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Abstract

Single-cell RNA-seq datasets are often first analyzed independently without
harnessing model fits from previous studies, and are then contextualized with public
data sets, requiring time-consuming data wrangling. We address these issues with
sfaira, a single-cell data zoo for public data sets paired with a model zoo for
executable pre-trained models. The data zoo is designed to facilitate contribution of
data sets using ontologies for metadata. We propose an adaption of cross-entropy
loss for cell type classification tailored to datasets annotated at different levels of
coarseness. We demonstrate the utility of sfaira by training models across anatomic
data partitions on 8 million cells.
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Background
Many single-cell data sets are currently published in various databases in different for-

mats, such as custom formats on GEO, manuscript supplements with tables of cell type

annotations, or streamlined formats on Human Cell Atlas servers. Similarly, many

parametric models for data integration, cell type annotation, and other tasks are pub-

lished with their own user interface. The lack of streamlined data and model access in-

hibits data and model re-use and makes comparative analyses and benchmarks work-

intensive. We identify two core issues with the current state of data and model re-use

in single-cell genomics. Firstly, in smaller data sets, rare cell states can often only be

properly analyzed after integration with larger reference atlas data sets. This integra-

tion is time-intensive and requires a prior analysis of the reference data set. The effect-

iveness of this approach depends on the reference atlas chosen. With a growing

number of available reference data sets [1, 2], the choice of integration method and ref-

erence data set become increasingly hard to explore for analysts [3]. Secondly, data

processing and cell type annotation are repeated elements of these pipelines that are

time-intensive for analysts because of the complexity of the pipelines used4. Both com-

puting an embedding and clustering require basic preprocessing, such as scaling, log-

transformation, and highly variable feature selection. This data processing, also called
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feature engineering, is typically necessary both for basic embeddings such as t-SNE or uni-

form manifold approximation and projection [4] (UMAP) but also for embeddings from

autoencoders such as DCA [5] and scVI [6]. Moreover, cell type annotation requires a

high level of domain expertise as annotation resolution depends on the quality of the data

and project requirements and because cell type ontologies are currently under develop-

ment and therefore may change over the time scale of a typical analysis project.

We argue that zoos of pre-trained models can alleviate these problems by replacing

processing steps that are usually manually tuned by analysts with standardized para-

metric models that correspond to entire processing pipelines. First, similar models can

be trained on different data sets or collections, allowing analysts to navigate different

reference data sets easily. Second, a zoo eases model sharing through a unified front-

end. The idea of model sharing has been successfully applied in other fields including

natural language processing and computer vision and in geomics with kipoi [7] for

sequence-based models. Here, we introduce sfaira, a versatile repository that serves

pre-trained scRNA-seq models. To train these models across tissues and organisms, we

coupled the zoo with a data repository that includes data sets from multiple data pro-

viders with unified annotations. This data and model zoo permits streamlined access to

data sets and pre-trained models. The presented sfaira framework defines a common

nomenclature that covers feature spaces, data sets, and cell type ontologies. We lever-

age this data zoo to train models in an automated fashion across large numbers of tis-

sues in two species and propose a mechanism that automatically accounts for different

cell type annotation resolutions in cell type classifier models. Current model zoos are

model class centric, thereby impeding side-by-side usage of different models, such as

different autoencoder topologies. The sfaira model zoo is designed to be model agnostic

and to simply be as a unified front-end for serving and receiving models, thereby enab-

ling transfer of models from developers to users.

In addition to these practical advantages of a data and model zoo, we also address

the issue of interpretability and generalizability of models. We provide a size factor-

normalized, but otherwise non-processed feature space, for models, so that all genes

can contribute to embeddings and classification and the contribution of all genes can

be dissected without the issue of removing low variance features. We show that this ap-

proach allows us to relate the dimensions of the latent space to all genes. We also

present models that have been fitted without covariates, such as organ or experimental

assay, on extremely diverse data sets. We argue that such models require higher ab-

straction on the gene space compared to models that use covariates to remove variation

between data sets. To our knowledge, this is the first instance in which such models

could successfully be trained. Altogether, we expect sfaira to provide the important ser-

vice of model reuse and broad model profiling across a diverse range of unified data

sets.

Results
Sfaira provides data sets, models, annotation, and model parameters within a unified

framework

Sfaira provides data, model, and parameter estimate access as a data and model zoo

(Fig. 1a). Firstly, the data zoo contains dataset-specific loader classes to query data from
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the actual diverse data providers, which mirror data reading scripts and make these

scripts sharable and reproducible. This data zoo is scalable because data loaders can be

easily shared. Currently, as of May 2021, sfaira encompasses 41 studies with 220 data

sets and 8.0 million cells (Fig. 1b). This data loader implementation allows streamlined

querying of data sets based on meta features, such as organism or tissue sampled and

experimental protocol. We enforced cell ontology [8] labels in this data universe to

make cell type annotation relatable between data sets. Beyond the cell ontology, we also

enforced ontologies for disease [9], anatomy [10], cell line [11], experimental method

[12], and developmental stage [13, 14]. Importantly, such ontologies for meta data allow

relational reasoning in the database which allows meaningful and intuitive subsetting in

queries such as for all T cells, or for all samples from any lung tissue. The gene space

is explicitly coupled to a genome assembly to allow controlled feature space mapping.

Secondly, the model zoo part of sfaira consists of a unified user interface and model

implementations, not requiring the user to understand technical differences between

models such as supervised cell type prediction models, matrix factorizations, and vari-

ational autoencoders. It is often desirable to use pre-trained models during analysis.

For this purpose, we couple the pre-implemented models to parameter estimates stored

locally or in a cloud database. These parameterizations can easily be queried from

within Python workflows and allow streamlined execution of previously published

models. The parameter query depends on a global model and parameter versioning sys-

tem that we introduce with sfaira.

Fig. 1 Sfaira is a data and model zoo that automates common steps in exploratory single-cell RNA-seq
analysis. a Overview workflow of sfaira data and model API. Data set files are currently stored in cloud
databases that can be interfaced with the sfaira data API to give streamlined AnnData objects that can be
used for analysis or model fitting. The sfaira model API can consume these data sets to produce
automatised analyses by querying parameter estimates from pre-trained models stored on cloud servers via
the sfaira parameter API. Example analysis steps that are automated are embedding computation and cell
type annotation. b Summary of the current state of sfaira data zoo for mouse and human single-cell RNA-
seq samples, representing 220 data sets and 8.0 million cells in two organisms

Fischer et al. Genome Biology          (2021) 22:248 Page 3 of 21



A scalable data zoo for fast and comprehensive data access across numerous repositories

An important technical challenge faced by a data zoo is the interaction with large, het-

erogeneous data set collections that do not fit into memory. We address data loading

by using streamlined data-set-specific loader classes that contain data-loading scripts.

These classes can be written, maintained, and used in the context of the complex func-

tionalities of parent classes, as well as shared through a single public code base. More-

over, we extend these data-set-specific loader classes to data collection loaders that

serve streamlined data sets. Importantly, sfaira only requires a constant amount of code

to load data sets, independent of the set of selected data sets. We also introduce lazy-

loaded representations of data sets that allow users to subset large data set collections

before loading desired subsets into memory. Here, we provide functionalities to write

data sets with a streamlined feature space and metadata either into h5ad-based backed

AnnData objects [15] or distributed data set collections that can be interfaced by dis-

tributed computing frameworks, such as dask (https://dask.org/). Last, we also aid data

zoo exploration through a web front end that contains a searchable summary of all data

sets in the data zoo database (Availability of data and materials).

Scalable access to data with unified annotations allows for queries of gene and data

statistics

Streamlined access to unified, large, cross-study data sets as provided by sfaira allows

for easy data statistics queries that can be helpful for putting observations in the con-

text of other data sets. A common query in this context is gene based. For example, it

is often useful to have a reference range for the expression activity of a gene observed

with scRNA-seq. This can be done with sfaira via a straight-forward query, as show-

cased for Ins1 scaled expression across organs and cell types in mice (Fig. 2a). Note that

cell type-wise summary metrics are often much more useful for such workflows than

cross-data set averages, which are skewed toward frequent cell types and are more use-

ful than extrema, such as maximum expression, which are heavily influenced by the

variance of the expression distribution. This analysis establishes an active range be-

tween 0 and 2500 counts per 10,000 unique molecular identifiers as an active range for

Ins1 expression in mice, with all expressing cell types located in pancreas data sets.

Next, we consider gene-gene dependencies. Often, one is interested in the correlation

of expression between genes to establish regulatory relationships. As an example, we

investigated the correlation of two cell-cycle-associated genes, Mcm5 and Pcna (Fig.

2b), which provides a range for their correlation and an estimate of how often these

genes are correlated across tissues.

A second group of such queries is based on subsetting operations across cells based

on cell and dataset metadata. Such queries depend on a homogenous annotation of

metadata across data sets. Sfaira enforces this type of annotation by requiring meta data

to follow ontologies. In sfaira, we also implemented relational reasoning of metadata

items based on ontologies which is often necessary to achieve meaningful subsets. We

showcase a few example data zoo summary statistics that exploit metadata-based quer-

ies (Fig. 2c–g). We generated complexity plots of the total number of cells versus the

number of most fine grained cell type labels per organ to give guidelines for

prioritization of organs for further cell type discovery (Fig. 2c). In a cell type-centric
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scenario, we queried the fraction of T cells across organs (Fig. 2d), a query that can be

used to characterize specific cell types across organs and datasets. Last, we queried a

summary of total reads per cell summary statistics and protocol summary statistics

(Fig. 2e–g).

Sfaira enables automated single-cell data analysis

A core advantage of end-to-end parametric approaches is that they can alleviate the

need for feature engineering. This has been a key advancement in image-based deep

learning for example [16]. In single-cell analyses, feature engineering describes the early

analysis steps starting from count matrices, including normalization, log-

transformation, gene filtering, selecting components from principal component analysis

(PCA), and batch correction [4, 17] (Fig. 3a). These steps are usually necessary to ob-

tain useful embeddings and clusterings4 but are a bottleneck in analysis workflows. Pre-

trained embedding models can be used to generate latent spaces that can be used for

Fig. 2 The sfaira data zoo contextualizes data statistics. a Characterizing gene expression distributions
across organs. The expression range of the example gene insulin across mouse data sets shows specific
expression in pancreas. Mean normalized expression of Ins1 by organ and cell type. b Pearson correlation
coefficient between the two cell-cycle-associated genes Pcna and Mcm5 across data sets. Shown is a
boxplot of the distribution over the correlation coefficients for each data set computed per organ and cell
type. c Data sets vary strongly in complexity. Shown is the number of cells versus the number of cell types
in the data zoo by organ for both mouse and human. d Sfaira allows querying of cell type fractions in
tissue across organisms. Shown is the fraction of T cells per mouse dataset, ordered by organ. e Mean total
counts per cell in mouse and human organs for 10x protocol data sets only. f Number of data sets per
experimental protocol. g Mean number of counts (unique molecular identifiers if available, otherwise reads)
per data set by experimental protocol
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downstream tasks without prior feature engineering. As an example case, we processed

human peripheral blood mononuclear cells (PBMC) data in a standard preprocessing work-

flow [4, 15] and compared this to a UMAP of a linear model embedding. Both the manual

and the learned embedding separated annotated cell types into distinct clusters, which dem-

onstrates that both captured the biological heterogeneity of the system (Fig. 3b). We per-

formed four additional such zero-shot analysis examples on data sets not used for training or

testing of the models presented (Additional file 1: Fig. S1) [18–21]. One could judge the

learned embedding also based on the reconstruction error of its encoder-decoder model:

Here, the linear model achieved a mean negative log likelihood in reconstruction of 0.16.

These quantitative metrics on embedding models are necessary to compare multiple models.

Second, we used automated cell type annotation to label cells to explore whether we could

seed data interpretation with a first proposal for cell types. Cell type predictions from a multi-

layer perceptron model trained on different data sets identified similar cell types to the labels

from the curated annotation (Fig. 3b). Note that with further additions to the data zoo and

improved classifier models trained on these large data sets, these coarse initial annotations will

become increasingly fine-grained. This example shows that the combination of pre-trained

embedding and cell type classifier models can be used to perform an automated initial analysis

of single-cell data, which can then be extended by further in depth analysis according to the

scenario. Below, we discuss pre-training details of such cell type classifiers and embedding

models that allow these workflows on a large scale.

Sfaira versions decentralized parametric models to allow reproducible model sharing and

application to private data

Sfaira implements two model classes: (i) gene expression reconstruction models that

learn a latent representation that can be used for visualization, and (ii) supervised

models that predict cell type labels (Fig. 1a). The model classes are defined by their in-

put and output. Sfaira’s architecture can also integrate other model classes that serve

additional purposes. Models are characterized by an input feature space, an output

space, and model architecture hyperparameters. Importantly, we make input feature

space standardization easy by coupling input gene sets to genome assemblies and func-

tional annotation of gene sets. One can for example define an input feature space as

the protein coding genes in GRCh38 version 102 (Fig. 1a). The label space of cell type

classifiers is a set of cell types in the cell ontology [8]. This label space is a set of leaf

nodes of a subgraph of the full ontology graph and thus makes hierarchical labels de-

fined in the ontology available to the cost function. We broadly categorize model top-

ologies according to popular approaches: matrix factorizations, autoencoders, and

variational autoencoders for reconstruction models and logistic regression and densely

connected neural networks for cell type classification.

We provide an infrastructure for third party organizations to maintain their own pub-

lic and private repositories of model weights (model zoos) on servers or in local direc-

tories. These parameter set versions are identified by the organization that performed

model training as well as the training data and optimization hyperparameters that this

organization used to train this model. Often, this would result in organizations provid-

ing an initial estimate that becomes incrementally updated as new data becomes avail-

able or when improved estimates become available in an ongoing grid search across
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optimization hyper-parameters. Sfaira allows end-users to easily switch between differ-

ent model types from different model providers, accelerating and democratizing model

distribution and access. This reduction in the effort required to quickly implement and

compare models will improve decisions on pre-trained model usage. In addition, the

decentralized storage of model weights allows this model zoo to quickly react to new

developments in the community.

Generalized cell type prediction within an ontology adjusts for annotation coarseness

A core difficulty for deploying predictive models for cell type labels based on single-cell

RNA-seq is that cell type labels can change as part of ongoing cell atlas efforts [22]. We

address this issue by defining models on specific versions of the cell ontology [8] and

allow extensions of this ontology to keep up with non curated developments. A second

challenge is that cell type annotation from previous studies is often presented at differ-

ent resolutions. One study might report “leukocytes” in a given tissue while a different

study differentiates between “T cells” and “macrophages.” A scalable training frame-

work for cell type classifiers needs to be able to make use of both levels of granularity,

as manual re-annotation is time-consuming and may not always achieve the required

Fig. 3 Sfaira automatizes exploratory analysis of single-cell data. a Manual single-cell data analysis pipeline
and automated sfaira pipeline. b Comparison of manual feature engineering workflow with automated
embedding and cell type annotation from sfaira on a human PBMC data set. Shown are UMAPs based on a
PCA of an engineered feature space and of the out-of-the-box latent space from a linear sfaira embedding
model. Superimposed are cell types previously annotated for this data set and sfaira cell type predictions
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resolution, depending on data quality. This notion of coarseness relates to the directed

acyclic graphs that are typically employed in cell type ontologies. Accordingly, we

propose the usage of a variant of cross-entropy loss and an accuracy metric that can

dynamically assign observations to single labels or to sets of labels during training and

testing (aggregated cross-entropy, Fig. 4a, see the “Methods” section). Using this ap-

proach, we were able to pool cell type annotations from more than 149 public data sets

and train predictive models for 24 mouse tissues and 34 human tissues across 6.6 mil-

lion cells at once.

It has recently been proposed that cell type prediction can often be performed with

linear models [23]. We trained three types of models: logistic regression models, multi-

layer densely connected feed forward neural networks (multi-layer perceptrons), and a

new marker gene-centric linear model (Methods). The newly proposed gene-centric

model operates in a learned marker gene space in which each gene is first transformed

into a binary on-off state with a sigmoid mapping. Such models are not only easy to in-

terpret, as marker genes contribute equally to the prediction, but they also allow inte-

gration of prior knowledge on marker genes via priors for the parameters of the marker

state embedding layer. All models performed well as expected based on previous find-

ings [24] on selected organs (Fig. 4b,c), with a median accuracy of 0.64 in human sam-

ples and 0.93 in mouse samples. We did not find performance advantages of the

marker model. Our data zoo facilitates training and deployment of these models in a

streamlined fashion, thus making cell type predictors easily accessible for all sampled

organs and organisms. Using the data zoo, we can easily relate classifier performance to

class frequencies (Fig. 4d,e) and can consider individual classes in more detail (Add-

itional file 1: Fig. S2).

Sfaira serves embeddings from different models

Embedding models compress data to a low-dimensional representation which is neces-

sary for many downstream analyses. Members of this model class that have been used

frequently in the past for representation learning on single-cell RNA-seq are PCA, non-

negative matrix factorization [25, 26], autoencoders [5], and variational autoencoders

[6]. Embedding models have been successfully used in the context of transfer-learning

[25, 26], a process during which public data are leveraged to improve learned represen-

tations. Still, workflows that use such encoder-decoder models in unsupervised scRNA-

seq data analysis usually rely on refitting the model on each new data set for two core

reasons: First, useful pre-trained models are difficult to identify in the literature. Sec-

ond, unsuccessful transfer training of pre-trained models may result in relevant vari-

ation of the data set not being resolved, such as new cell states. Sfaira serves

embedding models in a structured fashion to users and exposes a large data library for

pre-training, thus reducing the probability that components of variation which are rele-

vant to the test task were not seen during training. Here, we benchmark such models

on a large data collection to show that we can indeed address these two issues.

Where possible, we defined hold-one-data-set-out test splits across organs to reflect

the ability of these models to capture variance in settings with previously not seen con-

founding effects. Example embeddings for human and mouse lung data sets (Fig. 5a,b)

show that cell types are separated. We then compared reconstruction errors in cross-
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validation splits across commonly used model classes across 35 human tissues and 25

mouse tissues, using four different classes of embedding models. We found that linear

models perform similarly to non-linear models, with median best achieved negative log

likelihood of linear models and organs for human samples of 0.13 and for mouse sam-

ples of 0.50 (Fig. 5c,d). Best achieved negative log likelihood for human blood models

Fig. 4 Sfaira allows fitting of cell type classifiers for data sets with different levels of annotation granularity
by using cell type ontologies. a Aggregated accuracy and cross-entropy allow for fitting cell type
classification models on data sets with heterogeneous annotation coarsity using cell type relations from
ontologies (see the “Methods” section). The y axis contains leaf nodes of a cell type ontology, which can be
combined linearly to yield the predicted probability mass of any other node in the ontology graph (x-axis).
b, c Accuracy of cell type classifiers on mouse (b) and human (c) organs on entirely held-out test-data sets.
Linear: Linear classifier (logistic regression), marker: Marker gene-based classifier, MLP: multilayer dense
neural network. d, e Class-wise prediction accuracy correlates with the number of cells in class. Shown are
cell type class-wise F1 scores by the number of cell types in that class of cell type classifiers by model on
lung data from mice (d) and humans (e)
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was also 0.08 for linear models, which is of similar magnitude to the reconstruction

error found on the held-out PBMC data shown in the automated example analysis (Fig.

3b). These models perform better than baseline random projection models (“Methods”

section, Additional file 1: Fig. S3). This finding shows that single-cell data can be recon-

structed well by pre-trained linear models [23]. In sfaira, we improve embedding ana-

lyses in three aspects. By deploying pre-trained models that are already optimized for

hyperparameters, we alleviate the need for grid searches or feature engineering. Second,

we reduce the burden for model interpretation as previously annotated model compo-

nents, such as bottleneck dimensions, can be easily leveraged for new analysis, thereby

adding value to an analysis that goes beyond representation capabilities. Third, by enab-

ling training on extremely diverse data sets, we pave the way for the usage of highly in-

terpretable models that are more difficult to train. The embedding models shown here

are examples of models that can be used in a model zoo but do not represent the full

range of pre-trained models that could be used in the single-cell context [27].

Regularizing models through organism-level data

Data integration is a trade-off between removing between-sample variance resulting

from technical effects and conserving biologically meaningful variance [3]. Instead of

removing between-sample variance in a data integration setting, we focus on embed-

ding models that discover axes of variation which allow us to discern biological vari-

ation on a new data set (zero-shot learning [28]). Here, it is difficult to discern models

that overfit all variation in data sets and models that capture only relevant axes of vari-

ation. This overfitting is an issue that can be addressed through regularization. Model

regularization in embedding and cell type classifier neural networks is often performed

via L1 or L2 constraints on model parameters, via drop-out mechanisms [5], and via di-

mension bottlenecks in latent representations. While effective in the prevention of

overfitting, these regularization methods cannot be easily used to derive interpretable

models. Instead, they dynamically limit the degrees of freedom of generously over-

parameterized models.

In principle, models can also be regularized through extremely diverse training data,

thus making it hard for the model to overfit the entire training domain and forcing the

model to learn strong abstractions. Importantly, this data-driven approach stands in

contrast to the usage of variance explaining covariates in conditional embedding

models: An embedding model with a high degree of abstraction should be able to learn

abstract representations of gene expression configurations across conditions, similar to

how image-trained convolutional networks learn representations of images from differ-

ent objects or sources without having access to categorical descriptors of these condi-

tions. Conditional embedding models are often used in data integration studies, in

which domain differences are usually removed by a projection mechanism [29]. Sfaira

provides structured data libraries built for providing models with extremely large train-

ing data sets. Indeed, we could converge embedding models on such large data zoos of

scRNA-seq data of whole organisms across datasets from many studies (Fig. 5e,f). In

summary, sfaira is well positioned to enable model regularization through, extremely

diverse training data sets, with the aim of extending reference data usage from

projection-based data integration to more abstract pre-trained embeddings.
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Embedding model interpretation through gradient maps from bottleneck to input

features

Many embedding models that are used in single-cell RNA-seq have been based on

PCA. PCA is desirable as an embedding in terms of interpretability, because it allows

for a direct interpretation of latent dimensions as orthogonal linear combinations of

the input features (loadings). Gradient maps from the bottleneck activations to input

features allow locally similar interpretation mechanisms in non-linear embeddings of

encoder-decoder networks. Such gradient maps carry the promise of correlating bottle-

neck dimensions to molecular pathways or similar complex regulatory elements that

present a higher-level view of gene regulatory networks. We found that cell-type-wise

Fig. 5 Sfaira allows streamlined embedding models training across tissues and on whole atlases. a, b Pre-
trained embedding models can perform meaningful reconstruction of cells in held out data sets. UMAP
based on latent space of the best embedding model data for pancreas data from humans (a) and mice (b).
The superimposed colors correspond to the original, non-streamlined, cell type annotation. c, d
Reconstruction performance comparison of different embedding models across organs and organisms. The
negative binomial likelihood is used as a reconstruction performance metric on reconstructed test data of
held-out test-data sets from PCA, linear, non-negative matrix factorization (nmf), autoencoder (ae), and
variational autoencoder (vae) models on human (c) and mouse (d) organs. e, f Sfaira allows for training of
embedding models using very large data sets. UMAP of the latent space of an embedding model trained
on all mouse data in the sfaira data zoo with the data set (e) and cell type (f) superimposed
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gradient maps of the embedding space with respect to the feature space revealed cellu-

lar ontology relationships in two sample data sets (Fig. 6a, Additional file 1: Fig. S4a) by

grouping similar cell types together within a hierarchical clustering of the gradient cor-

relation matrix. Moreover, we found that linear models and autoencoders are similar in

the size of feature sets considered important by these gradient-based mechanisms for

each cell type (Fig. 6a, Additional file 1: Fig. S4a) and also have a similarly shaped mar-

ginal distribution of normalized gradients (Fig. 6b, Additional file 1: Fig. S4b). Models

trained only with small data sets may collapse to only use small subsets of the gene

space and represent cells based on feature correlations in this feature space. As data

sets grow, more complex representations have to be learned, and any collapse of

models on sub-feature spaces can be diagnosed with gradient-based approaches.

Discussion
We introduced sfaira, a data and model zoo which accelerates and standardizes data ex-

ploration for scRNA-seq data sets. The automated exploratory analysis aspect of sfaira

workflows smoothly integrates with scenario-specific scanpy [15] workflows and scales

data exploration by reducing the number of manual steps performed by analysts. Sfaira

accelerates parallelized model training across organs, model benchmarking, and com-

parative integrative data analysis through a streamlined data access backend while im-

proving deployment and access to pre-trained parametric models. The mechanism

introduced here to accumulate large reference databases and to fit models on extremely

diverse data set collections, provides a gateway to regularization through data and to

mechanistic models. In contrast to query-to-reference analysis, the models presented

here can be leveraged for unconstrained data exploration [29, 30]. Lastly, our frame-

work is open to the contribution of single-cell centric models that do not primarily

serve the purpose of single-cell RNA-seq embedding or cell type prediction. Other use

cases may include embedding models across multi-modality joint feature spaces such

as CITE-seq [31] or cell doublet prediction [31–33]. We used model deployment infra-

structure from TensorFlow (https://www.tensorflow.org/) here, similar infrastructure is

available from PyTorch (https://pytorch.org/), and both are very simple to maintain.

One could also think about deploying executable models in Docker (https://www.

docker.com/) images, as is currently done in kipoi for functional genomics data [7].

Conclusion
Our effort to streamline the zoo of single-cell data is complementary to institutional-

ized efforts, such as the Human Cell Atlas. Our mixed data zoos can represent every

data set in a publicly maintained, data-set-specific code base, and, at the same time, can

leverage consistent data representations from data providers, while retaining a single

interface. In a partnership with cellxgene [34], we built conversion code to translate

sfaira dataset to cellxgene formatted datasets and conversely, thus allowing processed

data storage on the cellxgene cloud servers and interfacing additional datasets provided

by cellxgene. Moving beyond scRNA-seq, we will support different data modalities such

as from splicing annotation, scATAC-seq [35], CITE-seq [31], and spatial molecular

profiling in the near future. We expect sfaira to become a useful resource for auto-

mated data analysis, a comprehensive source of reference data sets, and to enable

benchmarking of new methods. The models proposed for automated data analysis are

Fischer et al. Genome Biology          (2021) 22:248 Page 12 of 21

https://www.tensorflow.org/
https://pytorch.org/
https://www.docker.com/
https://www.docker.com/


likely to improve drastically with increasing availability of training data resulting in

strong performance improvements in the near future as the data zoo grows.

Methods
Implementation

Data zoo

We represent data sets by individual data loader classes that inherit generic data-

loading properties from a unique parent class. These data loader classes can be consid-

ered class versions of data-loading scripts that are otherwise often used in script code.

These classes allow metadata queries through automatic metadata storage in a lazy

mode, in which count matrices are not yet loaded into memory, thereby allowing the

user to subset large instance lists of these classes interactively. Some entities serve

streamlined processed data sets for which individual loading scripts are not necessary:

In these cases, we interface these data zoos with a single class that can be instantiated

for all data sets in this zoo. Sfaira maintains the universe of all contributed data loader

classes; users then locally build libraries of a subset of these data sets, and the sfaira

data api accesses all available data sets: This allows users to also only operate on a sub-

set of the available processed data universe.

Fig. 6 Toward the interpretability of model embedding. Saliency-based interpretation and data
regularization of non-conditional embedding models: linear and autoencoder embedding models for
human esophagus (a, b). a Correlation of cell-type wise aggregated gradients of embedding with respect
to input features. b Distribution of feature-wise wise aggregated gradients of embedding with respect to
input features by cell type (color)
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Model zoo

We provide a model code in the sfaira package; each model has its own model class

that can be accessed through a streamlined interface, such as in kipoi [7].

Parameter storage

Parameter files of models defined in the sfaira model zoo are stored in public cloud

servers, such as Zenodo, or locally for private models. These parameter files are ver-

sioned and can thus be reproducibly accessed.

Model topologies

Sfaira is a model zoo that is set up to accommodate various models. Here, we describe

the models that underlie the analysis results that are presented in this manuscript. Note

that the models in sfaira will not be limited to this initial model population in the

future.

Preprocessing layers

We prepended a common input data transform to all embeddings and cell type predic-

tion models. The objective for using this transform is to reduce variability in the data

so that models require lower complexity and fewer training steps to adjust their in-

ternal normalization of the data. We chose a transform that can be evaluated based on

a data batch without being dependent on the batch. For arbitrary batch sizes, this re-

quires the transformation of an individual observation (cell) to only depend only on the

observation itself. We linearly scaled the data points x per cell i and gene j to 10,000

and log transformed this scaled vector.

xij ¼ log
xijPN
n¼0xin

�104
 !

The scaling is a basic attempt to reduce the variation caused by the number of UMIs

observed per cell which depends on technical factors such as the library depth and sto-

chasticity in mRNA capture during the sequencing experiment. The log transform is a

basic attempt at reducing the strong heteroscedasticity of the data which is commonly

observed to have a positive dependence of the variance on the mean of the gene

observations.

We would like to highlight that unlike in standard single-cell RNA-seq data process-

ing for PCA and downstream t-SNE or UMAP computation, this processing does not

necessarily need to be carefully benchmarked as this processing is complemented by

the innate ability of the first layers of the neural network to adjust to unwanted sources

of variation. We chose to use a basic transform to speed up training only. In the limit

of many data sets and sufficient training time, one could imagine entirely removing

preprocessing from these networks.

Output and loss function of embedding models

We provide support for different model outputs and loss functions. These variations

are encoded in the topology identifier. Multiple studies have found that autoencoder
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can learn embeddings of single-cell RNA-seq data with negative binomial reconstruc-

tion loss. A negative binomial reconstruction loss requires a mean μ and a dispersion

parameter φ to be estimated. In the initial version of sfaira, we support output states

tailored to the negative binomial distribution through an exponential inverse-linker

function in the last layer. We distinguish an output that estimates a fixed dispersion

per gene and an output that estimates one dispersion parameter per gene and cell. The

negative log likelihood over N samples and J genes is ad follows:

llNBðμ;φ; xÞ ¼ −
X

0≤n≤N

X
0≤ j≤ J

log Γðφ j þ xn jÞ þ log Γðxn j þ 1Þ
þ log Γðφ jÞ−xn j�ðlogðμn jÞ þ logðμn j þ φ jÞÞ−φ j�ðlogðφ jÞ
þ logðμn j þ φ jÞÞ ð1Þ

Output and loss function of cell type prediction models

The standard cell type prediction model included in sfaira operates under the assumption

that a cell type prediction should output a probability distribution across previously

known cell types. The loss typically used for evaluating fits of such probability mass distri-

butions is the cross-entropy loss. We additionally allow for multiple output categories to

be assigned to a single true set of labels, we call this aggregated cross-entropy loss and we

use aggregated accuracy as an evaluation metric for this scenario. This aggregation is ne-

cessary if data sets differ in the coarseness of the cell type assignments. Often, one can

map labels between both data sets as part of an ontology. Data set A may only annotate

four tissue-specific cell types and “lymphocytes” whereas data set B differentiates those

four types and further differentiates “T cells” and “B cells”. The cell universe of this tissue

should, therefore, consist of the four tissue-specific cell types and T cells and B cells. Data

set A can still be used to train supervised classifiers to predict cell types, but one must

take care that the lymphocyte label is used properly. We propose to aggregate the pre-

dicted class probabilities across all labels assigned to lymphocytes in data set A so that

any probability mass distribution for a lymphocyte observation in A across T-cells and B-

cells is allowed. This allows the classifier to learn differences between T-cells and B-cells

on data set B, while it can use A to improve its model of the difference between both lym-

phocytes and the remaining four cell types. Below, we compare the resulting aggregated

cross-entropy loss cceaggto cross entropy for a binary (ccebinary) and a multi-class (ccemulti

− class) prediction problem. The shown transformations labeled with (*) hold if y ⊂ {0, 1},

ie., if the labels lie on a binary support.

ccebinary ¼ −
X

0≤n≤N
yn�logðpnÞ

þ ð1−ynÞ�logð1−pnÞ ¼
ð�Þ

−
X

0≤n≤N

X
k⊂Kþ logðpnkÞ ð2Þ

ccemulti−class ¼ −
X

0≤n≤N

X
k⊂K

ynk�logðpnkÞ ¼ð�Þ−
X

0≤n≤N

X
k⊂Kþ logðpnkÞ ¼ðjK j¼2Þ

ccebinary

ð3Þ
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cceagg ¼ð�Þ−
X

0≤n≤N
logð

X
k⊂KþpnkÞ ¼ð∀n:

P
0 ≤ k ≤ K

ynk¼1Þ
ccemulti−class; ð4Þ

where K+is the set of positive classes with yk = 1and K−is the set of positive classes

with yk = 0 and Nis the number of observations. In the above example with lymphocytes

that are split into T cells and B cells, ∑k ⊂ Kyk = 2 for observations assigned as lympho-

cyte, as the label is yk = 1 for both the T cell and B cell class which make up the set of

lymphocytes K+. Similarly, the predicted probability mass for an observation n that is

labeled lymphocyte is the sum of probability masses predicted for T cells and B cellsP
k⊂Kþpnk . In contrast, T cell is a leaf node label and its set of positive classes K+ only

contains the label T cell. Here, the predicted probability mass for the label T cell isP
k⊂Kþpnk ¼ pnl where l is the T cell class. The accuracy metric accaggcorresponding to

cceaggis:

accagg ¼ −
1
N

X
0≤n≤N

I
X

k⊂Kþpnk�ynk
� �

≻ maxk⊂K− pnkð Þ
h i

; ð5Þ

where I[] is an indicator function, which assesses whether the aggregate probability

mass predicted for a given cell type label is larger than the probability mass assigned to

any leaf node of the ontology that is not a subclass of the class in question.

Alternatively, one could use sigmoid transforms of independent cell type predictions.

This approach does not superimpose the prior knowledge that a cell can only be part

of one class in a properly defined cell type ontology, and thus, we therefore do not sup-

port this setting.

Multilayer perceptron model

We used dense layer stacks (multilayer perceptron) to predict cell types from gene ex-

pression data. An example multilayer perceptron for cell type prediction used in this

study was trained on all protein coding genes from either mouse or human, had one

hidden layer of the size (128), was trained without L1 and L2 penalties on the parame-

ters, and with a selu activation function.

Marker model

We defined a marker gene-dominated model to predict cell types from gene expression

data. In this model, a sigmoid function based on a gene-specific linear embedding of

the gene expression values models an expression threshold. After this gene-wise em-

bedding, a fully connected layer pools information from all genes to the cell type

prediction.

Autoencoders

Autoencoders with “dense” (fully-connected) layers and count noise distributions were

proposed among others by Esralan et al. to learn embeddings of single-cell RNA-seq

data [5]. The full architectures are documented in the code. An example autoencoder

used in this study was trained on all protein coding genes from either mouse or human,

had three hidden layers of the sizes (512, 64, 512), was trained without L1 and L2 pen-

alties on the parameters and without input drop-out, was trained with batchnorm
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between dense layers, with selu activation function, and with a single trained dispersion

parameter per gene in the output for the negative binomial reconstruction loss.

Variational autoencoders

Variational autoencoders (VAEs) with “dense” (fully-connected) layers on count noise

data were proposed among others by Lopez et al. to learn embeddings of single-cell

RNA-seq data [6]. Here, we impose a unit Gaussian prior on the latent space activa-

tions. The full architectures are documented in the code. An example variational auto-

encoder used in this study was trained on all protein coding genes from either mouse

or human, had three hidden layers of the sizes (512, 64, 512), was trained without L1

and L2 penalties on the parameters and without input drop-out, was trained with

batchnorm between dense layers, with selu activation function, and with a single

trained dispersion parameter per gene in the output for the negative binomial recon-

struction loss.

Random projection

We use random projection as a baseline embedding model, in order to put our re-

ported model performance into context. For this we use the sklearn.random_projec-

tion.SparseRandomProjection() method from scikit-learn (v0.24.1). As with all other

models, we fit the model on the training data and project the test data to reduced di-

mensions (64 in this case). We then reconstruct the original dimensionality of the data

by multiplying the reduced data with the components of the fitted random projection

model. For numerical reasons, we consider any negative values in the reconstruction as

invalid values and convert them to a small positive number (1e−10). We do the same

for any zero values in the reconstruction in order to allow computation of the losses.

We then compute the mean squared error of the reconstruction as well as the negative

log-likelihood of the negative-binomial distribution with a constant scale of 1.0.

Data processing

Expression data

All data (human [30, 36–71] and mouse [72–75]) were downloaded in the least-

processed expression matrix format provided by the authors of the data set. Their pro-

cessing is documented in their respective data loaders within sfaira. The datasets used

for example zero-shot analyses (Fig. 3b, Additional file 1: Fig. S1) were downloaded

from scanpy [15] from and as cellxgene data collections [18–21], as described in the ac-

companying notebooks. We did not perform any processing other than that discussed

for preprocessing layers discussed in the section “Model topologies.” As feature space

we chose the protein coding genes from the Mus_musculus.GRCm38.102 genome as-

sembly for mice and Homo_sapiens.GRCh38.102 for humans.

Cell type annotation data

Not all data sets used in this manuscript use the same cell type identified conventions.

We mapped the cell type annotation from each data set to the cell ontology. We de-

fined the label space of each cell type predictor model per anatomic location based on

the most fine grained cell types observed in this dataset: If one considers the directed
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acyclic graph of the ontology, these label cell types are leaf nodes of a sug-graph that

describes all cells observed in a given tissue and their ontological relationships. The loss

and accuracy of coarser labels during testing and evaluation was evaluated using the ag-

gregated cross-entropy and accuracy metrics described in the section “Output and loss

function of cell type prediction models”.

Test data splits

Where available, entire data sets were held out to evaluate model performance test

metrics. Some organs were only represented by a single data set in the data zoo. In

these cases, we held out a random set of 20% of all cells as test data.
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