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Abstract

Background: Nanopore long-read sequencing technology greatly expands the
capacity of long-range, single-molecule DNA-modification detection. A growing
number of analytical tools have been developed to detect DNA methylation from
nanopore sequencing reads. Here, we assess the performance of different
methylation-calling tools to provide a systematic evaluation to guide researchers
performing human epigenome-wide studies.

Results: We compare seven analytic tools for detecting DNA methylation from
nanopore long-read sequencing data generated from human natural DNA at a
whole-genome scale. We evaluate the per-read and per-site performance of CpG
methylation prediction across different genomic contexts, CpG site coverage, and
computational resources consumed by each tool. The seven tools exhibit different
performances across the evaluation criteria. We show that the methylation prediction
at regions with discordant DNA methylation patterns, intergenic regions, low CG
density regions, and repetitive regions show room for improvement across all tools.
Furthermore, we demonstrate that 5hmC levels at least partly contribute to the
discrepancy between bisulfite and nanopore sequencing. Lastly, we provide an
online DNA methylation database (https://nanome.jax.org) to display the DNA
methylation levels detected by nanopore sequencing and bisulfite sequencing data
across different genomic contexts.

Conclusions: Our study is the first systematic benchmark of computational methods for
detection of mammalian whole-genome DNA madifications in nanopore sequencing. We
provide a broad foundation for cross-platform standardization and an evaluation of analytical
tools designed for genome-scale modified base detection using nanopore sequencing.

Keywords: DNA methylation, Base modification, Long-read sequencing, Nanopore
sequencing, Methylation calling
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Background

DNA methylation, the process by which methyl groups are added to DNA molecules, is
a fundamental epigenetic modification process in gene transcription regulation [1]. Sev-
eral DNA modifications, such as N6-methyladenine (6 mA), N4-methylcytosine (4mC),
and 5-methylcytosine (5mC) and its oxidative derivatives, i.e., 5-hydroxymethylcytosine
(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), are diversely distributed
in genomes and play important roles in genomic imprinting, chromatin-structure
modulation, transposon inactivation, stem cell pluripotency and differentiation, inflam-
mation, and transcription-repression regulation [2—4]. DNA methylation measurement
has traditionally depended on the combination of bisulfite conversion (which can dam-
age DNA) and next-generation sequencing (which detects only short-range methylation
patterns) [5].

Recently, third-generation sequencing technologies, including single-molecule real-
time (SMRT) sequencing by Pacific Biosciences (PacBio), and nanopore sequencing by
Oxford Nanopore Technologies (ONT), have overcome the read-length limitation to
achieve ultra-long read, single-base detection at a genome-wide level [6, 7]. SMRT se-
quencing can detect 5mC modifications based on polymerase kinetics at 250x coverage
[8]. However, this detection is not the result of direct 5mC detection at single-molecule
resolution but rather the aggregation of the subtle impact of 5mC on polymerase kinet-
ics signals during DNA synthesis [8]. Thus, the requirement for high coverage and in-
ability of direct single-molecule 5mC detection by SMRT is a limitation [9]. In
addition, while SMRT-based bisulfite sequencing allows sequencing of up to ~ 2 kilo-
bases (kb) in length, it relies on bisulfite conversion [10].

Nanopore sequencing, instead of using a sequencing-by-synthesis method to detect
signal for the amplified DNA fragment population, is able to directly detect DNA or
RNA translocation through a voltage-biased nanopore sensor, enabling rapid long-read
sequencing and single-base, single-molecule sensitivity [11]. Several different versions
of nanopore chemistry have been developed by ONT to improve the accuracy of
single-molecule sequencing (Fig. 1A [9, 12-23]). Both the first pore version, termed R6
(“R” for Reader), and the subsequent R7 pore series yielded high error rates and only
mediocre accuracy [11]. The next release, the R9 pore series, is derived from the bacter-
ial amyloid secretion pore gene Curlin sigma S-dependent growth (CsgG) and yields a
modal (i.e., most commonly observed) accuracy of up to 95% at the single-molecule
level at higher sequencing speed [24, 25]. The accuracy of nucleobase identification in
DNA sequencing can be measured using Q scores. These scores, also known as Phred
quality scores, are logarithmically linked to the error probability (P) of each called base:
Q= -10 x log1o(P). Higher Q values correspond to lower error probability and higher
quality [19, 26]. For example, Q30 indicates that the chance that a specific base is called
incorrectly is 1 in 1000, and Q50 indicates that the chance is 1 in 100,000. The R9-
series pores (including the original R9.4 version and the successor R9.4.1) are the most
broadly used pore version, and R9.4.1 version can achieve >99.99% (Q45) consensus
accuracy [15, 27]. Recently, ONT released the R10 pore series, which has a predicted
model accuracy of 94% [18, 28], and introduced the newest version, R10.3, which has a
longer barrel and a dual-reader head inside the pore, with accuracies up to 95% and
single-molecule consensus accuracies over Q50 [19, 29]. Our present study is con-
ducted on the R9.4 and R9.4.1 version.
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Fig. 1 Technological development of methylation-calling tools and benchmark strategy. A Timeline of publication
and technological developments of Oxford Nanopore Technologies (ONT) methylation-calling tools to detect DNA
cytosine modifications. Methylation-calling tools are listed in the order of their publication dates instead of by their
bioRxiv online submission dates (except for. BioRxiv date for methBERT and DeepMP, Github repository release time
for Megalodon, since these two tools lack an available official publication). Chemical pore versions of Oxford
Nanopore flow cells are represented as horizontal-colored bars. Methylation-calling tool are colored by the
methylation calling methods (Green: statistical tests, Purple: HMM, Orange: neural network, white: machine leaming
models). Relevant publication dates are from multiple source [9, 12-23]. B Workflow for 5-methylcytosine (5mC)
detection for nanopore sequencing. The analytic pipeline has three steps: (1) Basecalling by Guppy, which requires
raw signals and reference genome as input. (2) Alignment to the reference genome by miniMap2 and re-squiggle by
Tombo. (3) Methylation calling and evaluation. C Per-read and per-site performance evaluation. We considered the
following genomic contexts: singletons, non-singletons, genic and intergenic regions, CpG islands, shores, and shelves,
and regions with different CG densities, and repetitive regions. We utilized four nanopore sequencing benchmark
datasets and BS-seq datasets as ground truth. We evaluated per-read, per-site performance, the running speed, and
computing-memory usage

Nanopore sequencing techniques detect DNA modifications via differences in the
electric current intensity produced from a nanopore read of an unmodified base and
that of a modified base. Specifically, the electric current patterns, also known as “squig-
gles,” resulting from the passage of modified bases through the pores differs from the
patterns produced by the passage of unmodified bases [26, 30]. The difference can be
determined after nanopore read basecalling and alignment by (1) statistical tests com-
paring the electric current pattern to an in silico reference or the pattern from a non-
modified control sample [20, 31]; (2) pre-trained supervised learning models, e.g.,
neural network [23, 32-37], machine learning model [38], and Hidden Markov Models
(HMM) [9, 39]. However, DNA-methylation detection using nanopore sequencing pre-
sents a methodological challenge, i.e., the capacity to detect modifications in different
CpGs that are in close proximity to one another on a DNA fragment (i.e., non-
singleton), as it is assumed that all CpGs within a 10-bp region share the same methyla-
tion status. Twelve methylation-calling tools have been developed for various DNA
modifications (e.g., 4mC, 5mC, 5hmC, and 6 mA) and for different nanopore pore ver-
sions (e.g., R7, R9, and R10) (Table 1 [9, 20, 23, 31-39]), but DNA-methylation detec-
tion for non-singletons containing both methylated and unmethylated CpGs remains
difficult [9, 35]. Moreover, DNA methylation levels are not linearly distributed across
the genome, and CpG density is dependent on genomic context [40—42]. Therefore,
the accuracy of methylation callers likely differs among the different types of genomic
regions within which the CpGs are located. Recent benchmarking work on methylation
calling tools for nanopore sequencing either compared only three such tools and con-
sidered very few genomic contexts [43], or restricted the comparisons to E. coli and
1743 CpGs of the human genome [38]. Hence, there is no published guideline and sys-
tematic comparison of all current DNA methylation-calling tools for nanopore sequen-
cing using natural human DNA [44], especially at the whole-epigenome scale. Recently,
research with the combination of bisulfite-free enzymatic base conversion and nano-
pore sequencing [45-47] enabled high accuracy and potency in long-range epigenetic
phasing. Together, these studies opened up new and orthogonal approaches to uncover
the long-range coordination of epigenetic marks at single-molecule, single-base
resolution.

Here, we present the first systematic benchmark of computational methods for detec-
tion of DNA 5mCs for nanopore sequencing at the human whole-genome scale. We
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assess the impact of CpG locations on detection accuracy using nanopore sequencing
data generated from human cell lines and primary leukemia specimens, with a focus on
the impact of singletons (CpG sites with only one CpG up and down 10-base-pair re-
gions, Additional file 1: Fig. S1A), non-singletons (CpG sites with multiple CpG sites
up and down 10-base-pair regions, Additional file 1: Fig. S1A), genomic context (i.e.,
genic and intergenic regions, CpG islands, shores, and shelves, Additional file 1: Fig.
S1B), regions of various CG density, and repeat regions. Furthermore, even homoge-
neous cell populations can exhibit cell-to-cell variations in epigenetic patterns (epial-
leles), such as a gain or loss of cytosine methylation at specific loci [48]. Such
epigenetic heterogeneity is increasingly recognized as a contributor to biological vari-
ability in tumors and worse clinical outcomes in malignancies [5]. Thus, to enable as-
sessment of this critical epigenetic heterogeneity, we have evaluated the DNA
methylation calling accuracy at single-molecule and single-base resolution, which is
critical for epigenetic heterogeneity assessment [5, 48—50]. This comprehensive survey
and systematic comparison offer user-specific, best-practice recommendations to
maximize accurate 5mC detection using current methylation-calling tools and provides
guidance for next-generation calling tools. We also generated and made available an R
Shiny database to distribute the modification-detection power associated with different
genomic regions using different tools, to assist in the development of future algorithms

and analytic tools.

Results

Benchmark strategy

Currently, twelve analytic tools have been developed to detect DNA methylation using
ONT direct sequencing (Table 1). Among them, ten tools are compatible with R9.4
series flow cells, and nine of these ten can predict 5-methylcytosine (5mC). We com-
pared the performance of those seven state-of-the-art methylation-calling tools target-
ing 5mCs in different CpG contexts; those seven tools are all compatible with the most
favored ONT flow cell version (R9.4 and R9.4.1 pores): Nanopolish [9], Megalodon
[36], DeepSignal [35], Guppy [32, 51], Tombo/Nanoraw (referred to as Tombo) [20],
DeepMod [34], and METEORE [38] (Fig. 1B). Tombo is statistics-based while the other
six tools are model-based. METEORE combines predictions from two or more tools
that showed improved accuracy over individual tools using random forest (RF) models
or multiple linear regression models. We chose the METEORE RF model combining
Megalodon and DeepSignal as it achieved lower root mean square error (RMSE) than
other available METEORE models [38]. We excluded SignalAlign [39], as its repository
has not been updated for over 4 years. We also excluded DeepMP [37], as its repository
is still under development. We developed the following three-step standardized work-
flow for benchmarking (Fig. 1B, C):

Step 1. Basecalling and quality control

To translate raw signal data into nucleotide sequences, we conducted the basecalling
step using Guppy (v4.2.2). Then we used NanoPack [52] for data visualization and pro-
cessing, to assess the read-length and basecalling quality, and to demultiplex sequen-
cing data for downstream analysis. Together, the four ONT datasets exhibited median
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read lengths ranging from 3756 to 6524 bp, and median base quality ranging from 9.8
to 13 (Fig. 2A, B). The proportion of long reads (> 10,000 bp) is higher in the NA19240
dataset (36.75%) than in the other three datasets (median proportion = 32.29%), due to
library preparation differences (See “Methods” for more details). We assessed CpG sites
located in singletons and non-singletons (Additional file 1: Fig. S1A), and biologically
relevant genomic contexts including gene bodies and CpG islands (Additional file 1:
Fig. S1B), different CpG densities, and repetitive regions. The distribution of CpG sites
in different regions is shown in Fig. 2C—F, Additional file 1: Fig. S2, and Additional file
2: Table S1.

Step 2. Genome assembly and polishing

We aligned the basecalled reads to human genome assembly GRCh38/hg38 using mini-
map2 [53]. Basecalling a squiggle, i.e., translating the electric current signal from a
nanopore read into a DNA sequence, typically contains some errors when comparing
the resulting sequence to a reference sequence [54]. The Tombo re-squiggle algorithm
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Fig. 2 Characteristics of the nanopore sequencing datasets. A, B Quality assessment for four datasets. A
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refines the assignment from a squiggle to a reference sequence after basecalling and
alignment. The refined basecalled reads and alignment by this re-squiggle algorithm is
required by Tombo and DeepSignal for DNA methylation calling.

Step 3. Methylation calling and evaluation

We detected 5mCs in different CpG contexts using each of the seven methylation-
calling tools based on the corresponding recommended parameters. Specifically, Guppy
recommended using the ONT fastsMod program [55] to extract the methylation call-
ing information at the site level from the basecalling output (Fig. 1B). We then de-
signed three performance-evaluation criteria (Fig. 1C) to benchmark the performances
of each methylation-calling tool and used bisulfite sequencing (BS-seq, coverage > 5)
data to determine the ground truth. First, we evaluated the per-read performance of
the 5mC prediction, i.e., at single-molecule, single-base resolution, based on fully meth-
ylated or fully unmethylated CpG sites across various genomic contexts. The perform-
ance metrics included F1 score, accuracy, receiver operating characteristic curves (ROC
curves), and area under the ROC curve (AUC). Second, we assessed the per-site per-
formance of the 5mC prediction. Specifically, we measured the 5mC percentage correl-
ation coefficient between nanopore sequencing and BS-seq across all CpG sites at the
human whole-genome level. Furthermore, we evaluated the relationship between CpG
methylation percentage and distance to the annotated transcription start site (TSS) or
CCCTC-binding factor (CTCF) binding sites. Third, we assessed the running speed and
resource usage evaluation. Further details on performance criteria used in the evalu-
ation are shown in “Methods.”

Benchmark datasets

We used four datasets for benchmarking: nanopore sequencing of the human B-
lymphocyte cell lines NA19240 (referred to as NA19240, R9.4.1) [56] and NA12878 (re-
ferred to as NA12878, R9.4) [57], the human leukemia cell lines K562 (referred to as
K562, R9.4.1), and a human primary acute promyelocytic leukemia clinical specimen
(referred to as APL, R9.4.1).

For nanopore sequencing, we used published high-coverage nanopore sequencing
datasets for the cell line NA19240 (~ 32x sequencing coverage) from the 1000 Ge-
nomes Project [56], and the cell line NA12878 (~ 26x sequencing coverage) from
Whole Human Genome Sequencing Project [57], and generated nanopore sequencing
datasets for K562 and APL with ~ 1-3x coverage. For DNA methylation ground truth,
we used the published NA12878 and K562 whole-genome bisulfite sequencing (WGBS)
datasets, and the NA19240 reduced representation bisulfite sequencing (RRBS) dataset
from the Encyclopedia of DNA Elements (ENCODE) [58]. We also generated WGBS
and oxidative bisulfite sequencing (oxBS-seq) data for APL. More details can be found
in “Methods.”

Per-read performance of 5mC prediction

Nanopore sequencing can detect cytosine-methylation state for individual molecules.
We assessed the per-read performance of the seven DNA-methylation-calling tools at
single-molecule, single-base resolution in singletons and non-singletons. We compared
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methylation calling performances on fully methylated or fully unmethylated CpGs using
BS-seq as ground truth across the four datasets (Additional file 2: Table S2). We di-
vided non-singletons into two sub-categories: (1) concordant non-singletons: non-
singletons contain CpGs that are either fully methylated or fully unmethylated, and (2)
discordant non-singletons: non-singletons that contains both fully methylated and fully
unmethylated CpGs. Nanopolish, Megalodon, DeepSignal, and Guppy outperformed
the other three tools on all datasets measured by F1-score, accuracy, and AUC (Fig. 3,
Additional file 1: Fig. S3, and Additional file 2: Table S3). Notably, all tools exhibited
lower F1 scores (less than 0.90, Fig. 3A) and accuracy (less than 0.93, Additional file 1:
Fig. S3B) at discordant non-singletons than at any of the other CpG contexts, consist-
ently across four datasets (Additional file 1: Fig. S3C). Also, all methods achieved higher
performance on concordant non-singletons than singletons. The observation may be
relevant to the fact that model-based methylation-calling tools (e.g., Nanopolish, Deep-
Signal, DeepMod, and METEORE) used “concordant” training data—completely meth-
ylated sequences and completely unmethylated sequences. Moreover, Nanopolish and
Tombo borrow the signals of neighboring CpG sites to call DNA methylation.

Different genomic contexts display different CpG densities and DNA methylation
levels [59]. Thus, to evaluate the impact of biologically relevant genomic contexts
on 5mC predictions, we considered promoters, exons, introns, intergenic regions
(referred as intergenic), CpG islands, shores, and shelves (Fig. 4A, Additional file 1:
Fig. S4A, Additional file 2: Table S3), regions with different CG densities (Fig. 4B,
Additional file 1: Fig. S4B), and different types of repetitive regions (Fig. 4C, Add-
itional file 1: Fig. S4C). All seven tools exhibited a lower F1 score (<0.93) for
intergenic regions than for any other genic regions or CpG islands, shores, and
shelves (Fig. 4A). We next assessed if CG density impact the performance of 5mC
predictions using nanopore sequencing (Fig. 4B). Specifically, CG density is calcu-
lated by the percentage of G and C bases in 5-base windows. Tombo and
METEORE suffered from low accuracy predictions in all CG density regions, but
particularly so in low CG density regions. CG density significantly associated with
the performance of Nanopolish, Megalodon, DeepSignal, Guppy, and Tombo with
p value <0.05 by the analysis of variance (ANOVA) test (Additional file 2: Table
S4). Moreover, we examined five categories of repetitive regions: short interspersed
nuclear element (SINE), long interspersed nuclear element (LINE), long terminal
repeat (LTR), DNA transposons, and others (Fig. 4C). Nanopolish, Megalodon,
DeepSignal, Guppy, and Tombo showed lower F1 scores for SINE and LTR regions
than for the other repetitive regions. Compared to the other tools, Nanopolish,
Megalodon, DeepSignal, and Guppy consistently exhibited higher overall F1 scores
on CpG sites across all datasets and across genic and intergenic regions, repetitive
regions, and regions with different CG densities (Fig. 4).

DeepMod ranked the lowest in F1 score, accuracy, and AUC, when applied to all four
human ONT datasets (Additional file 2: Table S3) across different genomic contexts
(Figs. 3 and 4), while it is comparable to the other six tools when using the 5mC posi-
tive control dataset from E. coli [38] (Additional file 2: Table S5), suggesting the im-
portance of evaluating the performance of these analytic tools using human ONT
datasets, since not all tools are compatible with genomes with higher complexity than

that of E. coli, such as the human genome.
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F1 score across four datasets based on singleton and non-singleton classification
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Fig. 3 Per-read performance of 5mC prediction at singletons and non-singletons. A F1 score across four datasets
based on singleton and non-singleton classification using BS-seq as ground truth. Singletons are CpG sites that
contain only one CpG up and down 10-base-pair (bp) regions; non-singletons are CpG sites with multiple CpG sites
up and down 10-bp regions; concordant non-singletons are non-singletons where all CpGs with a 10-bp region have
the same methylation state (ie, all 100% or all 0% methylated); discordant non-singletons are non-singletons with
both fully methylated and fully unmethylated CpGs. B ROC curves for the NA19240 dataset on singletons, non-
singletons, concordant non-singletons, and discordant non-singletons
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