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Abstract

Long-read sequencing has been shown to have advantages in structural variation (SV)
detection and methylation calling. Many studies focus either on SV, methylation, or
phasing of SNV; however, only the combination of variants provides a comprehensive
insight into the sample and thus enables novel findings in biology or medicine.
PRINCESS is a structured workflow that takes raw sequence reads and generates a fully
phased SNV, SV, and methylation call set within a few hours. PRINCESS achieves high
accuracy and long phasing even on low coverage datasets and can resolve repetitive,
complex medical relevant genes that often escape detection. PRINCESS is publicly
available at https://github.com/MeHelmy/princess under the MIT license.
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Background
Long-read sequencing (LRS) is becoming more broadly available across sequencing

centers and smaller academic institutions [1]. This is mainly driven by the availability

of a variety of scalable instrumentation from Oxford Nanopore and Pacific Biosciences,

but also by the improvements in yield, error rates (0.1–3%), and sample requirements

[2, 3]. Current instruments allow the assessment of human genomes at unprecedented

accuracy [4, 5] and scale [1, 6, 7]. LRS enables further investigation into many bio-

logical questions such as assessment of highly repetitive regions (e.g., SMN1,2) [8], re-

solving complex regions (e.g., MHC, KIRR) [9, 10], and improving our understanding

of structural variants (SVs) [1, 7, 11]. More recent papers show that LRS enable a more

detailed characterization of SVs especially over insertions [12, 13]. Previously, LRS was

seen as too costly or erroneous, which several studies now show is no longer the case

[1, 6, 7, 14]. Thus, LRS established its utility as one of the main components for gen-

omic sequencing [15, 16]. Given these advancements, we see novel insights in human

diseases [7, 17, 18], evolution [6, 14, 19], and other areas of biology and medical re-

search [11].
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The detection of small variants (SNVs and indels) (typically 1–50 bp), SVs (50+ bp:

deletions, duplications, insertions, inversions, and translocations), and methylation dif-

ferences provide important insights into genomics and genetics [20–22]. Each of these

genomic variations/alterations have been shown to be important drivers of evolution,

diversity, and diseases or phenotypic changes [6, 23, 24]. To detect these variations/al-

terations, multiple software methods have been introduced that focus either on de novo

assembly [25, 26], mapping [27, 28], SNV calling [29, 30], SV calling [28, 31], SNV

phasing [32], methylation calling [33, 34], quality assessment [35], and others [36].

Most often these methods require expert knowledge to tune the default parameters for

different species or sequencing technologies. Furthermore, the results of these methods

for LRS analysis often need to be filtered and sometimes even converted to be utilized

by another program. Given the complexity of data analysis, recent studies focus on,

e.g., SV identification [7] or methylation [34] and often ignore the other variants or

haplotype signals. In addition, some applications are just limited. For example, all phas-

ing methods currently operate on SNV and do not integrate larger insertion, deletions,

or in general SVs [32]. There are now a few methods that can phase methylation, but

again outside the context of SNV or SV phasing. Thus, we are producing long-read

data sets, but are lacking methods to fully utilize them despite their higher cost for data

generation and higher requirements on sample quality and quantity.

Here we present the first method to achieve accurate and haplotype resolved SNVs,

indels, SVs, and methylation calls at scale with minimum coverage requirements: PRIN-

CESS. PRINCESS consists of different modules that are managed by Snakemake [37]

enabling straightforward adaptability to local machines, cluster, and cloud environ-

ments. Furthermore, PRINCESS implements several novel approaches to phase SVs

and methylation signals given a single flow (Oxford Nanopore) or SMRT cell (Pacific

Bioscience). In addition, PRINCESS automatically adapts itself to the underlying data,

enabling its applications across different model and non-model species and technolo-

gies. PRINCESS achieves a high accuracy on SNV, SV, phasing of SNV together with

SV, and integration of methylation results across low coverage PacBio High Fidelity

(HiFi) or Oxford Nanopore reads. Thus, providing a comprehensive, haplotype resolved

insight for each sample at hand at a minimum cost. Optionally, PRINCESS can also

leverage the parental SNV to improve phasing further. We further demonstrate the ver-

satility of PRINCESS across the whole genome and capture data. Lastly, we highlight

PRINCESS’s capability to improve variant identification across 193 medical regions that

are difficult to assess with short-read technology [38] that often escapes NGS sequen-

cing [38].

Results
PRINCESS: an open framework for long-read variation detection and phasing

PRINCESS uses raw reads and provides phased variants (SNVs, indels, and SVs) together

with optional phased methylation. To achieve this, PRINCESS consists of multiple stages

(see Fig. 1A) including (i) initial data quality control, (ii) alignment of the reads, (iii) iden-

tification of SNVs and indels, (iv) identification of SVs, (v) filtering variants, and (vi) phas-

ing of SNVs, indels, and SVs together and (vii) reporting of the results (see “Methods”).

To ease the use of PRINCESS, we have incorporated preset parameters to optimize the
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analysis of the three major long-read platforms/technologies being CLR, HiFi for PacBio,

and Oxford Nanopore (ONT). For expert users, PRINCESS is highly configurable using a

YAML file and also allows researchers to start or restart at intermediate steps (e.g., after

mapping or using an existing SNVs and indels call set). Furthermore, each step includes

summary reports to enable quality assessment of the results.

To highlight the performance of PRINCESS, we utilized the reference material from

GIAB HG002 for SNVs, indels, and SVs based on different coverage levels and sequen-

cing technologies [40, 41]. PRINCESS (Fig. 1C) implements an SNV filtering mechan-

ism, which enhances the F1 score for all data sets (F1 measure from 93.81 to 97.60%)

(Additional file 2: Table S1) and also improves in comparison to existing tools (e.g.,

Longshot [30]). For CLR and ONT, we increased F1 from 92.73 to 94.06% and from

84.53 to 91.85% respectively. Overall, PRINCESS achieves a high level of recall and pre-

cision (F-measure) across ONT (SNV: 91.85% SV:87.16%), PacBio CLR (SNV:94.06%

SV:89.90%) and HiFi (SNV:97.60% SV:92.48%) for all variant types even when we

down-sample the coverages to mimic one flow cell (HiFi: 10×, ONT, CLR: 25×) the

performance remains high for ONT (SNV:84.45% SV:82.28%), PacBio CLR (SNV:

82.29% SV:84.90%), and HiFi (SNV:78.58% SV:86.00%). Using PRINCESS, we reach a

high genotyping accuracy (HiFi 99.81%, ONT 99.76%, and CLR 99.70%). Additional

files 3, 4, 5: Tables S2-S4 have a detailed comparison across the different variation types

and genotype performance of PRINCESS. Supplementary Section 1 describes the results

in detail.

Next, we evaluated SNVs and indel phasing, using WhatsHap [32] with the truth

dataset, where we measured switch error (i.e., multiple SNVs or indels assigned to the

incorrect haplotype) and Hamming error (i.e., total number of incorrectly assigned

SNVs or indels to haplotypes). Figure 2A shows the overall Hamming error. The lon-

gest N50 is achieved by ONT (17,427 kbp) followed by CLR (151 kbp), and HiFi (117

kbp) respectively. Although ONT achieved the highest N50, it suffered from a high

Hamming error rate (0.19) (see Fig. 2A), but with a switch error rate of 0.0036 similar

Fig. 1 Overview of PRINCESS. A General workflow of PRINCESS from read input through phased variant calls,
with optional steps indicated in red font. B F1-score Benchmarking results for SNVs, indels, and SVs based on
HG002 GIAB gold standard across PacBio HiFi, PacBio Continuous Long Read (CLR), and ONT data. C Improved
SNV calling of PRINCESS based on its automated SNV filtering compared to Clair2 [39] and Longshot [30]
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to CLR data, which achieved a lower Hamming error of 0.01032. This highlights

smaller inconsistencies (Hamming error) compared to large phase block errors (switch

error rate). Lastly, HiFi data achieved the lowest switch (0.0040) and Hamming (0.0052)

error rate (Additional file 6: Table S5 and Additional file 1: Figure S5). Overall the three

technologies have very low switch error rates, but ONT secured the longest phasing

N50 (Additional file 1: Figure S6) associated with a higher Hamming error rate than

both HiFi and CLR data. Furthermore, we compared the performance of the three tech-

nologies using different coverage levels. Increasing the coverage for all technologies led

to a lower switch and Hamming error, alongside an increase in N50 (Additional file 6:

Table S5). Additionally, the HiFi insert size did not affect the SV precision rate.

Increasing the insert size (25 k) with low coverage (11×) led to a minor reduction in F1

score for SNVs and indels, but increased the N50 from 140 to 250 kb (see Additional

file 2: Table S1, Additional file 1: Figure S18). Interestingly, for phasing SNVs and

indels without PRINCESS filtering, we observe a higher phasing error rates across all

sequencing technologies, ranging from 0.0138 (HiFi) to 0.3609 (ONT) compared to

0.0103 (CLR) to 0.1912 (ONT) after filtering.

The deliverables from PRINCESS not only includes phased SNVs and indels, but fur-

ther includes the first alignment approach for SV phasing and inclusion of methylation

phasing. We observed the highest phase rate from HiFi (77.17%) followed by ONT

(38.24%) and CLR (21.44%) (see Fig. 2B). The lower phasing rate of ONT and CLR is

due to multiple reads that are in conflict with the phasing information for the SV. This

might be also because the SNV calling and phasing in proximity to SV is often dis-

turbed [42]. The majority of SVs that were phased are deletions followed by insertions

HiFi (DEL: 84.72% and INS: 74.60%) and CLR (DEL: 33.54% and INS: 12.49%). For

ONT, the insertions (48.60%) are the most phased SV type, followed by deletions

(32.11%). Inversions (HiFi: 30.00%, ONT: 28.57%, and CLR 25.71%) and duplications

(HiFi: 34.62%, ONT 32%, and CLR: 11.76%) showed a lower phasing rate, likely due to

their size and complexity. PRINCESS was also able to phase translocations across CLR

(51.11%), ONT (48.78%) and HiFi (23.02%) data.

Next, we investigated how SV phasing performance changed if we allow for 2 or 5

conflicting reads (user definable parameter). Figure 2B shows the overall phasing im-

provement of the SV with respect to the conflicting thresholds. The largest improve-

ments are for CLR, as the data changed from 21.44% phased SV to 40.28%. This is

followed by ONT from 38.24% up to 53.25% and HiFi 77.17% up to 83.97%. The largest

gains were observed for deletions and insertions respectively across HiFi (DEL: 90.37%,

INS: 81.88%), ONT (DEL: 50.12%, INS: 58.43%), and CLR (DEL: 44.33%, INS: 37.21%).

Fig. 2 PRINCESS improvements for phasing: A Benchmarking results for phasing performance (Hamming
error rate) for PRINCESS based on GIAB gold standard (the lower, the better). B Percentage of phased SVs
across different conflicting read thresholds
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For rearrangements, we observed a higher phasing rate for CLR (45.71% inversions, and

71.11% breakpoint notation (BNDs)) and ONT (60.00% inversions, and 68.29% BNDs)

compared to HiFi data (40% inversions, and 38.13% BNDs).

Overall, PRINCESS shows a high rate of accuracy for the identification of SNVs and

SVs and is further able to phase both variant types together. Thus, improving the in-

sights gained into the sample at hand independent of the sequencing technology.

Applying PRINCESS to capture data

So far we have demonstrated that PRINCESS is highly accurate in detecting and phas-

ing SNVs, indels, and SVs. We have also assessed the performance of PRINCESS on re-

cently published Cas9-based targeted data [43] using ONT MinION and Flongle

sequencers. Our dataset includes 10 regions, across two non-tumorigenic cell lines

(GM12878 and MCF-10A) and two cancer cell lines (MCF-7, MDA-MB-231).

We first assess the performance of PRINCESS for SNVs and indels identification with

the previously published results. For GM12878 using ONT MinION data, PRINCESS

shows a high sensitivity (87.44%) when comparing the 226 SNVs and indels identified

with the GIAB NA12878 truth set. The sensitivity increases to 94.80% when only con-

sidering SNVs. Across the ten regions sequenced, we could phase 96.12% (99/103) of

all the SNVs and indels. When running PRINCESS on the Flongle data, we observed a

slightly lower sensitivity (80.40% for all variants (SNVs and indels), 83.82% for SNVs

only) likely based on the drop of coverage identifying only 183 SNVs. Here, PRINCESS

was able to phase 97.87% of the heterozygous SNVs and indels. Similarly, for MCF-

10A, we identified 196 variants (169 SNVs and 27 indels). PRINCESS was able to phase

83.70% (113/135) heterozygous SNVs and indels.

For cancer samples, we compared the performance of PRINCESS to the previous

variant calls. For MDA-MB-231, PRINCESS identified all 37 SNVs and indels that were

identified from the previous study and was able to phase all heterozygous SNVs and

indels (16). Similarly, for MCF-7, PRINCESS identified 147 SNVs and indels 98.46% of

heterozygous SNVs and indels are phased (64/65), 128 SNVs and indels (87.07%) agree

with the previously established call set, 97.87% phased (46/47).

Next, we investigated the concordance of our SV call set with the reported results for

MDA-MB-231, MCF-7, and GM12878. Not surprisingly, we identified all large deletions

that were previously reported (See Additional file 7: Table S6 and Additional file 1: Figures

S15 and S16) with their correct genotypes. Furthermore, PRINCESS was able to phase all

(Additional file 1: Figure S19) but one SV across all samples. Only 1 heterozygous SV (in

GM12878) was not phased due to the lack of heterozygote SNVs or indels in the region.

Lastly, we compared the methylation frequency results to the previous reports (see

Additional file 8: Table S7). For the non-tumorigenic samples, we see high concordance

(GM12878: 99.88% and MCF-10A: 99.02%). This is marginally reduced for the cancer-

ous samples (MDA-MB-231: 98.80% and MCF-7: 98.52%). PRINCESS was able to phase

the methylation data together with the SNVs, indels, and SVs revealing the entire bio-

logical picture of these regions across these samples (Additional file 1: Figure S19).

Again, PRINCESS shows a high concordance to previous studies. More importantly,

it enables a fast and simple execution to more comprehensively study the sample at

hand, even for a non-expert user.
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Analysis of a patient sample with Charcot-Marie-Tooth neuropathy

We applied PRINCESS to a human sample (HS1011) from a patient with

Charcot-Marie-Tooth neuropathy (CMT), which was sequenced to ~ 18× cover-

age (read N50: 15,510bp) using ONT. This individual has been well characterized

using multiple sequencing and genotyping platforms as reported previously [44, 45].

Figure 3A gives an overview of the identified variants across the entire genome.

Using PRINCESS, we identified 4,156,673 SNVs and indels (see Supplementary sec-

tion S8). As expected, the majority (94.27%) of these are SNVs. For the smaller indels

(1–50 bp), we observed a slight imbalance having a higher insertion number (419,614)

than deletions (116,030). We further investigated the overlap with repeats and found

that only 6.25% (259,886) of the SNVs and indels overlapped with simple repeats. The

majority are again SNVs (80.96%), which highlights an improvement in the ONT tech-

nology with a balance between insertion (9.27%) and deletions (9.75%). Previous ONT

basecalls had a strong bias in these regions for deletions [28].

As indicated above, this patient suffers from CMT disease that is an inherited genetic

condition [44, 46, 47]. Previous studies highlighted the role of SH3TC2 gene and muta-

tions across it. Figure 3B shows the results for PRINCESS along SH3TC2. PRINCESS

was able to identify multiple SNV and even SV (in intronic regions) and was further

Fig. 3 Overview of HS1011 analysis. A Circos plot showing the density of identified variants in a 4 Mbp
window from outside in. Gene density (green), SNV and indel density (blue), SV density (reddish) for ONT
sequence. B Phasing of SNVs, indels, and SVs across SH3TC2. PRINCESS was able to identify the three
causative SNVs for Charcot-Marie-Tooth disease in this patient. The three stars indicate the location of the
three variants and their individual haplotypes that they are assigned to
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able to phase across the entire gene body. Three previous studies reported the muta-

tions (p.R954X, p.Y169H, and p.M1?) for this patient, based on Illumina WES and

WGS data [44–46]. Interestingly, only WES data with high coverage could identify

p.M1? [46]. PRINCESS was able to identify all three of these mutations and, in addition,

report that p.Y169H and p.R954X are on the same haplotype while p.M1? is on the

opposite haplotype.

PRINCESS also identified 20,979 SVs across the entire genome. As expected, the

majority of SVs are insertions (49.59%) followed by deletions (42.29%). We identi-

fied a higher concentration of SVs (63.64%) falling in simple repeats compared to

SNVs and indels (6.25%) (see Additional file 9: Table S8). In contrast to previous

reports [28], we found a more balanced distribution of SV type across these 6138

SVs: insertions (47.58%), deletions (45.97%), translocations (3.49%), duplications

(2.00%), and inversions (0.94%). Interestingly, 79.72% of all the translocations over-

lap with repeats, with the majority over SINE and LINE elements (Additional file

10: Table S9). The slightly higher number of insertions than deletions is compar-

able to other studies [1] and thus indicates that the previous incorrect enrichment

of deletions is not observed anymore [28]. Likewise, we identified a positive

relationship between the identified SVs, SNVs, and indels per region (R = 0.35, p <

2.2e−16) (Additional file 1: Figure S12).

Using these SNV and SV variant calls, PRINCESS was able to phase 86.30% of the

human genome with an N50 phase block of 821,907 bp. Overall, 92.17% of all heterozy-

gous SNVs and indels were phased across 7059 phase blocks. Across these blocks,

PRINCESS was able to phase only 30.41% of the heterozygous SV (similar to HG002).

Here, PRINCESS detected at least a single read that is in conflict with the phasing in-

formation and decided to not phase the SV. This might also highlight general phasing

issues of SNV around SV that might be amplified over the low coverage [42]. The phas-

ing can be increased by allowing for some conflicting reads to be ignored as we showed

over HG002 (see Fig. 2B).

Lastly, we wanted to assess PRINCESS across medically relevant, but challenging re-

gions. To achieve this, we used 193 medical genes that often escape a comprehensive

analysis using NGS (Illumina) alone due to their repetitiveness [38] (see Additional file

11: Table S10 Additional file 1: Figure S13). Here we investigated how well PRINCESS

could assess (i.e., mapping and variant calling) these genes (Fig. 4A–E) and how well

these regions could be phased (see “Methods”). The average coverage across all genes

was 17×, similar to the genome-wide coverage of 18×. Thus, highlighting a robust map-

ping and variant identification across the 192 genes across GRCh38 (Fig. 4A), as one

gene could not have been lifted over (see “Methods”). When assessing the coverage per

gene, we observed a few outliers either with very high coverage DUX4 (111.98×) and

TCEB3c (75.22×) or low/uncovered genes CCL4L1 (0×) and RHD (0.33×).

Using PRINCESS, we identified 18,805 SNVs and indels and 100 SVs across the 189

(one gene did not show any variant, two genes had zero coverage, and one gene was

not retrievable from Ensembl annotation) medically relevant genes, with an average of

101 SNVs and indels per gene. We identified 12,981 (69.02%) heterozygous SNVs and

indels of which the majority 11,948 (92.04%) are phased (Fig. 3B). Overall, 90.35% of

the 189 genes have one continuous phase block, with the highest outlier being

PCDH11X (843,970 bp in length) having 10 phase blocks (see Fig. 4B and Additional
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file 1: Figure S14). Thus, PRINCESS was able to fully phase and resolve these hard-to-

assess medically relevant genes (e.g., LPA, GBA).

The human leukocyte antigen (HLA) has been associated with numerous diseases,

such as diabetes, rheumatoid arthritis, psoriasis, asthma, and various other autoimmune

disorders [48]. HLA is a highly polymorphic ~ 4 Mbp region of the human genome and

3.85% of it are low mappability regions, which makes it typically hard to align (for

short- and long reads alike [40]) and identify variants [9]. Likewise, it is an important

genetic component of the immune system. We identified 21,102 variants, phased

95.02% of them in a total of 5 phase blocks across the entire ~ 4 Mbp HLA region.

Figure 4C shows the results across IGV. Furthermore, we identified 116 SVs distributed

as (63 deletions, 42 insertions, 3 duplications, 4 inversions, and 4 translocations.). HYDI

N is a large (423 kb) gene, of which 75.56% are low mappability regions. For this hard

to assess gene, we identified 2,041 SNVs and indels, most of which are heterozygous

(97.69%). PRINCESS was able to phase 94.93% of the heterozygous SNVs and indels

throughout the entire gene (Fig. 4D). Additionally, PRINCESS detected a deletion and

two insertions in the introns of this gene (Fig. 4D marked with blue arrow). Lastly, glu-

cocerebrosidase gene (GBA), which is 10,248 bp long and 26.05% of the gene is highly

repetitive. Moreover, the presence of a highly homologous pseudogene (GBAP1)

Fig. 4 Overview across the 192 medically relevant, challenging genes. A Mappability vs coverage
representation across the 192 hard to assess medical regions, highlighting the ability of long reads and
PRINCESS to map the reads across these genes. B Variant calling (SNV: circles, SV: triangles) does not seem
to be affected by the repetitiveness (GIAB Mappability) across these 192 regions. Furthermore, PRINCESS is
able to successfully phase the majority of the genes indicated by color (number of phase blocks). C HLA
gene showing phased reads across 5 phase blocks (bottom) over the full region. D PRINCESS is able to
phase variants and reads across the entire HYDIN gene (431 kbp). E GBA and GBAP1 pseudogene in 36-kb
regions showing both haplotypes aligned reads and the phased SNVs and indels
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located downstream of the GBA gene can result in complex gene-pseudogene rear-

rangements, which makes the analysis of GBA challenging [49, 50]. Mutations in the

GBA gene are responsible for Gaucher disease and represent the main genetic risk fac-

tor for developing Parkinson disease [51–53]. We identified 14 SNVs and indels and

phased all of them in one phase block (Fig. 4E), thus, overall, highlighting the ability of

PRINCESS to analyze medical regions that are otherwise difficult to comprehensively

assess with even ~18× coverage ONT data.

Discussion
Recent long-read studies often focus on either phasing of SNV, SV, or methylation

detection [30, 31, 54]. Yet, the information of all three variant/modification types are

available over long-read platforms [55]. Typically, one requires expert knowledge to ac-

curately identify either of these variants (SNVs, indels, or SVs) or epigenetic changes

using long-read technologies. Another often even bigger challenge is to fully leverage

SNV, SV, and methylation information and combine them into one comprehensive pic-

ture of the sample at hand. For this purpose, we developed PRINCESS that shows a

high accuracy (SNV 96.21–97.92%, SV 85.60–90.91%) across different sequencing appli-

cations and technologies. PRINCESS reports haplotype resolved SNV, SV, and methyla-

tion plus combines the results into two output files within an ~ 18-h runtime

(Additional file 12: Table S11). Furthermore, as described in this paper, PRINCESS also

achieves high accuracy in complex and repetitive regions across the genome.

PRINCESS itself is not only a workflow of existing tools, but rather includes multiple

optimizations, QC approaches, and novel methods. Besides parameter optimizations,

PRINCESS extends the principle of phasing variants to structural variations and also in-

cludes modules to phase methylation data (not shown here). This makes PRINCESS

unique, as no other tool currently offers this level of comprehensiveness. Phasing SV,

however, remains challenging as SV also often leads to problems for SNV calling and

thus SNV phasing due to alignment artifacts or simple assumption violations, e.g., of

heterozygote vs. homozygote ratios of SNV inside a duplication [42]. PRINCESS has by

default conservative settings that do not phase a SV if one of the reads is showing a

conflict. This leads to a lower phasing ability for HS1011. However, users can define a

threshold to allow one or more reads to be in conflict to enable a higher phasing rate

of SV itself. This in our experiments does not lead to a significantly higher Hamming

error rate. In addition, PRINCESS includes code to enable the haplotype assessment of

the methylation calls which provides a comprehensive foundation for maximal analysis

of a given sample. In addition, PRINCESS has multiple optimization steps to fully

utilize the methods incorporated. Therefore, PRINCESS adapts to the sample at hand

and also runs across non-human or non-model organisms. The current version as-

sumes the underlying genome is diploid for the reported genotypes and phasing ap-

proach. PRINCESS is highly configurable given a YAML parameter file along with

command line parameters, and researchers can choose to use only subparts of PRIN-

CESS. For example, if a specialized mapping is needed, one can provide the mapped

reads (bam) to PRINCESS, and it will only proceed to call the variants. Furthermore,

PRINCESS also accepts variant calls (e.g., SNV) from other technologies to leverage

phasing. In the same manner, parental VCF files can be supplied to improve the phas-

ing itself allowing for a better assessment of de novo variants.
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While long-read sequencing remains expensive compared to short-read sequencing,

it is clear that it has several advantages [1, 55]. The current LRS technologies continue

to improve their sequencing yield, enabling a better cost model [1]. To further improve

this cost model, PRINCESS is designed to also handle low coverage long-read data for

both platforms. Given the current error rate in each platform, we recommend a mini-

mum of 8× coverage for HiFi reads and > 12× for ONT sequencing data. As improve-

ments continue with basecalling or the pore itself for ONT, we will see coverage

requirements reduced in the near future. As an example, our sequencing run for

HS1011 (~ 18× coverage) can be pooled with another sample on a single ONT flow

cell, which further significantly reduces the price. The point can be made that a low

coverage long-read sequencing run enables the assessment of more variants (e.g., inser-

tions) and of certain regions (e.g., HLA) or other repeats compared to a 30–40× Illu-

mina sequencing run. PRINCESS is capable of adapting to these different coverage

levels and thus fully utilizes the long-read data at hand.

To demonstrate the utility of PRINCESS, we have benchmarked several whole ge-

nomes and targeted data sets using different read lengths and sequencing technologies.

Using this same algorithm, we focused on 193 medically relevant genes that had been

reported previously to cause issues when calling variants with short-reads alone [38].

These included well-known gene regions such as HLA, LPA, and others, but also Men-

delian and neurological disease genes (e.g., GBA) [56–59]. We demonstrated that using

a low coverage ONT run, we confidently identified variants across these genes as well

as phased the majority of them to improve our insights for this particular sample. With

only ~ 18× ONT coverage, we could phase through HLA resulting in only five phase

blocks or fully phase and resolve GBA and its pseudogene (Fig. 4). The latter gene plays

an important role in Parkinson’s disease or MSA. Since GBA is very repetitive, it leads

to an ambiguous mapping for Illumina and so far is most often assessed with Sanger

sequencing. PRINCESS could resolve this gene completely and will allow studying in-

teresting recombination across GBA and GBAP1.

In summary, PRINCESS is a versatile method to obtain comprehensive insights into

samples with long-read sequencing data and can also be used on low coverage datasets

to enable a more detailed and complete foundation across the sample of interest.

Methods
PRINCESS is implemented in Python (3.7.6) and uses Snakemake workflow [37] version

5.7.1 as its core. The framework is composed of different steps:

(1) Summary statistics for input sequence (Fasta or Fastq files could also be zipped).

(2) Alignment using either Minimap2 [27] version 2.17-r941 or NGMLR [28] version

0.2.7. (3) (see below: “Alignment of long reads” section) Converting SAM to BAM and

adding a read group (RG) field using samtools [60] (version 1.9). (4) Calling SNVs and

indels using Clair [39] version 2.0.0 followed by filtering variants using PRINCESS

tools, the SNVs, and indel quality values identified by Clair are distributed in two bell

curved shape, to get the best results the threshold point between these two curves

should be identified (based on https://github.com/HKU-BAL/Clair#pacbio-ccs-data).

PRINCESS implements a filtering process that automatically identifies the SNV quality

threshold, we compared the quality results for SNVs before and after using PRINCESS

filter as well as the RTG benchmark for different technologies (HiFi, CLR, and ONT),
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more in section 2.1.1 supplementary material. (5) Call SVs using Sniffles [28] version

1.0.12. (6) Phasing identified SNVs and indels using WhatsHap phase [32] version 0.18

(see below: Phasing of SNV, indel, SV and methylation in a harmonized way). (7)

Haplotype the BAM file using WhatsHap haplotag. (8) Split the haplotyped reads from

the BAM file based on the phase block and haplotype value using PRINCESS tools. (9)

Phasing SVs using PRINCESS tools and information retrieved from step 7. Optional

steps: (10) PRINCESS can improve the phasing using the parental SNPs. Here we use

BCFtools [61] version 1.9 to merge parental SNPs with the identified SNVs and indels

from PRINCESS and later use PRINCESS tools to update the SNVs and indels haplo-

type. (11) PRINCESS also identifies methylation events using Nanopolish [62] (version

0.11.2.) and tries to phase the methylation information based on SNV phasing using

PRINCESS tools.

Alignment of long reads

We use Minimap2 as the default aligner, but the user can change that using -a param-

eter to choose NGMLR instead (more accurate but slower). Based on the read type spe-

cified by the user, PRINCESS will implicitly choose the optimum aligning parameters.

For Minimap2, if the input reads are PacBio, we use the default parameters, plus -H, -a,

and -x map-pb to specify use of homopolymer-compressed k-mer, we use samtools to

convert to a BAM file. By default, we use five threads, which can be changed from the

config file. But, if the input reads are ONT, the default parameters will be used, and -x

will be set to map-ont instead. In both cases (PacBio or ONT),we use the --MD flag to

add MD to the aligned output. In NGMLR, we use the flag -x to identify read type ei-

ther PacBio or ONT and --bam-fix to report reads with > 64 k CIGAR operations as

unmapped. As we did in Minimap2, samtools is used here to convert and index the

output SAM file.

Note: if there is more than one input file (PacBio or ONT), each file will be aligned

separately then merged using samtools merge (if the user is using a cluster, each job

will run on a separate node).

Identifying genomic variations and alterations

We start from the previous step, where we have a sorted and indexed bam file contain-

ing the RG and MD flag. We use Clair2 to identify SNVs and indels. Clair2 uses a deep

neural network to detect variants, and based on the sequence read type (HiFi, CLR, or

ONT), we choose the adequate model. Likewise, we speed the process of calling vari-

ants by two steps. First, calling each chromosome separately rather than calling all the

datasets at once. Second, splitting the chromosomes into equal regions, with a mini-

mum length of 24,925,062 bp (this is the optimum value, the user can change this value

by changing the chr_split field in the config file). We use the callVarBam algorithm

with five threads and minimum read support of 2 to identify SNVs and indels. The

identified SNVs and indels are implicitly filtered using PRINCESS sub-tools (the user

can ignore this step using the -t option). Lastly, all the identified regions per chromo-

some will be merged, sorted, and tabix, using vcfcat and vcfstreamsort.
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To call SVs, we use Sniffles 1.0.12, which takes a BAM indexed file as input. We use

a minimum of 3 reads to support SV (users can change this behavior by changing the

sniffles_coverage field in the config file.)

Methylation is an optional step in PRINCESS. To activate this process, the user needs

to use the -m flag and support the fast5 directory using -md (-m and -md parameters

are mutually inclusive). PRINCESS detects methylation using ONT data. First, each

Fasta/Fastq file is indexed using the Nanopolish index. Later, these files are used with

bam files to call methylation using Nanopolish call methylation with default parameters

using eight threads, which is changeable from config file field methylation_threads.

Phasing of SNV, indel, SV, and methylation in a harmonized way

Identified SNVs and indels phased using the WhastHap phase default algorithm (what-

shap). To run phasing, PRINCESS uses the BAM file plus the identified SNVs and

indels. Default parameters are used to phase variants, Read Groups (RG) are ignored,

and the sequence reads used for phasing are printed to a file in the same directory as

the phased SNVs and indels, with the “.reads” extension. To phase SVs, first, we use

the phased SNVs and indels plus the BAM file to haplotype reads in the BAM. We

achieve that by using WhatsHap haplotag with default parameters. Only reads with tag

information are selected from the BAM file in addition to its haplotype and phase block

information. PRINCESS sub-tools use this information to produce a new VCF file with

two extra fields. PS field, which indicates the phasing block, CONFLICT field, which

gives information if there is a conflict between the sequence reads while identifying the

PS value. Lastly, after detecting methylations, read information from the tagged file is

used to add phasing information (PS) and haplotype (HP) fields for each methylation

group using PRINCESS sub-tools. The resulting file is tab-delimited, which contains

methylation group information and read supporting that, beside PS and HP tag. If the

information is not available for this read, we substitute it with “.”.

It is possible for PRINCESS to utilize parental SNPs to leverage phasing of the identi-

fied SNVs and indels, as well as reducing false-positive results. First, we merge the

identified SNVs and indels with paternal and maternal SNPs, respectively. Later, this

file is used by PRINCESS sub-tools to produce a new VCF file with high confidence

phased and haplotype SNPs. We use a tolerance ratio of 5% and a minimum of 10

SNPs per block to be identified as rightly phased.

Configurations

PRINCESS uses a YAML file for configuration. Additionally, the Python wrapper we

developed around Snakemake accepts inputs from the user to override the current par-

ameter used in the configuration file.

Variant benchmarking

PRINCESS was benchmarked using PacBio and ONT publicly available data for HG002

from GIAB [40] based on GRCh37 (hg19). We benchmarked SNV and indel calling

using RTG [63] version 3.9.1 and available GIAB SNV data version 3.3.2 [40]. For SV,

we used the version 0.6 benchmark set from GIAB and Truvari version 0.1.0 (https://

github.com/spiralgenetics/truvari) with recommended parameters. We benchmarked
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phasing (switch error and Hamming error rate) using WhatsHap “compare” and calcu-

lated N50 using WhatsHap “stats”. The data was down-sampled using samtools view to

5×, 10×, and 25× coverage for ONT and HiFi data and 5×, 10×, 25×, and 50× for CLR

and evaluated the results from PRINCESS.

Phasing benchmark

For the phasing benchmark, we used both WhatsHap algorithms stat and compare to-

gether with data from GIAB gold standard to calculate Hamming and switch error rate,

likewise, N50.

Cas9 targeted assay comparison

Capture data from Gilpatrick et al. [43] were aligned and compared to GRCh38 (the

previous study was done using GRCh38). Likewise, we benchmarked SNVs and indels

using bcftools merge, and we intersected our identified methylation with reported re-

sults using bedtools intersect [64] version 0.2.6. Lastly, for the SVs, we compared the

breakpoint reported from Gilpatrick et al. and both SV type and genotype to what

PRINCESS reported.

Long-read sequencing of HS1011

DNA was sheared to 30 kb using a Diagnode Megarupter following the manufacturer’s

recommendations. DNA was prepared for Nanopore sequencing using the ONT 1D se-

quencing by ligation kit (SQK-LSK109). Briefly, 1–1.5 μg of fragmented DNA was end-

repaired with the NEB FFPE repair kit, followed by end repair and A-tailing with the

NEB Ultra II end-prep kit. After an Ampure clean up step, prepared fragments were li-

gated to ONT-specific adapters via the NEB blunt/TA master mix kit. The library

underwent a final clean up and was loaded onto a PromethION PRO0001 flow cell per

the manufacturer’s instructions. The flow cell was sequenced with standard parameters

for 3 days. Basecalling was carried out via Guppy version 4.3.4 + ecb2805. The sample

was analyzed using PRINCESS and the GRCh37 reference. We reported the number of

SNVs, indels, and SV density in 4 Mbp using vcftools [65] version 0.1.13.

Medical gene benchmarking

We measure the performance of PRINCESS across 193 difficult to map medical genes

[38]. The coordinates for these regions were extracted from the GTF file for genome

37. The medical regions were intersected using bedtools [64] with a low mappability

track (ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-

stratifications/v2.0/GRCh37/mappability/) to identify the percentage of repeats base

pairs for each gene. We used mosdepth [66] version 0.2.6 with bedtools intersect to cal-

culate average coverage and zero covered bases in each gene. We identified the inter-

sected SNVs and indels and SVs breakpoint with these regions using bedtools.
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