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Abstract

Background: Advances in droplet-based single-cell RNA-sequencing (scRNA-seq)
have dramatically increased throughput, allowing tens of thousands of cells to be
routinely sequenced in a single experiment. In addition to cells, droplets capture cell-
free “ambient” RNA predominantly caused by lysis of cells during sample preparation.
Samples with high ambient RNA concentration can create challenges in accurately
distinguishing cell-containing droplets and droplets containing ambient RNA. Current
methods to separate these groups often retain a significant number of droplets that
do not contain cells or empty droplets. Additionally, there are currently no methods
available to detect droplets containing damaged cells, which comprise partially lysed
cells, the original source of the ambient RNA.

Results: Here, we describe DropletQC, a new method that is able to detect empty
droplets, damaged, and intact cells, and accurately distinguish them from one
another. This approach is based on a novel quality control metric, the nuclear
fraction, which quantifies for each droplet the fraction of RNA originating from
unspliced, nuclear pre-mRNA. We demonstrate how DropletQC provides a powerful
extension to existing computational methods for identifying empty droplets such as
EmptyDrops.

Conclusions: We implement DropletQC as an R package, which can be easily
integrated into existing single-cell analysis workflows.

Main text
Droplet-based single-cell RNA-sequencing (scRNA-seq) methods utilize microfluidics

to encapsulate individual cells in nanoliter droplet emulsions, a technique that has dra-

matically increased throughput compared to plate-based protocols [1]. While encapsu-

lating cells, droplets also capture cell-free ambient RNA, a complex mixture of

transcripts released from damaged, stressed, and dying cells, often exacerbated during

dissociation of solid tissues. This ambient RNA creates challenges for downstream ana-

lyses and the biological interpretation of results as most analysis methods are based on

the assumption that a droplet contains RNA from a single cell. To combat this
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problem, several methods have been developed to estimate and remove its contribution

to gene expression [2–4].

High levels of ambient RNA also create challenges in accurately identifying cell-

containing droplets. This is a particular problem for data generated from solid tissues,

where more fragile cells are more likely to become damaged during dissociation and

contribute to ambient RNA. We thus have three scenarios that need to be differenti-

ated: empty droplets containing high concentrations of ambient RNA, droplets contain-

ing damaged cells, and droplets containing cells with limited ambient RNA. Using cut-

offs based on the total number of RNA fragments assigned to each droplet, such as

those originally proposed by Macosko et al. [5] and Zheng et al. [6], risks both includ-

ing empty droplets and excluding small cells with below-average RNA content. The

EmptyDrops method [7] addresses this issue through a more sophisticated approach,

calculating the profile of the ambient RNA pool and testing each barcode for significant

deviations from this profile. A favored alternative to simple UMI cut-offs, this method

has been integrated as the default cell-calling algorithm in the widely used 10x Genom-

ics Cell Ranger pipeline [6]. However, cell-free droplets with high ambient RNA con-

centration and damaged cells are still retained by this method.

Here, we present DropletQC, a new method that is able to simultaneously improve

the detection of cell free droplets and droplets containing damaged cells. Taking advan-

tage of the observation that unspliced and spliced mRNAs can be distinguished in com-

mon scRNA-seq protocols [8], we develop a novel metric: the nuclear fraction. The

nuclear fraction quantifies, for each droplet, the proportion of RNA originating from

unspliced pre-mRNA. Ambient RNA consists predominantly of mature cytoplasmic

mRNA. This may arise as RNA is released from damaged cells in which the nuclear en-

velope remains intact, or capped and polyadenylated transcripts may be more stable in

the extracellular environment (Fig. 1). Regardless, droplets that contain only ambient

RNA have a low nuclear fraction compared to droplets containing cells (Additional file

1: Figure S1). In contrast, damaged cells due to the depletion of cytoplasmic RNA will

have a higher nuclear fraction compared to intact cells. By using the nuclear fraction

score in combination with UMIs per droplet, we are able to accurately distinguish be-

tween empty droplets, damaged cells, and intact cells.

To assess the ability of DropletQC to identify both empty droplets and droplets con-

taining damaged cells, we applied it to four independent scRNA-seq datasets; embry-

onic mouse brain, glioblastoma tumor, peripheral blood mononuclear cells (PBMCs),

and Hodgkin’s lymphoma tumor. To determine whether DropletQC could identify

empty droplets missed by current methods, barcodes were filtered using 10x Genomics

Cell Ranger 6.1.1 [6], CellBender [9], EmptyNN [10], or EmptyDrops as implemented in

DropletUtils [7]. For all methods tested, DropletQC identified additional cell free drop-

lets (Additional file 1: Figure S2). These droplets are identified by DropletQC using an

automatic threshold based on the distinctly lower nuclear fraction scores exhibited

compared to droplets containing cells, which contain a mixture of mature (cytoplasmic)

and precursor (nuclear) mRNA (Fig. 2). To validate the identified droplets do not con-

tain intact cells, the levels of two transcripts; MALAT1 and NEAT1 were quantified for

each droplet. These abundant lncRNAs maintain structural roles in nuclear speckles

and paraspeckles respectively and are retained exclusively within the cell nucleus [11].

Droplets identified by DropletQC as cell-free displayed low levels of both transcripts
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(Additional file 1: Figure S3), indicating the droplets identified as empty do not contain

intact cells. Cell free droplets represent 9.5% of mouse brain, 6.0% of Hodgkin’s lymph-

oma, 4.0% of glioblastoma, and 0.4% of PBMCs retained following filtering with Empty-

Drops (Additional file 1: Table S1). Cells from dissociated tissue (Fig. 2a–c) contained

more empty droplets with high RNA content than PBMCs (Fig. 2d), suggesting ambient

RNA may be released from cells damaged during sample preparation.

Following identification of empty droplets, droplets containing damaged cells are

identified using expectation maximization and a Gaussian mixture model to separate

them from droplets containing intact cells. As both the total UMI count and nuclear

fraction scores display distinct distributions for different cell types (Additional file 1:

Figure S4), it is necessary to first annotate cell types, so that damaged cells may be

identified separately for each. Cells were annotated for each sample using a combin-

ation of gene markers and supervised classification with scPred [12]. Of the remaining

cells, 14.0% of mouse brain, 5.2% of Hodgkin’s lymphoma, 9.8% of glioblastoma tumor

cells, and one PBMC cell were identified as damaged cells (Additional file 1: Table S1).

As an additional test of the ability of DropletQC to identify damaged cells, we applied

the method to data from a recent investigation on the effects of cryopreservation on

the transcriptomes of macaque microglia [13]. DropletQC revealed an increase in the

proportion of damaged cells following cryopreservation from 4.1 to 13.8% (Additional

file 1: Figure S5, Table S2). These findings have implications for the suitability of pro-

spectively archiving samples for scRNA-seq studies through cryopreservation and

Fig. 1 Illustration of how the nuclear fraction, in combination with the library size of each droplet, can be
used to separate the populations of empty droplets, intact cells, and damaged cells
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demonstrates the utility of DropletQC for similar studies. To validate that the cells

identified by DropletQC are indeed damaged, we applied the method to data from

HEK293 cells stressed with staurosporine and captured in healthy, pro-, and late-

apoptotic states [14]. DropletQC identified an increase in both the proportion of dam-

aged cells and cell free droplets as cells progressed toward the late-apoptotic state

(Additional file 1: Figure S6a-d). HEK293 cells identified as damaged were associated

with a higher mitochdondrial gene content (Additional file 1: Figure S6e) a hallmark of

damaged and dying cells [15]. Similarly, damaged cells for other datasets were associ-

ated with a higher mitochondrial gene content (Additional file 1: Figure S7).

To assess whether DropletQC is applicable to commonly used 5′ scRNA-seq proto-

cols, we examined two additional scRNA-seq datasets; glioblastoma tumor 5′ v1 and

mouse splenocytes 5′ v2. After filtering with EmptyDrops, DropletQC identified both

empty droplets and damaged cells in both samples (Additional file 1: Figure S8, Table

S3). As common protocols capture unspliced intronic sequences [8], we anticipate Dro-

pletQC will be applicable to most scRNA-seq datasets.

By default, the DropletQC software provides a flag for empty droplets and damaged

cells, but does not remove them from the dataset. Depending on the biological analyses,

damaged cells may retain useful information, and as such, it may be desirable to retain

this metadata throughout downstream analyses. In addition, care should be taken that

cells are accurately annotated, to avoid confounding distinct cell types as populations

of damaged and intact cells. Similarly, cells such as erythrocytes, which contain small

amounts of mature mRNA, may be misidentified as empty droplets and can be rescued

downstream if desired. We note that intron and exon boundaries should be well-

defined in the reference transcriptome for accurate estimation of the nuclear fraction.

Fig. 2 DropletQC identifies empty droplets and damaged cells in four heterogeneous scRNA-seq datasets.
Total UMI counts (y-axis) and nuclear fraction scores (x-axis) are shown for each cell, with colors
representing the status of each cell assigned by DropletQC. Empty droplets contain less RNA than cells and
a higher fraction of cytoplasmic RNA (low nuclear fraction score). Damaged cells contain less RNA than
intact cells and a higher proportion of unspliced RNA fragments (high nuclear fraction score)
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An option to calculate the nuclear fraction using a user-provided gene annotation file

is provided, so that it may be easily recalculated as the quality of a species’ gene annota-

tion is improved.

For samples with large percentages of ambient RNA, some damaged cells and empty

droplets may be missed by DropletQC. However, these can be identified by their low

RNA content (Fig. 2a) and may be easily flagged using a minimum UMI threshold. We

recommend that DropletQC be used in tandem with a tool such as EmptyDrops to

prune the majority of cell barcodes, before identifying any remaining cell free droplets

or damaged cells. Calculation of the nuclear fraction, identification of empty droplets

and damaged cells are implemented as separate functions within the DropletQC

package.

In summary, we have shown that DropletQC is able to successfully identify both

empty droplets and damaged cells in data from a range of tissue types.

Methods

Nuclear fraction calculation
The DropletQC method first calculates the nuclear fraction for each droplet, which is

the proportion of RNA fragments that originate from intronic regions. It is calculated

as:

NFi ¼ Σ IRið Þ
Σ IRi þ ERið Þ

where NFi is the nuclear fraction for droplet i, IRi are the reads that map to intronic

regions for droplet i, and ERi are those that map to exonic regions. We have imple-

mented two methods to map reads to either intronic or exonic regions. The first takes

advantage of region tags, such as those added by 10x Genomics’ Cell Ranger count ana-

lysis pipeline that identify the region type of each genome-aligned RNA fragment; ex-

onic, intronic, or intergenic. These are efficiently counted using the nuclear_fraction_

tags function to calculate a nuclear fraction score for each provided cell barcode. Alter-

natively, if region tags are missing, our second method assesses aligned reads for over-

lap with intronic regions using the nuclear_fraction_annotation function in

combination with a user-provided gene annotation file. To speed up processing of

indexed, coordinate-sorted alignment files, reads are split across a user-specified num-

ber of genomic regions to allow parallel computation. The four samples presented in

the manuscript were processed with 8 CPUs and 16Gb of RAM with an average pro-

cessing time of 106 s per 100 million reads using the nuclear_fraction_tags function

and 132 s per 100 million reads using the nuclear_fraction_annotation function.

Identifying empty droplets and damaged cells

Empty droplets are classified as all barcodes that fall below a defined nuclear fraction

threshold. To identify a suitable threshold, a kernel density estimate is calculated using

the nuclear fraction scores. The first derivative of the estimate is then calculated to

identify the local minimum immediately following the first peak, corresponding to the

population of empty droplets. If the automatically selected cut-off misidentifies the
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empty droplet population, two user-adjustable parameters are provided; a nuclear frac-

tion threshold and a total UMI threshold, above which all barcodes are marked as cells.

To identify droplets containing damaged cells, barcodes are assessed separately for

each cell type. It is assumed damaged cells have both a lower UMI count and higher

nuclear fraction score than undamaged cells. We therefore use a two component (k)

gaussian mixture model, implemented with mclust [16], to classify droplets containing

damaged cells:

P Xð jμ; σ; αÞ ¼ α1N Xjμ1; σ21
� �þ α2N Xjμ2; σ22

� � ðEq:1Þ

where X is a dataset with log10(UMI) and estimated nuclear fractions for 1-n droplets

of a given cell type. μ and σ2are the mean and variance, and α represents the mixing

weight of a given component. The initial model parameters are calculated as:

μk ¼
PNk

i xi;k
Nk

σ2k ¼
PNk

i xi;k−μk
� �2

Nk

αk ¼ Nk

N

where Nkis the number of data points in the kth component. Following the

initialization, we estimate parameters using expectation maximization by asking what is

the posterior probability that a droplet (xi) belongs to component kj:

P xi∈k jjxi
� � ¼ P xijxi∈k j

� �
P k j
� �

P xið Þ ðEq:2Þ

where,

P xijxi∈k j
� � ¼ N xijμkj; σ2kj

� �

P k j
� � ¼ αkj

P xið Þ ¼
XK

k¼1
αkN xijμk ; σ2k

� �

Nkin the initial component parameters are replaced with the posterior probability and

recalculated, with these steps repeated until convergence determined using the Bayesian

information criterion. This model identifies the minimum separation required between

the identified distributions for a population of droplets to be marked as damaged. We

then label droplets as containing a damaged cell based on a higher mean nuclear
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fraction and lower mean UMI than the cell population, a mean nuclear fraction greater

than the cell population mean by a user-adjustable amount (default 0.15), and a mean

UMI count lower than the cell population (default 50%).

Data

Cell filtering and annotation

For the mouse brain, Hodgkin’s lymphoma, glioblastoma, and PBMC samples presented

in Fig. 2, prior to calculating the nuclear fraction score, all cell barcodes were assessed

for a significant deviation from the ambient RNA expression pattern using the Empty-

Drops method implemented in DropletUtils [7]. The lower bound on the total UMI

count used to identify empty droplets was increased from 100 to 500 and all other pa-

rameters were left at their default values. Barcodes below a false discovery rate thresh-

old of 1% were excluded. Remaining barcodes were additionally filtered for a maximum

mitochondrial gene content of 15% to exclude low-quality cells, in line with current

best practices when assessing common scRNA-seq quality control metrics. Mouse brain

and PBMC cell types were annotated by supervised classification with the scPred [12]

using annotated PBMC [17], mouse brain [18], and developing mouse brain [19] refer-

ence datasets. The glioblastoma sample cell types were identified using cell-type specific

gene markers for oligodendrocytes (MAG, MOG, MBP), microglia/macrophages

(C1QA, AIF1, LAPTM5), T cells (CD2, CD3D, CD3E), and endothelial cells (CD34,

ESAM, APOLD1) [20–23]. Hodgkin’s lymphoma cell types were classified using marker

genes for B cells (MS4A1), macrophages (CD68, IDO1), plasmacytoid dendritic cells

(CLEC4C, NRP1), erythrocytes (HBB, HBA1, HBA2), cytotoxic T cells (GZMA, GZMK,

IFNG), regulatory T cells (FOXP3, IL2RA, IKZF2), T helper cells (CXCL13, PDCD1,

FABP5), naïve T cells (CCR7, IL7R, LEF1), progenitor (CD34), and mast cells (TPSAB1,

TPSB2, KIT) [24, 25].

Method comparison

CellBender’s remove-background function was run with the number of epochs set to

150 and fpr of 0.01, as per the default parameters. The total-droplets-included argu-

ment was set to 20,000 and the expected-cells argument to 10,000 for the mouse brain

and PBMC datasets and 5000 for the glioblastoma and Hodgkin’s lymphoma samples.

EmptyNN was run with the number of k-folds set to 10, for 10 iterations. The UMI

counts threshold was set to the default value of 100, as well as a value of 500. Empty-

Drops was run with default parameters and the lower bound on the total UMI count

set to the default value of 100, as well as 500. Barcodes below a false discovery rate

threshold of 1% were excluded as empty droplets. To provide a fair comparison with

existing practices for assessing QC metrics, cells were additionally filtered with a mito-

chondrial gene content threshold of 15% before being assessed with DropletQC.
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