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The sequencing of large cohorts of cancer cell genomes provided an unprecedented

depth to the characterization of somatic alterations associated with carcinogenesis and

revealed a daunting complexity and heterogeneity, even within a single tumour. The

interpretation of cancer driver alterations was further complicated as many of these

mutations were also found in healthy cells. This apparent contradictory evidence sup-

ports the existence of evolutionary pressures that drive the selection of particular

clones that confer a specific advantage in that context. Thus, in contrast to a simple

accumulation or combination of key “driver” mutations, oncogenesis might be driven

by the interplay between the availability of healthy cells harbouring oncogenic muta-

tions along with permissive selective pressures. Environmental and nutrient cues can

act as powerful “selectors” for specific genotypes. However, how they contribute to

shaping clone dynamics is still unclear. Harnessing novel single-cell technologies and

in silico metabolic models will enable the characterization of genomic, transcriptomic,

proteomic, and metabolic heterogeneity during cancer development and reveal crucial

insights into the processes driving clonal selections. Ultimately, this multidisciplinary

approach will open novel avenues for therapies that could prevent or revert cancerous

states and eradicate residual tumour cells to prevent cancer recurrence.

What drives healthy cells to acquire and sustain cancer phenotypes? Despite more

than 50 years since discovering the first tumour suppressors and oncogenes, this fun-

damental question remains unaddressed. At every biological layer investigated so far,

cancer cells exhibit dysregulated behaviour. Indeed, cancer cells show a myriad of gen-

etic, epigenetic, transcriptomic, proteomic, and metabolic deregulations allowing them

to, for example, sustain abnormal growth and evade the immune system [1]. Emerging

data also indicate that these molecular and phenotypic alterations are highly heteroge-

neous across different patients or cancers, even within the same tumour.

With the advent of the human genome project and technological breakthroughs,

cancer genomes are now routinely sequenced, enabling the systematic characterization

of somatic genetic alterations observed in thousands of cancers. On average, each can-

cer contains 4 to 5 driver mutations, followed by a long tail of less frequently altered

genes whose contribution to the disease is difficult to discern. For a small subset of

cases, no driver mutations were detected [2]. Recent efforts to investigate the role of
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mtDNA mutations further showed that even the mitochondrial genome is highly mu-

tated in cancer [3]. Yet, the interpretation of “driver” mutations in carcinogenesis is be-

ing reconsidered as recent studies started to probe the landscape of genetic alterations

in healthy tissues and found that many of these driver events are also present in healthy

cells [4, 5]. Taken together, these recent results underscored the importance of expand-

ing our knowledge of the mutational processes in healthy cells and the early stages of

neoplasm formation and carcinogenesis. Furthermore, these results questioned whether

canonical driver mutations are truly driving tumour development, or in contrast, they

reflect external environmental pressures that induce clonal selection where those muta-

tions provide a fitness advantage.

A long-standing hypothesis for tumour formation is that mutations observed are just

the echo of a selection process shaped by metabolic and immune-cell driven cues

within the tumour microenvironment [6]. Within this alternative model for carcinogen-

esis, selective pressures are the driver events of carcinogenesis by positively selecting a

mutant cell already present in the cellular population (Fig. 1). These specific mutations

confer a growth or a survival advantage over other healthy cells, making the mutant cell

a precursor for a dominant cellular population. Of note, different mutations may con-

verge to a similar molecular phenotype, enabling the coexistence of diverse and appar-

ently disconnected “driver” mutations within a tumour. In line with this hypothesis, a

recent study could not identify any discernible mutational signature induced by most

20 carcinogens tested in chronically exposed mice, and the driver mutations found

Fig. 1 Schematic of the role of environmental selective pressures on genetically heterogeneous cell
population leading to clonal selection and expansion of cells harbouring canonical cancer “drive” mutations.
In the bottom, promising experimental and computational techniques are listed that together can be used
to molecularly characterize the cellular changes throughout carcinogenesis, including modelling
metabolism at single-cell resolution to discern the metabolic environmental pressures that drive clonal
selection. Driver mutations, depicted by a red nucleus, represent cells harbouring genetic alterations that
predispose to cancer phenotypes. Neutral mutations, shown by different coloured nuclei, showcase cells
with genetic alterations that are not associated with cancer and are generally lost upon
environmental selection
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could be attributed to endogenous cellular processes [7]. Furthermore, mounting evi-

dence is becoming available of the role of non-genetic processes in cancer, in particular

in driving resistance to therapies. A large study of metastatic cancers revealed almost

perfect concordance between the genetic profiles of the first and second biopsy ~ 6

months apart from patients under standard-of-care treatments [8]. Another recent

study identified, at single-cell resolution, cellular lineages that persist after therapies by

undergoing a metabolic shift where overexpression of glutathione metabolism and anti-

oxidant signatures is associated with proliferative capacity [9]. Lastly, genome-wide

CRISPR-Cas9 screens unveiled the importance of the metabolic milieu in determining

genetic dependencies and the same cell line in different metabolic contexts displays >

5% significant differential gene dependencies [10]. Altogether, these multiple lines of

evidence suggest that non-genetic processes are important in cancer, and metabolism is

an essential driving force in tumour development and resistance to therapies.

The role of metabolism in cancer is well established, and it supports and regulates

cancer phenotypes, such as abnormal energy requirements and unrestrained prolifera-

tion [11]. Cancer metabolism, in contrast to genomics, is considered closer to the cellu-

lar phenotype and provides a more functional understanding of the cellular states and

transitions. Metabolism is a dynamic process, characterized by constant catalysis of

metabolic reactions, where both metabolite abundance, intracellular and extracellular,

and reaction rates are essential to define a metabolic state. Importantly, metabolic

fluxes cannot be easily inferred from transcriptomics analyses, highlighting a knowledge

gap between genome analyses and the emerging phenotype [12]. These intrinsic fea-

tures make metabolism complex to represent and technically challenging to measure,

hindering their efficient application on a scale similar to that of genomic studies. None-

theless, metabolomics is joining genomics, transcriptomics and proteomics and enter-

ing the single-cell revolution with recent technology developments which identified

cellular populations with distinct metabolic profiles [13]. These approaches hold great

promise to shed light on the diversity of metabolic profiles of cancer cells at different

stages of carcinogenesis and reveal the selective pressures metabolism undergoes dur-

ing clonal evolution.

The combinatorial space of molecular interactions and the contexts in which they

can happen is mind-boggling, and while biology is not random, i.e. not everything can

interact with everything, it is intractable to experimentally measure even a fraction of

it. Computational models, even if not perfect, can help navigate this space and narrow

down to more probable hypotheses at a scale that can be experimentally assessed,

which in turn cycles back to further improve the model, completing the systems biol-

ogy cycle. An example of this is genome-scale metabolic models, which provide an inte-

grative framework to tailor metabolic networks to specific tissues or single cells using

genomics, transcriptomics and proteomics datasets [14]. Moreover, the mathematical

representation of the metabolic network enables scalable simulations of the metabolic

fluxes and to predict the impact of genetic metabolic perturbations as well as alter-

ations in metabolic environmental conditions. The continued technological develop-

ments, for example, multi-omics single-cell measurements, cellular imaging and base-

pair resolved functional genetic screens, will enable the generation of comprehensive

and complex molecular and phenotypic datasets. In particular, single-cell transcripto-

mics combination with genome-scale metabolic modelling revealed the diversity of T
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helper 17 (Th17) cells metabolic states and the role of specific metabolic pathways in

Th17 function [15].

Looking ahead, studies spanning both cancer genomics and cancer metabolism will

be in a privileged position to bridge knowledge of the genetic alterations that predis-

pose to cancer with a functional understanding of the metabolic rewiring that enables

and maintains cancer phenotypes. Focus into the early stages of neoplasm formation

and to how healthy cells age and accumulate mutations will be important to discern

which genetic alterations and metabolic states act as precursors for clonal expansions

of cancerous cells. For decades we have been working on the footprint of cancer evolu-

tion (the genetic alteration), without fully understanding the evolutionary principles be-

hind their selection. Mutations may arise by chance, but it is, at least in part, the

metabolic fitness that they bring about that makes them necessary to face evolutionary

pressure. Comprehensive studies to systematically characterize the selective pressures

involved throughout carcinogenesis will allow the development of strategies to alter

these pressures through changes to the tumour environment and ultimately impair can-

cer cell growth or even revert to a healthy or more therapeutically manageable state.
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