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Abstract

A major advantage of single cell RNA-sequencing (scRNA-Seq) data is the ability to
reconstruct continuous ordering and trajectories for cells. Here we present TraSig, a
computational method for improving the inference of cell-cell interactions in
sCRNA-Seq studies that utilizes the dynamic information to identify significant
ligand-receptor pairs with similar trajectories, which in turn are used to score
interacting cell clusters. We applied TraSig to several scRNA-Seq datasets and obtained
unique predictions that improve upon those identified by prior methods. Functional
experiments validate the ability of TraSig to identify novel signaling interactions that
impact vascular development in liver organoids.

Software: https:.//github.com/doraadong/TraSig.
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Background

The ability to profile cells at the single cell level enabled the identification of new cell
types and additional markers for known cell types as well as the reconstruction of cell
type-specific regulatory networks [1, 2]. Several methods have been developed to group
or cluster cells in scRNA-Seq data [3] and to reconstruct trajectories and pseudotime
for time series scCRNA-Seq data [4]. Such methods have mainly focused on the expres-
sion similarity between cells in the same cluster or at consecutive time points and on the
differences in transcriptional regulation between cell types and over time [5].

More recently, a number of methods have been developed to infer another type of
interaction from scRNA-Seq data: signaling between cell clusters or cell types [6]. These
methods attempt to identify ligands in one of the clusters or cell types and corresponding
receptors in another cluster and then infer interactions based on the average expression
of these ligand-receptor pairs. For example, CellPhoneDB [7] scores ligand-receptor pairs
using their mean expression values in two clusters and assigns significance levels using
permutations tests. SingleCellSingleR [8] designs a score based on the product of ligand-
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receptors’ mean expression values in two clusters and selects ligand-receptor scoring
above a predefined threshold.

While successful, most current methods for inferring cell-cell interactions from scRNA-
Seq data only use the average expression levels of ligands and receptors in the two clusters
or cell types they test [6]. While this may be fine for steady state populations (for exam-
ple, different cell types in adult tissues), for studies that focus on development or response
modeling, such averages do not take full advantage of the available data in scRNA-Seq
studies. Indeed, even cells on the same branch are often ordered in such studies using var-
ious pseudotime ordering methods [9]. In such cases, cells on the same branch (or cluster)
cannot be assumed to be homogeneous with respect to the expression of key genes. Using
average analysis for such clusters may lead to inaccurate predictions about the relation-
ship between ligands and receptors in two different (though parallel in terms of timing)
branches. Specifically, Fig. 1 presents four cases of pseudotime orderings for a ligand and
its corresponding receptor in two different branches. While the average expression of a
ligand and receptor in two different branches are the same, the first two cases are unlikely
to strongly support an interaction between these two cell types while the third and fourth,
where both are either increasing or decreasing in their respective ordering, are much
more likely to hint at real interactions between the groups. In other words, if two groups
of cells are interacting, then we expect to see the genes encoding signaling molecules in
these groups co-express at a similar pace along the pseudotime.

To enable the use of pseudotime ordering for predicting cell type interactions between
dynamically changing cell populations, we developed TraSig. TraSig can use several of the
most popular pseudotime ordering and trajectory inference methods to extract expres-
sion patterns for ligands and receptors in different edges of the trajectory using a sliding
window approach. It then uses these profiles to score temporal interactions between
ligands and their known receptors in different edges corresponding to the same time. Per-
mutation testing is used to assign significance levels to specific pairwise interactions and
scores are combined to identify significant cluster-cluster interactions.

We applied TraSig to a number of scRNA-Seq datasets and compared its performance
to a number of popular methods for inferring signaling interactions from scRNA-Seq
data. As we show, the ability to utilize the temporal information in the analysis improves
the accuracy of predicted relevant pairs and leads to distinct predictions that are not
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Fig. 1 Example cases where the average expressions of the ligand and receptor that are known to interact
are the same. Of these four figures, only the last two represent correlated activation and repression of these
proteins. Methods that only use the average expression of genes in clusters cannot differentiate between
these 4 profiles and so will score all of them the same
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identified by other methods that rely on average expression. We experimentally validated
a number of interaction predictions from TraSig for liver organoid differentiation data.

Results

We developed a computational method, TraSig, for inferring cell-cell interactions from
pseudotime ordered data. Figure 2 presents an overview of the method. We start by using
a trajectory inference method to obtain grouping and pseudotime ordering for cells in
the dataset. Here we use the Continuous-State Hidden Markov Model (CSHMM) [10] for
this, though as discussed below, TraSig can be applied to results from other pseudotime
ordering methods. We then reconstruct expression profiles for genes along each of the
edges using sliding windows summaries. Next we compute dot product scores for pairs
of genes in edges (clusters) sampled at the same time or those representing the same
pseudotime. Finally, we use permutation analysis to assign significance levels to the scores
we computed. See the “Methods” section for details on each of the steps of TraSig.

Reconstructing dynamic liver development model using CSHMM

We first applied TraSig to a liver organoid differentiation scRNA-Seq dataset. This dataset
is composed of 11,083 cells sampled at three time points: day 5, day 11 (see Additional
file 1: Figure S4 for details), and day 17 [11]. The data was preprocessed using a stan-
dard Seurat V3 [12] pipeline and cell types were assigned as previously discussed [11].
These were used to initialize trajectory inference using CSHMM [10]. Following filter-
ing to remove genes not expressed in any of the cells, 26,955 genes were used to learn
the CSHMM model. Figure 3a presents the resulting model learned for this data. As
can be seen, the method identifies 12 clusters (edges) for these data. These agree very
well with the clustering assignments from the Seurat single cell analysis. Specifically,
CSHMM assigns separate edges for hepatocyte- (edge 3, 5, 9, and 10), endothelial- (edges
7 and 11), stellate- (edges 2 and 8), and ductal/cholangiocyte-like (edges 4 and 6) cells.
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Fig. 2 TraSig workflow. Top left: For a scRNA-Seq dataset, we use the reconstructed pseudotime trajectory
and the expression data as inputs. Bottom left: We next determine expression profiles for genes along each of
the edges (clusters) using sliding windows and compute dot product scores for pairs of genes in edges.
Right: Finally, we use permutation tests to assign significance levels to the scores we computed
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Fig. 3 CSHMM and TraSig's results on the liver organoid data. a Reconstructed trajectory for scRNA-Seq
profiled at day 5, day 11, and day 17 from pluripotent stem cell (PSC)-derived multilineage human liver
organoids generated as previously described [11]. CSHMM reconstructs a tree-structured trajectory that
clusters cells to edges based on their expression patterns and relationship to the expression patterns of prior
edges (Methods). Cells are colored by their cell type labels and are shown as dots ordered by their
pseudotime assignment. DesLO, designer liver organoid; HL, hepatocyte-like cells; DL,
ductal/cholangiocyte-like cells; SL, stellate-like cells; EC, endothelial-like cells; PL, progenitor-like cells; WT,
wild type. b, c UMAP [13] visualizations for day 11 and day 17 cells, colored by cell type labels. d Heatmap for
scores assigned by TraSig to cluster pairs containing cells sampled at the same time. e Sliding window
expression for four example ligand-receptor pairs predicted to interact by TraSig

In addition, the model also presents informative pseudotime ordering of cells as we dis-
cuss below based on the reconstructed expression profiles for key marker genes. See
http://www.cs.cmu.edu/~trasig/ for an interactive Web user interface to visualize the
trajectory inference results.

Inferring cell type interactions for liver development
We next applied TraSig to the model reconstructed by CSHMM in order to gain insight
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into developmental signaling of co-differentiating liver cells from multiple germ layers.
Such data is severely lacking for humans and so the use of the trajectory learned for liver
organoid differentiation can provide valuable information on interactions regulating liver
development. We thus tested all pairs of edges for which the assigned cells were from the
same time point (Additional file 1: Supplementary Notes). Figure 3d presents the results
for scoring interactions between edges representing the same time (Methods). For the day
11 clusters (edge 1, 2, 3, 4, 5, 7), we find strong interactions between stellate-like 1 cells
(edge 2) and endothelial-like cells (edge 7) and between ductal/cholangiocyte-like cells
(edge 4) and endothelial-like cells (edge 7). For the day 17 clusters (edge 6, 8, 9, 10, 11), we
find that the strongest interactions are between the ductal/cholangiocyte-like cells (edge
6) and stellate-like cells (edge 8). We also find high scoring interactions between stellate-
like cells (edge 8) and endothelial-like cells (edge 11) and between ductal/cholangiocyte-
like cells (edge 6) and endothelial-like cells (edge 11) for the day 17 clusters. The detection
of significant interactions between the endothelial, stellate, and cholangiocyte cell types
is further supported by their proximity in the liver. The stellate cells wrap around the
endothelial cells and are bordered by the cholangiocyte comprised bile ducts [14].

TraSig identifies ligand-receptor interactions important to vascular development

We evaluated the significant ligand-receptor pairs that were ranked highly by TraSig for
the high scoring cluster pairs. We found that many agree with known functions and sig-
naling pathways activated during liver development. Figure 3e presents a few examples
of identified ligand-receptor pairs. We next studied the top scoring edges predicted to
interact with endothelial-like cells. Endothelial cells play a major role in vascular develop-
ment in the liver [15]. To study the interactions of such cells, we looked for cluster pairs
for which the receiver (receptor) cluster is the day 17 endothelial-like cell cluster (edge
11). GO term analysis of the identified ligands and receptors for these cluster pairs iden-
tifies several relevant functional terms related to vascular development including “blood
vessel development” (minimum p-value among cluster pairs 5.72128e—65), “regulation of
endothelial cell proliferation” (p-value 3.34715e—27), and “vascular process in circulatory
system” (p-value 8.38655e—12).

Many of the ligand-receptor pairs identified for interactions involving the endothelial-
like cells are known to play a role in endothelial cell specification, migration, and
angiogenesis further supporting the results of TraSig. Of note, we identified pairs includ-
ing VEGFA/VEGFB/VEGFC with FLT1/KDR, which is required for proper liver zonation,
sinusoid endothelial cell specification, and endothelial lipoprotein uptake [16, 17]; DLL4
with NOTCH1/NOTCH4, which is essential for endothelial tip and stalk cell crosstalk
and liver sinusoidal endothelial cell capillarization [18, 19]; CXCL12 with CXCR4, which
has been shown to promote endothelial cell migration and lumen formation independent
of VEGF [20]; MDK with PTPRB, which is of great interest for its known impact on cancer
angiogenesis [21, 22]; and CYR61 with ITGAYV, which represents one of the many integrin
interactions identified by TraSig which activate PI3K/AKT downstream signaling and is
known to regulate tip cell activity and angiogenesis (Fig. 4a—d) [23].

Experimental validation for predicted TraSig pairs
Given the success in identifying known interactions, we next experimentally validated
additional TraSig predictions. We first assessed if there was a correlation between the
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Fig. 4 Ligand-receptor interaction predictions from TraSig of interest for functional studies. a Cartoon of cell
signaling interaction between different DesLO cell types (HLC, hepatocyte-like cells; CLC, cholangiocyte-like
cells; SLC, stellate-like cells; ELC, endothelial-like cells). b Trajectory plot showing cell type assignments with
key identifying genes highlighted by different colors (red = SOX2+ non-induced cells, yellow = SOX9
cholangiocyte-like cells, blue = hepatocyte-like cells, purple = stellate-like cells, green = endothelial-like cells).
¢ Sender CXCL12 cells from the cholangiocyte and stellate populations in red shown with the receiver CXCR4
expressing endothelial cell population in blue. d Sender and receiver signaling populations (red =
senders/ligands; blue = receivers/receptors). The darker the color is, the higher the expression level in a cell

signal level of CXCL12 or VEGF and vascularity via immunofluorescent staining of liver
organoid cultures. As shows in Fig. 5a—c, we found that loci with high relative expression
of CXCL12 and VEGF co-localized with regions of increased vessel area percentage and
vessel junction density, when compared to loci with relative low expression of CXCL12
and VEGF measured by AngioTool analysis of the immunofluorescent staining (see also
Additional file 1: Figures S5a and S5b).

This motivated further investigation into the significance of predicted signaling interac-
tions in the liver organoid cultures as they pertain to vascular development. We therefore
performed prolonged (5 days from D9-14) inhibition of several predicted signaling pro-
teins: VEGF, NOTCH, CXCR4, MDK, and PI3K (downstream of MDK and multiple
integrin interactions). These experiments validated several of the predictions. Specifically,
we observed significant decreases in percent vessel area, junction density, and average
vessel length were detected in the VEGF, MDK, and PI3K conditions, while NOTCH inhi-
bition revealed an opposite effect (Fig. 5d, ). In contrast, the local correlation of increased
vascular network formation with high CXCL12 expression did not carry over to a nega-
tive global effect via CXCR4 inhibition, indicating opportunity for further investigation,

Page 6 of 19
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perhaps involving alternative inhibitors or assessment of the alternative CXCL12 receptor
CXCR?7, which also plays important roles in angiogenesis and liver regeneration [24, 25].

Comparing TraSig with prior methods

We compared interactions predicted by TraSig to two popular methods for inferring cell
type interactions from scRNA-Seq data: CellPhoneDB [7] and SingleCellSignalR [8]. Both
methods use the overall expression of genes in clusters and unlike TraSig do not use
any ordering information. For both methods, we tested the same cluster pairs as we did
for TraSig and used the same ligand-receptor database (Additional file 1: Supplemen-
tary Notes). To make the comparisons more consistent, we combined the paracrine and
autocrine predicted interactions for SingleCellSignalR since this is what other methods
do. Figure 6a presents scores for all cluster pairs for TraSig, SingCellSignalR, and Cell-
PhoneDB. As can be seen, while some pairs score high for all methods, others are only
identified by one or two of the methods. Specifically, SingleCellSignalR seems to assign
similar scores for most pairs whereas both TraSig and CellPhoneDB assign more variable
scores. Figure 6¢ presents the Venn diagrams for the overlap between ligand-receptor
pairs identified by the three methods for four example cell cluster pairs. In all cases, the
receiver (receptor) cluster is the day 17 endothelial edge (edge 11). While SingleCellSig-
nalR and TraSig overlap in roughly 50% of the identified ligand-receptor pairs, the overlap
with CellPhoneDB is much lower.

To evaluate the predicted pairs from these methods, we performed validation exper-
iments, as mentioned above, and also compared enrichment p-values for relevant GO
terms using ligands and receptors for several high scoring cluster pairs from each of the
methods (see Additional file 1: Supplementary Notes on how we perform GO analy-
sis [26] and how we select relevant GO terms). Among the significant ligand-receptors
we successfully validated based on TraSig predictions, many were completely missed by
CellPhoneDB even though they are included in the database it is using. These include
DLL4-NOTCH1/4, JAG1-NOTCH1, VEGFB-FLT1, and VEGFC-KDR. As for Single-
CellSignalR, for the DLL4-NOTCH1/4 predicted interaction, SingleCellSignalR only
identifies these as interactions within a single cell type and therefore does not identify the
paracrine signaling between cell types. In contrast, TraSig identified these interactions as
significant between day 17 endothelial-like cells (edge 11) and ductal/cholangiocyte-like
cells (edge 6) and hepatocyte-like cells (edges 9 and 10). GO analysis further supports
the advantages of TraSig. Figure 6b shows that TraSig leads to more significant rele-
vant categories when compared to the two other methods. For example, TraSig obtains a
minimum p-value among cluster pairs of 7.81570e—60 for “blood vessel morphogenesis”
whereas the minimum p-values for this category are higher for the other two methods
(3.22968e—57 and 6.02315e—52 for SingleCellSignalR and CellPhoneDB respectfully).
For “endothelial cell migration,” TraSig has a minimum p-value of 6.28812e—25, again,
lower than the minimum p-values for SingleCellSignalR (7.70322e—20) and CellPhoneDB
(2.06128e—20). While all three methods result in significant relevant GO terms in some
cluster pairs, as indicated by the overall low minimum p-values, TraSig finds more clus-
ter pairs significant in these relevant GO terms, implying that endothelial-like cells (edge
11) receiving signals from multiple different cell types. We obtained similar results when
using another ligand-receptor database for all methods [27]. See Additional file 1: Figure
S15 for details.
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TraSig identifies interactions in neocortical development
To further evaluate TraSig’s performance, we applied TraSig to a mouse neocortical
development scRNA-Seq data [28]. After preprocessing (Additional file 1: Supplementary
Notes), we obtained 18,545 cells sampled at two time points: E14.5 and P0. We used the
top 5000 dispersed genes to reconstruct CSHMM trajectories. The CSHMM model was
initialized using the cell labels from [28]. Next the model was refined to improve both tra-
jectory learning and cell assignment. The final trajectory learned for this data is presented
in Additional file 1: Figure S8. The model is composed of 44 clusters (edges) of which 23
contain cells from the first time point and 21 from the second. Next we applied TraSig to
infer ligand-receptor pairs and interacting cluster pairs based on the sampling time.
Additional file 1: Figure S7a presents scores for all cluster pairs. As can be seen, the
method identified strongly interacting cluster pairs for both time points. The highest scor-
ing interactions identified involve either endothelial cells (edge 18 from E14.5 and edge
39 from PO), radial glial cells (edge 1 from E14.5), interneurons (edge 24 from PO), or
astrocytes (edge 26 from P0). We performed GO analysis using the significant ligands and
receptors identified for radial glial cells in E14.5 or interneurons in P0O. Additional file 1:
Figure S7b shows the —log;, p-value of enriched GO terms for interactions involving
either RG2 [14-E] cluster for the radial glial cells in E14.5 (edge 1) or Int2 [14-P] clus-
ter for the interneurons in PO (edge 24). Radial glial cells were identified as progenitor
cells for neocortical development [29] and determined to function as “scaffolds” for neu-
ronal migration [30]. GO analysis shows that the signaling proteins identified by TraSig
for interactions involving this cluster are indeed related to such functions and include
“cell migration” (p-value 1.69780e—60), “cell motility” (p-value 1.01291e—56), and “regu-
lation of cell migration” (p-value 9.23644e—42). Terms related to neuron development are
also highly enriched in the set of ligand and receptor proteins identified for the interneu-
ron cell cluster and include “neurogenesis” (p-value 1.39908e—64) and “neuron projection
development” (p-value 5.39174e—64).

Applying TraSig to trajectories obtained by Slingshot

To test the ability of TraSig to generalize to pseudotime inferred by additional methods,
we used it to post-process trajectories inferred by Slingshot [9]. Slingshot is a trajec-
tory inference method that first infers a global lineage structure using a cluster-based
minimum spanning tree (MST) and then infers the cell-level pseudotimes for each lin-
eage. We applied Slingshot and TraSig to an oligodendrocyte differentiation dataset
composed of 3685 cells [4, 31]. Additional file 1: Figure S9a presents the trajectory
learned by Slingshot for this data. Additional file 1: Figure S9b presents the interac-
tions predicted by TraSig for the inferred trajectory. Cells assigned to edges 2 and 3
are more mature cells while those assigned to edges 0 and 1 containing precursor cells
(Additional file 1: Figure S9a). Our results suggest that the more mature oligodendro-
cytes are signaling to the precursors during development. As before, we preformed
GO analysis on the set of ligands and receptors predicted for strongly interacting clus-
ters. We found several relevant GO terms including “neuron projection development”
(p-value 2.50804e—24) and “neuron development” (p-value 7.129894e—23) (Additional
file 1: Figure S9c). Ligands in top ranking ligand-receptor TraSig pairs include PDGFA,
BMP4, and PTN, all of which are know to be involved in regulating oligodendrocyte
development [32-34].
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Discussion

Initial methods for the analysis of scRNA-Seq data mainly focused on within cluster or
trajectory interactions. Recently, a number of methods have been developed to use these
data to infer interactions between different cell types or clusters [6]. These methods focus
on the average expression of ligands and their corresponding receptors in a pair of cell
types to score and identify interacting cell type pairs.

While the exact way in which scores are computed differs between methods developed
to predict such interactions, to date, most methods looked at the average or sum of the
expression values for ligands and receptors in the two clusters or cell types. Such analysis
works well when studying processes that are in a steady state (for example, adult tissues)
but may be less appropriate for dynamic processes. For real interactions, when time or
pseudotime information is available, we expect to see not just average expression levels
match but also trajectory matches in their expression profiles. Since many methods have
been developed to infer pseudotime from scRNA-Seq data, such information is readily
available for many studies.

To fully utilize information in scRNA-Seq data, we developed TraSig, a new com-
putational method for inferring signaling interactions. TraSig first orders cells along a
trajectory and then extracts expression profiles for genes in different clusters using a
sliding window approach. Matches between profiles for ligands and their correspond-
ing receptors in different clusters are then scored and their significance is assessed using
permutation tests. Finally, scores for individual pairs are combined to obtain a cluster
interaction score. Since we use pseudotime ordering as input, we assume that the cells in
the datasets we analyze are dynamically changing and that the input pseudotime order-
ing provides a good representation of the real time changes. We have experimentally
tested that this is indeed the case for the liver organoid data we analyzed in this paper
(Additional file 1: Figure S11, Additional file 2). We leave it up to users to decide if they
would like to use the method for all cells profiled or for a subset of the cells (for example,
those expected to change dynamically during the process being studied). Alternatively,
we also provide an implementation of TraSig that following pseudotime ordering aligns
the expression of cells in two edges (clusters) based on the expression of ligands and
receptors. Next, the aligned profiles are used to score and identify interacting ligand-
receptor and cluster pairs. See Additional file 1: Supplementary Notes for details. See also
Additional file 1: Figures S12—S14 for the comparisons between aligned and unaligned
options.

We applied TraSig to several different scRNA-Seq datasets and have also compared its
predictions to predictions by prior methods developed for this task. As we have shown,
for liver organoid development, TraSig was able to identify several known and novel
interactions related to the regulation of vascular network formation. These interactions
involve endothelial, stellate, and cholangiocyte cell types that have been known to reside
in close proximity [14] and several ligand-receptor pairs known to be involved in vas-
cular development. While many interactions were predicted by all methods we tested,
there are also several interactions uniquely predicted by TraSig. We validated a number
of these interactions including DLL4-NOTCH1/4, which are missed by CellPhoneDB and
only identified by SingleCellSignalR as interactions within a single cell type. TraSig also
uniquely identified WNT2/3/4/7a/7b interactions with the FZD family and LRP6 sup-
ported by the known role of WNT in angiogenesis [35]. It also uniquely found BMP10-
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ACVRL1/ACVR2A and SHH, interacting with multiple different receptors, both of which
have also been shown related to angiogenesis [36, 37].

Our experiments showed that the VEGF inhibitor Axitinib completely ablated the vas-
cular network formation as shown previously [11, 38] and appeared to completely remove
CD34 expressing cells. PI3K inhibition showed similar disruption of network formation;
however, in contrast to Axitinib treatment, rounded CD34 expressing cells remained
present and evenly spaced yet completely disconnected (Additional file 1: Figure S5b).
MDK inhibition appeared to decrease branching and connectivity of CD34 expressing
cells significantly; however, these cells still maintained a spread morphology. MDK is a
pleiotropic growth factor that can induce cell proliferation, migration, and angiogenesis
[39-41]. It has been suggested that MDK from mesothelial cells can participate in liver
organogenesis [42]. While its role was suggested in cancer-related angiogenesis [22, 43],
less is known about its function in liver development. Our combined computational and
experimental analysis suggests such role for MDK in vascular development in human
livers.

Interestingly, inhibition of NOTCH resulted in increased endothelial cell numbers
and vascular formation. Vascularization can enable better engraftment in vivo. Hence,
modulation of notch signaling might be a possible target to improve liver organoid
implantation in vivo that warrants further investigation. The mechanisms of these find-
ings can be further investigated via cell type-specific genetic circuits to determine dose,
timing, and cell types involved. Combined, our data confirms that significant signal-
ing pathways in the liver organoids could be predicted using TraSig and functionally
validated.

The INHBE-ENG interaction measured in the liver organoids (Additional file 1: Figure
S11b) was also found by TraSig. INHBE is uniquely highly expressed in primary liver as
well as the liver organoids and has been far less studied than its INHBA and INHBB
counterparts [44]. Thus far, INHBE has been proposed as a hepatokine responsible for
controlling energy homeostasis of white and brown adipose cells [45] and is poten-
tially associated with insulin resistance [46], but has not been studied in the developing
human liver to our knowledge. This poses a potential interesting avenue of further study
that could help reveal the function of INHBE in the liver, specifically as a regulator of
angiogenesis during liver development.

Among the inhibitors we use, small molecules may have potential unintended off-target
effects with limited spatial control. WZ811 and axitinib are relatively specific for inhi-
bition of CXCR4 and VEGER signaling respectively, while molecules like LY294002 can
have broad effects due to the effects of PI3K signaling beyond its role downstream of
integrin interactions. Likewise, DAPT is a gamma secretase inhibitor that will prevent all
NOTCH receptors from relaying downstream signals. Therefore, we view this as more of
a proof of principle to test if TraSig is able to successfully determine natural key players
important for angiogenesis in organoids.

We note that for this liver organoid data, the trajectory inferred by CSHMM put
both edge 7 (mainly day 11 endothelial-like cells) and edge 8 (mainly day 17 stellate-
like cells) downstream of edge 2, which mainly consists of day 11 stellate-like cells.
This implicates the likelihood of common progenitor cells in edge 2, which can further
differentiate into the endothelial lineage and pericyte(stellate) cells in liver organoids.
In fact, co-development of pericytes in endothelial differentiation cultures has been
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observed recently [47], which may further suggest the presence of common mesodermal
progenitors [48].

We have also tested TraSig on neocortical development and oligodendrocyte differenti-
ation datasets. As we have shown, TraSig was able to correctly identify known and novel
interacting cell type pairs for these datasets as well. In addition to CSHMM, we also tested
and validated TraSig using Slingshot [9] and Monocle 3 [49] (Additional file 1: Figures
§9-S10). These results demonstrate the generalizability of TraSig which can be applied
to output data from any pseudotime ordering method. As we have shown, the ability to
identify significant interactions is independent of the ordering method itself enabling the
use of TraSig in post-processing of any pseudotime ordered scRNA-Seq data.

Similar as many other inference methods, TraSig uses scRNA-Seq data to infer cell-
cell interactions. While RNA levels do not fully correspond to protein activity, we use
these levels as a proxy for the dynamic activation of ligands and receptors. Cases in which
either of them is only post-transcriptionally or post-translationally activated would thus
be missed by TraSig. We expect that we can further improve TraSig when single cell
proteomics data become more abundant.

Methods

To identify interacting cell type pairs, we developed TraSig (Trajectory based Signaling
gene inference), which infers key genes involved in cell-cell interactions. We primarily
focus on genes encoding ligands and receptors at this stage but our method can accom-
modate other proteins likely to interact. For any two groups of cells that are expected to
overlap in time, TraSig takes the pseudotime ordering for each group and the expression
of genes along the trajectory as input and then outputs an interaction score and p-value

for each possible ligand-receptor pair.

Learning trajectories for time series scRNA-Seq data

There have been several methods developed to infer trajectories from time series SCRNA-
Seq data [4]. Several of these methods first reduce the dimension of the data and then
infer trajectory structures by using minimum spanning trees in the reduced dimension
space [4]. While such methods work well for obtaining global ordering and for group-
ings cells, they may not be as accurate for the exact ordering of cells in the same edge
(cluster), especially for clusters with small number of cells. Since the ordering is only
based on the low dimension representation, genes that are only active in a small number
of cells may have little impact on the representation of the cell in the lower dimension
[10]. Since such ordering is critical for the ability to infer the activation or repression
of individual genes along the pseudotime, we instead use another method for trajectory
inference which works in the original gene space. This method, termed CSHMM, uses
probabilistic graphical models to learn trajectories and to assign cells to specific points
along the trajectories. CSHMM (Continuous-state Hidden Markov Model) [10] learns a
generative model on the expression data using transition states and emission probabil-
ities. CSHMM assumes a tree structure for the trajectory and assigns cells to specific
locations on its edges. This enables both, the inference of the gene expression trajectories
for each edge and the determination of overlapping edges (in time) which are potential
interacting groups. In CSHMM, the expression of a gene j in cell i assigned to state s, is
modeled as
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' 2
X~ N (usp,t,oj )

where s, ; is determined by both the edge p and the specific location ¢ on the edge the cell
is assigned to, and

s, = Zaj €XP (=Kp,jt) +gb/(1 — exp (—=Kp,t)).

8aj and gp; are the mean expressions for gene j at branching node a and b (the beginning
and the end of edge p, respectively) and K}, is the rate of change for gene j on edge p.
o/.2 is the variance of gene j. CSHMM is learned by using an initial assignment based on
clustering single cells and then iteratively refining the model and assignment using an EM
algorithm [10].

Selecting paired clusters

While most current methods look at all possible cluster pairs when searching for inter-
actions, when using time series data, we can constrain the search space and reduce false
positives. Specifically, cells can only interact if both are active at the same time. For exam-
ple, predicting interactions between clusters representing cells in day 1 and day 30 in a
developmental study is unlikely to lead to real signaling interactions. TraSig can either
use the time in which cells were profiled for this or it can use the tree structure provided
by CSHMM to match edges based on their predicted pseudotime. Interactions are only
predicted for pairs of edges (clusters) representing overlapping time.

Ordering cells and inferring expression profiles

Given two groups of cells (cells assigned to two edges in the model) selected as discussed
above, we first obtain a smooth expression profile for each gene along each of the edges.
For this, we first divide each edge into 101 equal size bins. We then use a sliding window
approach that summarizes expression levels for genes along overlapping windows of equal
size. We tested window sizes comprising of L = {5, 10, 20, and 30} bins and found that
window size of 20 works best (Additional file 1: Supplementary Notes). Windows overlap
by L — 1 bins so the first L — 1 bins of a window are the last L — 1 bins of its predecessor.
Since most cells are usually assigned to locations that are near the branching nodes (start
and end of the edges, Fig. 3a), we use L/2 as the length of the first sliding window and
then increase to L when we reach the first L bins (Fig. 2). We next generate an expression
profile for each gene using its mean expression within each window. Using overlapping
intervals allows us to overcome issues related to dropout and noise while still obtaining
an accurate profile of the expression of the gene along the edge.

Computing interaction scores for ligands and receptors

We used genes determined to be ligands or receptors from Ramilowski et al. [50]. This
database consists of 708 ligands and 691 receptors with 2557 known ligand-receptor in-
teractions. To calculate an interaction score between a ligand in group A (sender) and its
corresponding receptor in group B (receiver), we use the expression profile for each edge
calculated as discussed above. Denote the expression values of the ligand in group A as
X = (%1,%2,..,xp) and those for the receptor in group B as y = (y1, %2, ... ya), where M
is the total number of overlapping intervals. We use the dot product function to compute
the score by calculating x”y = wa x;y;. The advantage of using dot product for such
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analysis is that it enables the use of both the magnitude and the similarity of expression’s
change over time to rank the top pairs.

To compute a p-value for the score, we use randomization analysis. Specifically, we per-
mute the assignment of cells to edges and pseudotime in the model and re-compute the
score as discussed above for the same pair of genes along the two clusters. Such per-
mutation allows the method to identify interactions that are both, cluster (or cell type)
specific and time dependent since genes that are active in most of the clusters will likely be
also ranked high when permuting assignments between the clusters. We perform 100,000
permutations leading to a minimum p-value of 0.00001. We use Benjamini-Hochberg to
control the false discovery rate (FDR) at 0.05 for multiple testing correction. For each pair
of clusters, we also provide a summary score over all ligand-receptor pairs by counting
how many ligand-receptor pairs are significant for this cluster pair.

Alignment between paired clusters

The interaction score calculated as described above assumes that the cell clusters (edges)
fully overlap in terms of their real time trajectory. While this assumption holds for many
studies including for the data we analyze in this paper (Additional file 1: Figure S11),
there could be cases where the pseudotime represents different real time for different
clusters or edges. To enable the use of TraSig in such cases, we also implemented another
way of calculating the interaction score for TraSig. This option starts by obtaining the
optimal aligned expression profiles for each pair of clusters (edges). By aligning clusters,
we obtain the matching between the real time rather than the pseudotime dynamics of the
two clusters. Next, we compute the dot product using the aligned profiles. The alignment
method we used is adapted from those developed for bulk data [51, 52], based on B-
spline interpolation using [53] and dynamic time warping (DTW). See Additional file 1:
Supplementary Notes for details.

Using trajectories inferred by other methods
While we mainly discuss the use of TraSig with CSHMM, as we show in the “Results”
section, it can be used with the output of any other trajectory inference tool. For this
TraSig uses dynverse [4], which provides an R package that transforms the output of sev-
eral popular trajectory inference and pseudotime ordering methods to a common output.
Specifically, TraSig uses the “milestone_progression” output from dynverse which repre-
sents the location of a cell on an edge. This is a value in [ 0, 1] which we use to determine
the pseudotime assignment for each cell on an edge. All other steps are the same as
when using CSHMM’s trajectory output. TraSig can also directly use pseudotime time
and edge (cluster) assignment inputs from users if they prefer not to use the dynverse
package.

For the trajectory inference results presented in Additional file 1: Figures $9-S10, we
used the Slingshot [9] and Monocle 3 [49] softwares together with dynverse [4] to obtain
the estimated trajectories and transform the outputs.

Assessment of cell-cell interaction to probe vascular formation in liver organoids

For evaluation of whole culture vascular network formation, liver organoids were cultured
on 8-mm glass coverslips in a 48-well plate [11]. On day 9 of culture, indicated inhibitors
50 ng/mL VEGER inhibitor, Axitinib (Sigma, Cat PZ0193-5MG); 15 uM CXCR4 inhibitor,
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WZ811 (Cayman, Cat 13639); 10 uM NOTCH inhibitor, DAPT (Stem Cell Technolo-
gies, Cat 082); 10 uM PI3K inhibitor, LY294002 (Stem Cell Technologies, Cat 72152);
1 uM MDK inhibitor, iMDK (Millipore, Cat 5.08052.0001); or vehicle control (DMSO,
Sigma, Cat D2650-100mL) were supplemented to the culture medium daily for 5 days.
After fixation with 4% PFA for 20 min at room temperature on day 14, the cultures
were washed 3x in PBS and stained as explained previously [11] with CD34 antibody
(Abcam, Cat ab81289) and the whole coverslip was imaged using an EVOS M7000. Raw
images were exported to Image] and applied a threshold to generate binary images of the
CD34+ vasculature networks. Four 1200 pixel ( 2-3 mm) diameter circular areas were
selected per coverslip for assessment in AngioTool (https://ccrod.cancer.gov/confluence/
display/ROB2) [54]. For evaluation of CXCL12 and VEGF localized vascular network for-
mation, liver organoid cultures were fixed on day 14 and stained for CD34 along with
either CXCL12 or VEGF. Loci, which we define here as 300 pixel diameter areas with high
and low relative CXCL12 or VEGF expression determined by relative fluorescence, were
identified in Image] and vascular network was analyzed using AngioTool.
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