

)1/3
}

I

(
π̄

(0)
i ≤ 0.005

)
for n = 50,

log(μ)I
(
π̄

(0)
i > 0.005

)
+ log

{

μ
(
0.005/π̄(0)

i

)1/3
}

I

(
π̄

(0)
i ≤ 0.005

)
for n = 200,

whereμ is equally spaced on [ 1.05, 2] and π̄
(0)
i = ∑n

s=1 π
(0)
is /n. We considered three cases

for the covariate and confounders:

C0. A binary covariate. us ∼i.i.d. Bernoulli(1/2) and no confounder.
C1. A continuous covariate. us ∼i.i.d. N(0, 1) and no confounder.
C2. A binary covariate of interest and two confounders.

us ∼ Bernoulli({1 + exp(−0.5cs1 − 0.5cs2)}−1) independently, where cs1 and cs2 are
confounders (i.e., cs = (cs1, cs2)�). In the above, cs1 is specified to independently
follow the Rademacher distribution and cs2 ∼i.i.d. N(0, 1). The corresponding
coefficients of the confounders β

−(0)
i = (β

(1)
i ,β(2)

i )�, i = 1, . . . ,m, were
independently generated from a 2-dimensional normal distribution with mean
(1, 2)� and variance I2, where I2 denotes the 2 by 2 identity matrix.

The parameters β
(0)
i , σ 2

i , andNs were generated based on the estimation for a real dataset
(COMBO) from the study of the gut microbiota in a general population [45], which con-
sists of 98 samples and 6674 taxa.We only used its 500most abundant taxa. Since β

(0)
i and

σ 2
i were not directly estimable using the relative abundance data, we estimated β

(0)
i −β

(0)
j

and σ 2
i + σ 2

j based on the pairwise log ratios, forced some β
(0)
i ’s to be zeros to obtain the

estimators of β(0)
1 , . . . ,β(0)

m , and derived σ 2
i from the values of {σ 2

i +σ 2
j }i,j. We assume that

the library size for each sample follows the negative binomial distribution

Ns ∼i.i.d. NB(7645, 5.3),

where the mean and dispersion parameters were estimated based on the combo data. The
resulting sparsity (percent of zeros) of the count matrix is around 65–75%.
In addition to the basic setting (S0, log normal abundance distribution), we designed

seven other settings to study the robustness of the proposed method. Specifically, on top
of S0 and C0 (a binary covariate), we studied

S1. zero-inflated absolute abundances. The microbiome data contains excessive zeros
and many zeros in the microbiome data can be explained by insufficient sampling
[46] since majority of the taxa are of low-abundance. However, it is also possible that
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zeros are due to physical absence of the taxa [47]. To study the effect of zero inflation
on differential abundance analysis, we randomly forced 30% of the absolute
abundance data to be 0.

S2. Correlated absolute abundances. Existing differential abundance analysis methods
assume independence among taxa. However, in practice, taxa are interconnected
forming networks [48]. It is interesting to see if the methods compared are robust to
the correlations among the taxa. In this setting, we simulated block-correlation
structure by dividing the 500 taxa into 25 equal-sized blocks. Within each block, we
further divided the block into 2 by 2 sub-blocks and simulated equal positive
correlations (0.5) within each sub-block and equal negative correlations (−0.5)
between the two sub-blocks. This mimics the scenario that there are mutualistic
relationships within the group and competitive relationships between groups.

S3. Gamma abundance distribution. Although the log normal distribution has been
widely used for modeling species abundance data, other models such as gamma
distribution are also possible [49]. We thus did additional simulation studies using
the gamma distribution. Let X(0)

is ∼i.i.d. Gamma(η(0)
i , 1) and

Xis ∼i.i.d. Gamma(η(0)
i exp(usαi + c�

s β
−(0)
i ), 1). Similarly, we estimated η

(0)
i from the

COMBO data, where we first estimated the baseline proportion π
(0)
i based on the

Dirichlet-multinomial distribution using the R function dirmult and set the
over-dispersion parameter θ(0) to be 0.003, then let η

(0)
i = π

(0)
i (1/θ(0) − 1).

S4. Smaller m. In microbiome data, each taxon can be assigned a taxonomic lineage and
taxa abundances can be aggregated at different taxonomic ranks. Differential
abundance analysis at higher ranks such as family and genus is also routinely
performed. At the higher ranks, the number of taxa is much smaller. We thus studied
a small number of taxa (m = 50) to see if the proposed method is robust to a small m.
In this setting, we randomly chose 50 elements from β(0) = (β

(0)
1 , ...,β(0)

500)
� and

σ 2 = (σ 2
1 , ..., σ 2

500)
� in each simulation run. We set Ns ∼ NB(1500, 5.3).

S5. Smaller n. In pilot microbiome studies, the sample sizes are usually small. It is
interesting to study the performance of the methods at a much smaller sample size.
We studied n = 20, 30, and used the same effect size as n = 50.

S6. 10-fold difference in library size. When the microbiome samples are not fully
randomized in sequencing, it is likely that samples of the two groups end up in two
separate sequencing runs leading to very different library sizes for the two groups.
Since the presence/absence of a taxon strongly depends on the library size, the
differential library size will confound the two-sample comparison, especially for those
rare taxa [25]. To create differential library sizes, we generated the library size from
Ns ∼ NB(5000, 5.3) and Ns ∼ NB(50000, 5.3) for the two groups, respectively.

S7. Negative bionomial abundance distribution. DESeq2 and edgeR assume negative
binomial distribution for the counts, thus we included one more simulation setting,
where we generated the counts from the negative binomial distribution. Let
X(0)
is ∼i.i.d. NB(exp(7645κ(0)

i ), θ(0)
i ) and

Yis ∼i.i.d. NB(exp(Nsκ
(0)
i + usαi + c�

s β
−(0)
i ), θ(0)

i ). Similarly, we estimated the κ
(0)
i

(regression coefficient for the library size with respect to the log of the count of i th
taxon) and θ

(0)
i (dispersion parameter) from the COMBO data using the R function

glm.nb.
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S8. Mixed-effect model. We considered two scenarios: Pre-treatment and
post-treatment comparison (S8.1) and Replicate sampling (S8.2). Under S8.1, for
n = 50 (or 200), we simulated 25 (or 100) subjects and each has paired pre-treatment
and post-treatment samples. The aim is to detect taxa affected by treatment. Under
S8.2, each subject has multiple measurements. For n = 50 (or 200), we generated 25
(or 50) subjects with each having 2 (or 4) replicates. Specifically, we let

log(Xis) ∼ r�s γ i + N(β
(0)
i + usαi + c�

s β
−(0)
i , σ 2

i ),

where rs has one element equal to 1 and all the others equal to 0 indicating the
subject ID of sample s. Each element of γ i follows N(0, τ 2i ) independently, where we
let τ 2i = aiσ 2

i with ai ∼ Unif([ 0, 1] ).
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