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Abstract

Recent advances in single-cell biotechnologies have resulted in high-dimensional
datasets with increased complexity, making feature selection an essential technique
for single-cell data analysis. Here, we revisit feature selection techniques and
summarise recent developments. We review their application to a range of single-
cell data types generated from traditional cytometry and imaging technologies and
the latest array of single-cell omics technologies. We highlight some of the
challenges and future directions and finally consider their scalability and make
general recommendations on each type of feature selection method. We hope this
review stimulates future research and application of feature selection in the single-
cell era.

Introduction
High-throughput biotechnologies are at the centre of modern molecular biology, where

typically a sheer number of biomolecules are measured in cells and tissues. While sig-

nificantly higher coverage of molecules is achieved by high-throughput biotechnologies

compared to traditional biochemical assays, the variation in sample quality, reagents

and workflow introduces profound technical variation in the data. The high dimen-

sionality, redundancy and noise commonly found in these large-scale molecular data-

sets create significant challenges in their analysis and can lead to a reduction in model

generalisability and reliability. Feature selection, a class of computational techniques

for data analytics and machine learning, is at the forefront in dealing with these chal-

lenges and has been an essential driving force in a wide range of bioinformatics appli-

cations [1].

Until recently, the global molecular signatures generated from most high-throughput

biotechnologies have been the average profiles of mixed populations of cells from tis-

sues, organs or patients, and feature selection techniques have been predominately ap-

plied to such ‘bulk’ data. However, the recent development of technologies that

enables the profiling of various molecules (e.g. DNA, RNA, protein) in individual cells

at the omics scale has revolutionised our ability to study various molecular programs

and cellular processes at the single-cell resolution [2]. The accumulation of large-scale
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and high-dimensional single-cell data has seen renewed interests in developing and the

need for applying feature selection techniques to such data given their increased scale

and complexity compared to their bulk counterparts.

To foster research in feature selection in the new era of single-cell sciences, we set

out to revisit the feature selection literature, summarise its advancement in the last dec-

ade and recent development in the field of deep learning and review its current applica-

tions in various single-cell data types. We then discuss some key challenges and

opportunities that we hope would inspire future research and development in this fast-

growing interdisciplinary field. Finally, we consider the scalability and applicability of

each type of feature selection methods and make general recommendations to their

usage.

Basics of feature selection techniques
Feature selection refers to a class of computational methods where the aim is to select

a subset of useful features from the original feature set in a dataset. When dealing with

high-dimensional data, feature selection is an effective strategy to reduce the feature di-

mension and redundancy and can alleviate issues such as model overfitting in down-

stream analysis. Different from dimension reduction methods (e.g. principal component

analysis) where features in a dataset are combined and/or transformed to derive a lower

feature dimension, feature selection methods do not alter the original features in the

dataset but only identify and select features that satisfy certain pre-defined criteria or

optimise certain computational procedures [3]. The application of feature selection in

bioinformatics is widespread [1]. Some of the most popular research directions include

selecting genes that can discriminate complex diseases such as cancers from microarray

data [4, 5], selecting protein markers that can be used for disease diagnosis and prog-

nostic prediction from mass spectrometry-based proteomics data [6], identifying single

nucleotide polymorphisms (SNPs) and their interactions that are associated with spe-

cific phenotypes or diseases in genome-wide association studies (GWAS) [7], selecting

epigenetic features that mark cancer subtypes [8] and selecting DNA structural proper-

ties for predicting genomic regulatory elements [9]. Traditionally, feature selection

techniques fall into one of the three categories including filters, wrappers and embed-

ded methods (Fig. 1). In this section, we revisit the key properties and defining charac-

teristics of the three categories of feature selection methods. Please refer to [10] for a

comprehensive survey of feature selection methods.

Filter methods typically rank the features based on certain criteria that may facilitate

other subsequent analyses (e.g. discriminating samples) and select those that pass a

threshold judged by the filtering criteria (Fig. 1A). In bioinformatics applications, com-

monly used criteria are univariate methods such as t statistics, on which most ‘differen-

tial expression’ (DE) methods for biological data analysis are built [11], and multivariate

methods that take into account relationships among features [12]. The main advantages

of filter methods lie in their simplicity, requiring less computational resources in gen-

eral and ease of applications in practice [13]. However, filter methods typically select

features independent from the induction algorithms (e.g. classification algorithms) that

are applied for downstream analyses, and therefore, the selected features may not be

optimal with respect to the induction algorithms in the subsequent applications.
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In comparison, wrappers utilise the performance of the induction algorithms to guide

the feature selection process and therefore may lead to features that are more condu-

cive to the induction algorithm used for optimisation in downstream analyses [14] (Fig.

1B). A key aspect of wrapper methods is the design of the feature optimisation algo-

rithms that maximise the performance of the induction algorithms. Since the feature

dimensions are typically very high in bioinformatics applications, exhaustive search is

often impractical. To this end, various greedy algorithms, such as forward and back-

ward selection [15], and nature-inspired algorithms, such as the genetic algorithm (GA)

[16] and the particles swarm optimisation (PSO) [17], were employed to speed up the

optimisation and feature selection processes. Nevertheless, since the induction algo-

rithms are included to iteratively evaluate feature subsets, wrappers are typically com-

putationally intensive compared to filter methods.

While filters and wrappers separate feature selection from downstream analysis,

embedded methods typically perform feature selection as part of the induction al-

gorithm itself [18] (Fig. 1C). Akin to wrappers, embedded methods optimise se-

lected features with respect to an induction model and therefore may lead to

more suited features for the induction algorithm in subsequent tasks such as

sample classification. Since the embedded methods perform feature selection and

induction simultaneously, it is also generally more computationally efficient than

wrapper methods albeit less so when compared to filter methods [19]. Neverthe-

less, as feature selection is part of the induction algorithm in embedded methods,

they are often specific to the algorithmic design and less generic compared to fil-

ters and wrappers. Popular choices of embedded methods in bioinformatics appli-

cations include tree-based methods [20, 21] and shrinkage-based methods such as

LASSO [22].

Advance of feature selection in the past decade
Besides the astonishing increase in the number of feature selection techniques in the

last decade, we have also seen a few notable trends in their development. Here, we

summarise three aspects that have shown proliferating research in various fields and

applications, including bioinformatics.

Fig. 1 Schematic illustrations of typical filter (a), wrapper (b) and embedded methods (c) in feature
selection
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First, a variety of approaches have been proposed for ensemble feature selection, in-

cluding those for filters [23, 24], wrappers [25] and embedded methods such as tree-

based ensembles [26]. Ensemble learning is a well-established approach where instead

of building a single model, multiple ‘base’ models are combined to perform tasks [27].

Supervised ensemble classification models are popular among bioinformatics applica-

tions [28] and have recently seen their increasing integration with deep learning models

[29]. Similar to their counterpart in supervised learning, ensemble feature selection

methods, typically, rely on either perturbation to the dataset or hyperparameters of the

feature selection algorithms for creating ‘base selectors’ from which the ensemble could

be derived [30]. Examples include using different subsets of samples for creating mul-

tiple filters or using different learning parameters in an induction algorithm of a wrap-

per method. Key attributes of ensemble feature selection methods are that they

generally achieve better generalisability in sample classification [31] and higher repro-

ducibility in feature selection [32, 33]. Although these improvements in performance

typically come with a cost on computational efficiency, ensemble feature selection

methods are increasingly popular given the increasing computational capacity in the

last decade and the parallelisation in some of their implementations [34–36].

Second, various hybrid methods have been proposed to combine filters, wrappers and

embedded methods [37]. While these methods closely resemble ensemble approaches,

they do not rely on data or model perturbations but instead use heterogeneous feature

selection algorithms for creating a consensus [38]. Typically, these include combining

different filter algorithms or different types of feature selection algorithms (e.g. stepwise

combination of filter and wrapper). Generally, hybrid methods are motivated by the

aim of taking advantage of the strengths of individual methods while alleviating or

avoiding their weaknesses [39]. For example, in bioinformatics applications, several

methods combine filters with wrappers in that filters are first applied to reduce the

number of features from high dimension to a moderate number so that wrappers can

be employed more efficiently for generating the final set of features [40, 41]. As another

example, genes selected by various feature selection methods are used for training a set

of support vector machines (SVMs) for achieving better classification accuracy using

microarray data [42]. While many hybrid feature selection algorithms are intuitive and

numerous studies have reported favourable results compared to their individual com-

ponents, a fundamental issue of these methods is their ad hoc nature, complicating the

formal analysis of their underlying properties, such as theoretical algorithmic complex-

ity and scalability.

Third, a recent evolution in feature selection has been its development and imple-

mentation using deep learning models. These include models based on perturbation

[43, 44], such as randomly excluding features to test their impact on the neural network

output, and gradient propagation, where the gradient from the trained neural network

is backpropagated to determine the importance of the input feature [45, 46]. These

deep learning feature selection models share a common concept of ‘saliency’ which was

initially designed for interpreting black-box deep neural networks by highlighting input

features that are relevant for the prediction of the model [47]. Some examples in bio-

informatics applications include a deep feature selection model that uses a neural net-

work with a weighted layer to select key input features for the identification and

understanding regulatory events [48]; and a generative adversarial network approach

Yang et al. Genome Biology          (2021) 22:321 Page 4 of 17



for identifying genes that are associated with major depressive disorders using gradient-

based methods [49]. While feature selection methods that are based on deep learning

generally require significantly more computational resources (e.g. memory) and may be

slower than traditional methods (especially when compared to filter methods), their

capabilities for identifying complex relationships (e.g. non-linearity, interaction) among

features have attracted tremendous attention in recent years.

Feature selection in the single-cell era
Until recently, the global molecular signatures generated from most biotechnologies

are the average profiles from mixed populations of cells, masking the heterogeneity of

cell and tissue types, a foundational characteristic of multicellular organisms [50].

Breakthroughs in global profiling techniques at the single-cell resolution, such as

single-cell RNA-sequencing (scRNA-seq), single-cell Assay for Transposase Accessible

Chromatin using sequencing (scATAC-seq) [51] and cellular indexing of transcrip-

tomes and epitopes by sequencing (CITE-seq) [52], have reshaped many of our long-

held views on multicellular biological systems. These advances of single-cell technolo-

gies create unprecedented opportunities for studying complex biological systems at res-

olutions that were previously unattainable and have led to renewed interests in feature

selection for analysing such data. Below we review some of the latest developments and

applications of feature selection across various domains in the single-cell field. Table 1

summarises the methods and their applications with additional details included in Add-

itional file 1: Table S1.

Feature selection in single-cell transcriptomics

By far, the most widely applied single-cell omics technologies are single-cell tran-

scriptomics [53] made popular by an array of scRNA-seq protocols [54]. Given the

availability of a huge amount of scRNA-seq data and the large number of genes profiled

in these datasets, a similar characteristic of their bulk counterparts, most of recent fea-

ture selection applications in single-cell transcriptomics have been concentrated on

Table 1 Categorisation of feature selection methods applied to the single-cell field

Category Methods Transcriptomics Epigenomics Surface
proteins

Imaging Multimodal

Classic Filter Univariate (53–60) (61–64) (65, 122)

Multivariate (66, 67)

Wrapper Greedy (68) (69, 70)

Nature-
inspired

(71, 72) (73)

Others (74, 75) (76)

Embedded Tree-based (77) (81) (82) (83, 84)

Shrinkage (78, 79) (62, 81) (85) (86)

Others (80) (83)

Advanced Ensemble (87)

Hybrid (88–91) (90)

Deep
learning

(49, 92) (93)
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gene selection from scRNA-seq data for various upstream pre-processing and down-

stream data analyses.

Among these, some of the most popular methods are univariate filters designed for

identifying differential distributed genes, including t statistics or ANOVA based DE

methods [55, 56] and other statistical approaches such as differential variability (DV)

[57] and differential proportion (DP) [58]. While differential distribution-based

methods can often identify genes that are highly discriminative for downstream ana-

lysis, they require labels such as cell types to be pre-defined, limiting their applicability

when such information is not available. A less restrictive and widely used alternative

approach is to filter for highly variable genes (HVGs), which is implemented in various

methods including the popular Seurat package [59]. Other methods that do not require

label information include SCMarker which relies on testing the number of modalities

of each gene through its expression profile [60], M3Drop which models the relationship

between mean expression and dropout rate [61], and OGFSC, a variant of HVGs, based

on modelling coefficient of variance of genes across cells [62]. Many scRNA-seq clus-

tering algorithms also implement HVGs and its variants for gene filtering to improve

the clustering of cells [63]. Besides the above univariate filters, recent research has also

explored multivariate approaches. Examples include COMET which relies on a modi-

fied hypergeometric test for filtering gene pairs [64] and a multinomial method for gene

filtering using the deviance statistic [65].

While filters are the most common options for pre-processing and feature selection

from single-cell transcriptomics data, the application of wrapper methods is gaining much

attention with a range of approaches built and extends on classic methods with the pri-

mary goal of facilitating downstream analyses such as cell type classification. Some exam-

ples include the application of classic methods such as greedy-based optimisation of

entropy [66], nature-inspired optimisation such as using GA [67, 68], and their hybrid

with filters [69–71] or embedded methods [72]. More advanced methods include active

learning-based feature selection using SVM as a wrapper [73] and optimisation based on

data projection [74]. The impact of optimal feature selection using wrapper methods on

improving cell type classification is well demonstrated through these studies.

Due to the simplicity in their application, the popularity of embedded methods is

growing quickly in the last few years especially in studies that treat feature selection as

a key goal in their analyses. These include the discovery of the minimum marker gene

combinations using tree-based models [75], discriminative learning of DE genes using

logistic regression models [76], regulatory gene signature identification using LASSO

[77] and marker gene selection based on compressed sensing optimisation [78].

Lastly, several studies have compared the effect of various feature selection methods

on the clustering of cell types [63] and investigated factors that affect feature selection

in cell lineage analysis [79]. Together, these studies demonstrate the utility and flexibil-

ity of feature selection techniques in a wide range of tasks in single-cell transcriptomic

data analyses.

Feature selection in single-cell epigenomics

Besides single-cell transcriptomic profiling, another fast-maturing single-cell omics

technology is single-cell epigenomics profiling using scATAC-seq [51]. In particular,
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scATAC-seq measures genome-wide chromatin accessibility and therefore can provide

a clue regarding the activity of epigenomic regulatory elements and their transcription

factor binding motifs in single cells. Such data can offer additional information that is

not accessible to scRNA-seq technologies and hence can complement and significantly

enrich scRNA-seq data for characterising cell identity and gene regulatory networks

(GRNs) in single cells [80]. Although most application of feature selection has been on

investigating single-cell transcriptomes, recent studies have broadened the view to

single-cell epigenomics primarily through their application in scATAC-seq data ana-

lysis. These analyses enable us to expand the gene expression analysis to also include

regulatory elements such as enhancers and silencers in understanding molecular and

cellular processes.

Feature selection methods could be directly applied to scATAC-seq data for identify-

ing differential accessible chromatin regions or one can summarise scATAC-seq data

to the gene level using tools such as those reviewed in [81] and then feature selection

be performed for selecting ‘differentially accessible genes’ (DAGs) using such sum-

marised data. For instance, Scasat, a tool for classifying cells using scATAC-seq data,

implements both information gain and Fisher’s exact test for filtering and selecting dif-

ferential accessible chromatin regions [82]. Similarly, scATAC-pro, a pipeline for

scATAC-seq analysis at the chromatin level, employs Wilcoxon test as the default for

filtering differential accessible chromatin regions, while also implements embedded

methods such as logistic regression and negative binomial regression-based models as

alternative options [83]. Another example is SnapATAC [84] which performs differen-

tial accessible chromatin analysis using the DE method implemented in edgeR [85]. In

contrast, Kawaguchi et al. [86] summarised scATAC-seq data to the gene level using

SCANPY [87] and performed embedded feature selection using either logistic LASSO

or random forests to identify DAGs [86]. Muto et al. [88] performed filter-based differ-

ential analysis on both chromatin and gene levels based on Cicero estimated gene activ-

ity scores [89]. Finally, DUBStepR [71], a hybrid approach that combines a correlation-

based filter and a regression-based wrapper for gene selection from scRNA-seq data,

can also be applied to scATAC-seq data. Collectively, these methods and tools demon-

strate the utility and impact of feature selection on scATAC data for cell-type identifi-

cation, motif analysis, regulatory element and gene interaction detection among other

applications.

Feature selection for single-cell surface proteins

Owing to the recent advancement in flow cytometry and related technologies such as

mass cytometry [90, 91], and single-cell multimodal sequencing technologies such as

CITE-seq [52], surface proteins of the cells have now also become increasingly access-

ible at the single-cell resolution.

A key application of feature selection methods to flow and mass cytometry data has

been for finding optimal protein markers for cell gating [92]. A representative example

is GateFinder which implements a random forest-based feature selection procedure for

optimising stepwise gating strategies on each given dataset [93]. Besides automated gat-

ing, several studies have also explored the use of feature selection for improving model

performance on sample classification. For example, in their study, Hassan et al. [94]
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demonstrated the utility of shrinkage-based embedded models for classifying cancer

samples. Another application of feature selection techniques was recently demonstrated

by Tanhaemami et al. [95] for discovering signatures from label-free single cells. In par-

ticular, the authors employed a GA for feature selection and verified its utility in pre-

dicting lipid contents in algal cells under different conditions. Together, these studies

illustrate the wide applicability of feature selection methods in a wide range of chal-

lenges in flow and mass cytometry data analysis.

Recent advancement in single-cell multimodal sequencing technologies such as

CITE-seq and other related techniques such as RNA expression and protein se-

quencing (REAP-seq) [96] has enabled the profiling of both surface proteins and

gene expressions at the single-cell level. While still at its infancy, feature selection

techniques have already found their use in such data. One example is the applica-

tion of a random forest-based approach for selecting marker proteins that can dis-

tinguish closely related cell types profiled using CITE-seq from PBMCs isolated

from the blood of healthy human donors [97]. Another example is the use of a

greedy forward feature selection wrapper that maximises a logistic regression model

for identifying surface protein markers for each cell type from a given CITE-seq

dataset [98].

Feature selection in single-cell imaging data

Other widely accessible data at the single-cell resolution are imaging-related data

types such as those generated by image cytometry [99] and various single-cell im-

aging techniques [100]. Although the application of feature selection methods in

this domain is very diverse, the following examples provide a snapshot of differ-

ent types of feature selection techniques used for single-cell imaging data

analysis.

To classify cell states using imaging flow cytometry data, Pischel et al. [101] employed

a set of filters, including mutual information maximisation, maximum relevance mini-

mum redundancy and Fisher score, for feature selection and demonstrated their utility

on apoptosis detection. To predict cell cycle phases, Hennig et al. [102] implemented

two embedded feature selection techniques, gradient boosting and random forest, for

selecting the most predictive features from image cytometry data. These implementa-

tions are included in the CellProfiler, open-source software for imaging flow cytometry

data analysis. To improve data interpretability of single-cell imaging data, Peralta and

Saeys [103] proposed a clustering-based method for selecting representative features

from each cluster and thus significantly reducing data dimensionality. To classify cell

phenotypes, Doan et al. [104] implemented supervised and weakly supervised deep

learning models in a framework called Deepometry for feature selection from imaging

cytometry data. To classify cells according to their response to insulin stimulation, Nor-

ris et al. [105] used a random forest approach for ranking the informativeness of vari-

ous temporal features extracted from time-course live-cell imaging data. Finally, to

select spatially variable genes from imaging data generated by multiplexed single-

molecule fluorescence in situ hybridization (smFISH), Svensson et al. [106] introduced

a model based on the Gaussian process regression that decomposes expression and

spatial information for gene selection.
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Upcoming domains and future opportunities

The works reviewed above covers some of the most popular single-cell data types.

Nevertheless, the technological advances in the single-cell field are extending our cap-

ability at a breakneck speed, enabling many other data modalities [107] as well as the

spatial locations [108] of individual cells to be captured in high-throughput. For in-

stance, recent development in single-cell DNA-sequencing provides the opportunity to

analyse SNPs and copy-number variations (CNVs) in individual cells from cancer and

normal tissues [109, 110], and single-cell proteomics seems now on the horizon [111,

112], holding great promises to further transform the single-cell field. Given the high

feature-dimensionality of such data (e.g. numbers of SNPs, proteins and spatial loca-

tions), we anticipate feature selection techniques to be readily adopted for these single-

cell data types when they become more available.

Another fast-growing capability in the single-cell field is increasingly towards multi-

modality. CITE-seq and REAP-seq are examples where both the gene expression and

the surface proteins are measured in each individual cell. Nevertheless, many more re-

cent techniques now also enable other combinations of modalities to be profiled at the

single-cell level (Fig. 2). Some examples include ASAP-seq for profiling gene expres-

sion, chromatin accessibility and protein levels [113]; scMT-seq for profiling gene ex-

pression and DNA methylation [114] and its extension, scNMT-seq, for gene

expression, chromatin accessibility and DNA methylation [115]; SHARE-seq and

SNARE-seq for gene expression and chromatin accessibility [116, 117]; scTrio-seq for

CNVs, DNA methylation and gene expression [118]; and G&T-seq for genomic DNA

and gene expression [119]. Given the complexity in the data structure in these single-

cell multimodal data, feature selection methods that can facilitate integrative analysis of

multiple data modalities are in great need. While some preliminary works have

emerged recently [120], research on integrative feature selection is still at its infancy

and requires significant innovation in their design and implementation.

Fig. 2 A schematic summary of some recent multimodal single-cell omics technologies
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On the design of feature selection techniques in the single-cell field, most current

studies directly use one of the three main types of methods (i.e. filters, wrappers and

embedded methods). While we found a small number of them employed hybrid ap-

proaches (e.g. [71, 72]), most are relatively straightforward combinations (such as step-

wise application of filter and then wrapper methods) as have been used previously for

bulk data analyses. The application of ensemble and deep learning-based feature selec-

tion methods is even sparser in the field. One ensemble feature selection method is

EDGE which uses a set of weak learners to vote for important genes from scRNA-seq

data [121], and the current literature on deep learning-based feature selection in single

cells are a study for identifying regulatory modules from scRNA-seq data through auto-

encoder deconvolution [122]; and another for identifying disease-associated gene from

scRNA-seq data using gradient-based methods [49]. Owing to the non-linear nature of

the deep learning models, feature selection methods that are based on deep learning

are well-suited to learn complex non-linear relationships among features. Given the

widespread non-linearity relationships, such as gene-gene and protein-protein interac-

tions, and interactions among genomic regulatory elements and their target genes in

biological systems, and hence the data derived from them, we anticipate more research

to be conducted on developing and adopting deep learning-based feature selection

techniques in the single-cell field in the near future.

Applicability considerations
The works we have reviewed above showcase diverse feature selection strategies and

promising future directions in single-cell data analytics. In practice, scalability and ro-

bustness are critical in choosing feature selection techniques and are largely dependent

on the algorithm structure and implementation. Here, we discuss several key aspects

specific to the utility and applicability of feature selection methods with the goal of

guiding the choice of methods from each feature selection category for readers who are

interested in their application.

Scalability towards the feature dimension

A key aspect in the applicability of a feature selection method rests upon its scalability

to large datasets. Univariate filter algorithms are probably the most efficient in terms of

scalability towards the feature dimension since, in general, the computation time of

these algorithms increases linearly with the number of features. We therefore recom-

mend univariate filters as the first choice when working with datasets with very high

feature dimensions. In comparison, wrapper algorithms generally do not scale well with

respect to the number of features due to their frequent reliance on combinatorial opti-

misation and therefore will remain applicable to datasets with a relatively small number

of features. While other factors such as available computational resources and specific

algorithm implementations also affect the choice of methods, wrapper algorithms are

generally applied to datasets with up to a few hundred features. Embedded methods

offer a good trade-off and both tree- and shrinkage-based methods computationally

scale well with the number of features [19]. Nevertheless, like wrapper methods, em-

bedded methods rely on an induction algorithm for feature selection and therefore are

sensitive to model overfitting when dealing with data with a small sample size. We

Yang et al. Genome Biology          (2021) 22:321 Page 10 of 17



recommend choosing embedded methods for datasets with up to a few thousand fea-

tures when the sample size (e.g. number of cells) is moderate or large. Similarly, hybrid

algorithms that combine the filter with wrappers or filter with embedded methods also

make a useful compromise and can be applied to the dataset with relatively high to very

high feature dimensions, depending on the reduced feature dimension following the fil-

tering step.

Scalability towards the sample size

With the advance of biotechnologies, the number of cells profiled in an experiment is

growing exponentially. Hence, apart from the feature dimensionality, the scalability of

the feature selection algorithm towards the sample size, typically in terms of the num-

ber of cells, is also a central determinant of its applicability to large-scale single-cell

datasets. Although classic feature selection algorithms such as filters scale linearly to-

wards the feature dimension, this does not necessarily mean they also scale linearly

with the increasing number of cells [55]. To this end, the choice is more dependent on

the specific implementation of the feature selection algorithms. Methods that purely

rely on estimating variabilities (e.g. HVGs) without using cell type labels and fitting

models generally scale better due to the extra steps taken by the latter for learning vari-

ous data characteristics (e.g. zero-inflation). Another aspect to note is the memory

usage. Most filter methods require the entire dataset to be loaded into the computer

memory before feature selection can be performed. This can be an issue when the size

of the dataset exceeds the size of the computer memory. Interestingly, deep learning-

based feature selection methods could be better suited for analysing datasets with a

very large number of cells. This is due to the unique characteristic of these methods

where the neural network can be trained using small batches of input data sequentially

and therefore alleviates the need to load the entire dataset into the computer memory.

Robustness and interpretability

Besides algorithm scalability, robustness and interpretability are also important criteria

for assessing and selecting feature selection methods. This is especially crucial when

the downstream applications are to identify reproducible biomarkers, where the selec-

tion of robust and stable features is essential, or to characterise gene regulatory net-

works, where model interpretability will be highly desirable. A key property of

ensemble feature selection methods is their robustness to noise and slight variations in

the data, which leads to better reproducibility in selected features [32, 33]. We thus rec-

ommend exploring ensemble feature selection methods when the task is related to

identify reproducible biomarkers such as marker genes for cells of a given type. In

terms of interpretability, complex models, while often offering better performance in

downstream analyses such as cell classification, may not be the most appropriate

choices given the difficulties in their model interpretation. To this end, simpler models

such as tree-based methods can provide clarity, for example, to how selected features

are used to classify a cell and hence can facilitate the characterisation of gene regulatory

networks underlying cell identity. Notably, however, significant progress has been made

to improve interpretability especially for deep learning models [123]. Given the increas-

ing importance of downstream analyses that involves biomarker discovery and
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pathway/network characterisation in single-cell research, we anticipate increasing ef-

forts to be devoted to improving the robustness and interpretability of advanced

methods such as deep learning models in feature selection applications.

Other considerations

Finally, the choice of feature selection methods also depends on other factors such as

programming language, computing platform, parallelisation and whether they are well

documented and easy to use. While most recent methods are implemented using popu-

lar programming languages such as R and Python which are well supported in various

computing platforms including Windows, macOS and Linux/Unix and its variants,

their difficulty in application varies and requires different levels of expertise from inter-

acting with a simple graphical user interface to more complex execution that involves

programming (e.g. loading packages in the R programming environment). Methods that

optimise for computation speed may use C/C++ as their programming language and

may also offer parallelisation. However, these methods are often computing platform-

specific and may require more expertise from a specific operating system and program-

ming language from users for their application. Lastly, the quality of the documentation

of methods can have a significant impact on their ease of use. Methods that have com-

prehensive documentations with testable examples could help popularise their applica-

tion. To this end, methods that are implemented under standardised framework such

as Bioconductor [124] generally provide well-documented usages and examples known

as ‘vignette’ for supporting users and therefore can be a practical consideration in their

choices.

Conclusions
The explosion of single-cell data in recent years has led to a resurgence in the develop-

ment and application of feature selection techniques for analysing such data. In this re-

view, we revisited and summarised feature selection methods and their key

development in the last decade. We then reviewed the recent literature for their appli-

cations in the single-cell field, summarising achievements so far and identifying missing

aspects in the field. Based on these, we propose several research directions and discuss

practical considerations that we hope will spark future research in feature selection and

their application in the single-cell era.
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