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Abstract

Functional genomics experiments, like ChIP-Seq or ATAC-Seq, produce results that are
summarized as a region set. There is no way to objectively evaluate the effectiveness of
region set similarity metrics. We present Bedshift, a tool for perturbing BED files by
randomly shifting, adding, and dropping regions from a reference file. The perturbed
files can be used to benchmark similarity metrics, as well as for other applications. We
highlight differences in behavior between metrics, such as that the Jaccard score is
most sensitive to added or dropped regions, while coverage score is most sensitive to
shifted regions.

Introduction

In the past few years, projects such as ENCODE (Encyclopedia of DNA Elements) and
IHEC (International Human Epigenome Consortium) have established large catalogs of
genomic features, including regulatory regions, transcription factor binding sites, and
SNPs [1]. These data can be summarized into region sets, often stored in BED file format
containing genomic regions represented by a chromosome number, start position, stop
position, and optional metadata. Increasingly, computational tools are being developed
to produce and consume BED files [2]. Early studies used interval analysis to study regu-
latory elements for biological conclusions [3—8], and region sets are of particular interest
in epigenomics, where hundreds of thousands of cell-type specific elements have been
shown to play an important part in gene regulation [9-11].

Among the many applications of region sets, interest has grown in methods to compare
region sets with one another [12]. New genomic regions produced from experiments can
be associated with established genomic regions using co-occurrence, under the assump-
tion that region sets with many overlapping regions may reflect biological relationships
[1]. There are many methods to evaluate the similarity of two region sets, which have
been under development for more than a decade [3, 5, 13-21]. One general tool that pro-
vides the user with multiple results is the GSuite Hyperbrowser, which includes the most
similar region sets, unique region sets, and how the co-occurrence counts change along
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the genome [22]. Some tools use a statistical test to measure the significance of the co-
occurrence. For example, GenomeRunner [23], LOLA [24, 25], GIGGLE [26], and IGD
[27] take BED files as input and compute region overlap counts, followed by a Fisher’s
exact test to produce a similarity score or ranking of most similar files. Other tools, such
as regioneR and ChIP-Seeker, use permutation or sampling of regions or random back-
ground region set to calculate the probability of observing more extreme overlap between
it and the provided data [28, 29]. Another approach is to examine distribution along the
genome such as the approach taken by GenometriCorr [30]. There is therefore a wide
variety of methods and tools to assess relationships among region sets [12, 22]. These
tools are similar in their attempt to compare region set data, but have subtle differences
in the goal, data used, and approach of comparison.

Here, we provide a conceptual framework upon which similarities among region sets
may be evaluated. We do this by simulating perturbations of region sets, allowing us to
construct ground truth results between two region sets. We introduce Bedshift, a com-
mand line interface and Python package that provides users the ability to create new BED
files based on random modifications to an original BED file. A user can specify what per-
centage of regions they want to shift, drop, add, cut, and merge. Users may also specify
for each perturbation subsets of regions to perturb using separate selector region sets.
The most similar existing tool to Bedshift is a function in the BEDTools suite called
shuf fleBed [31]. This function randomly permutes the regions inside a BED file, mov-
ing them to different locations in the genome while preserving their length, which is useful
for generating background or randomized region sets. Bedshift provides control over the
type, magnitude, and combinations of perturbation, and makes it easy to produce many
replicates, making it suitable for more complex perturbations and to test how similarity
metrics behave with different types and levels of perturbation.

Bedshift produces reference files that are useful for many downstream tasks, including
as controls for experimental region set data, as a randomized background of region data,
as test data for a new tool, or to test similarity metrics. In this paper, to demonstrate
one use case, we applied Bedshift to evaluate region set similarity metrics. We created an
evaluation set of thousands of files with controlled levels of divergence to an original file,
and then compared different similarity metrics to see how scores vary as the type and level
of perturbation changes. This study reveals that similarity metrics vary in sensitivity to
different types of perturbation, and that for universe-based metrics, the choice of universe

is a critical experimental decision.

Results

Overview of Bedshift

Bedshift is available as a command line interface as well as a Python package. Docu-
mentation with guides on common use cases is available at bedshift.databio.org. Bedshift
perturbs regions in a region set with 5 possible operations: shift, add, cut, merge, and
drop. The operations can be specified one at a time or all in one command, in which case
Bedshift will run them in the order of shift, add, cut, merge, and then drop. The number
of regions perturbed is set as a proportion of the total number of regions in the region
set. For example, if given a BED file with 1000 regions, the operation bedshift -b
example.bed -a 0.2 -s 0.4 would first shift 400 of the regions (40%), then add
200 new regions (20%).


http://bedshift.databio.org
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The shift operation will shift the start and end position of a region by a random
value based on a normal distribution specified by the user using the - -shiftmean and
--shiftstdev options. In contrast to BEDTools, Bedshift does not shift regions to a
completely new location on the genome, but upstream or downstream by a small, ran-
dom number, placing them near their original location. The add operation will create
randomly generated regions on any chromosome with a length based on a normal distri-
bution specified by the user using the - -addmean and - -addstdev options. The drop
operation will randomly delete regions from the region set. The cut operation will split a
region into two new regions, with the split position in the region being randomly deter-
mined. Finally, the merge operation will merge two adjacent regions, potentially creating
very large regions.

In addition to these five operations, we have added numerous features to give the
user more configurability. The - -addfile, --dropfile, and --shiftfile options
allow users to input a file from which regions are selected to be added, dropped, or shifted.
This feature makes Bedshift able to configure perturbation type and level to specific
region types, such as introns, exons, promoters, or enhancers. To facilitate dataset gener-
ation, the - -repeat option makes it easy to create many replicates of the perturbation
with a single command.

Users may specify perturbations on the command line, from within Python, or using a
YAML configuration file with the - -yaml - conf ig option. This yaml configuration file
allows users to specify the order of perturbations and construct arbitrarily complex com-
binations, which also make it possible to construct highly realistic biological scenarios,
such as dropping only a subset of promoter elements or adding from a prespecified list
of enhancer elements. In the documentation, we provide scripts that show how bedshift
can be used to create thousands of perturbed files for dozens of different parameter sets
easily with a few commands on the command line.

Simulation study and evaluation approach

To test Bedshift and demonstrate how it can be used to evaluate similarity measures of
region sets, we selected one input file from ENCODE (ENCFF549PGC) [32] and created
an evaluation set of perturbed BED files for shift, drop, and add, with 3 levels and 10
replicates for each perturbation. Our parameter values included a low, medium, and high
degree for each perturbation type, and visual inspection of region sets allowed us to tune
the parameters to a biologically relevant range (Fig. 1A; Additional file 1: Figure S1). We
expected that similarity scores would reflect this known degree of perturbation. We used
the --addfile feature of Bedshift to add regions from a “universe” of possible regions
to include, instead of completely random regions. Our primary universe is the unified
set of regulatory elements from the SCREEN database of the ENCODE project (see the
“Methods” section) [32].

To extend this basic experiment, we did three additional, extended experiments: First,
to test how the metrics behave in combinations of perturbations, we expanded the exper-
iment to include pairwise combinations of each level and perturbation, resulting in
360 BED files made from 36 different Bedshift parameter sets (Supplemental Materials
Table S1), such as adding and shifting, or dropping and shifting, repeating each combina-
tion 10 times (Fig. 1B). Second, we repeated this combinatorial study on 3 separate input
files to test how the input file affects the metrics. Finally, we repeated this study using the
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Fig. 1 Overview of simulation study and comparison of four similarity metrics. A One BED file was used to
create 360 perturbed files, 10 repetitions for each of 36 different combinations of add, drop, and shift
perturbations. B Examples of a demo region set that has been shifted to different degrees. € We calculated
four similarity metrics between the original file and the perturbed files. The greater the similarity score
decrease, the more sensitive the metric is. D Within each parameter group, as the perturbation increases, the
similarity score decreases. E Results for shift, drop, and add-only perturbations. L, low; M, moderate; H, high
perturbation

original file, but with 3 additional universes, to test how changing the universe affects the
metrics. Additional universes are specific subsets of the primary universe from SCREEN:
CTCEF sites, promoter-like sequences (PLS), or DNase-H3K4me3 sites (see the “Methods”
section).

After simulating perturbed region sets to known parameters, we sought to evaluate the
performance of different measures of region set similarity. For each pairwise compari-
son of original to perturbed BED file, we computed four similarity metrics: Jaccard score,
coverage score, Euclidean distance, and cosine similarity (Fig. 1C). The Jaccard score and
coverage metrics were chosen based on their common usage in other similarity scoring
methods [12]. The Euclidean distance and cosine similarity metrics are a simple vector-
based approach computed on binary vectors with each element reflecting presence or
absence of a region in the universe. We focused in this study on metrics useful for mea-
suring the level of difference between two very similar region sets, as opposed to other
common tools (such as the Fisher’s exact test) which can be used to test the hypothesis
that two sets are independent. To evaluate the metrics, we compared each measure for its
ability to reflect Bedshift perturbations (Fig. 1D).

Experiment 1: Evaluating individual perturbations
Shift As the percentage of shift was increased from 20% to 50% to 80%, the similar-
ity score decreased for all four scoring methods. The score with the greatest amount

of decrease was the coverage score, which can be explained by how the coverage score
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measures the percentage of individual regions that overlap with other regions, and is
therefore affected by any shift. In contrast, the other measures are based only on overlap
counts, which will only change if the shift is substantial enough to eliminate overlap.

Drop When measuring the drop perturbation, which increased from 10% to 20% to 30%,
the Jaccard score had the greatest similarity score decrease (Fig. 1E). In fact, the way in
which the Jaccard score is calculated makes it so that it measures the exact percentage of
regions dropped. Shown in the graph, the Jaccard score decreases perfectly from 90% to
80% to 70% as drop increases from 10% to 20% to 30%. The other three metrics displayed
levels of decrease which were smaller than the Jaccard score decrease. This indicates that
the simple Jaccard overlap counting method was the most sensitive to dropped regions.

Add For the add perturbation, the Jaccard score again had the lowest similarity scores
and steepest decline as the add percentage increased from 10% to 20% to 30% (Fig. 1E).
However, unlike in the drop perturbation, the Jaccard score does not perfectly measure
the percentage of added regions. This is due to added regions having the probability
of overlapping existing regions, which would thus not be recognized as a newly intro-
duced region. Interestingly, not only was the Jaccard score less sensitive, but we also
found that the other three metrics were less sensitive to adding regions than dropping
regions. We expected sensitivity to adding to resemble sensitivity to dropping, because
the perturbations are complementary. We explore this further in the next section.

Sensitivity of dropping vs adding We were initially surprised that all metrics were more
sensitive to dropping than adding. After employing a hypothetical overlap counting exam-
ple, we can see why that happens for the Jaccard score: Given a set of 4 regions, if a
non-overlapping region is added, the score would decrease by 25% to %. On the other
hand, if a region is dropped, then the score decreases by 33% to % This provides a the-
oretical explanation of the observation that the Jaccard score is more sensitive to drop
than add. Remarkably, our perturbation results were able to capture this nuance. Similarly,
the coverage score is less sensitive to add than drop, which can be explained similarly:
adding a region would decrease the score by 12.5% to (% + %) /2, and dropping a region
would decrease the score by 16.7% to (% + %) /2. Thus, dropping regions still decreases
the coverage score more than adding.

Experiment 2: Evaluating combinatorial perturbations

To extend our results, we next examined the sensitivity when combinations of per-
turbations were used. We used Bedshift to create perturbed files with each pairwise
combination of parameters, at each level (Table S1). This resulted in 36 parameter sets: 9
represent the 3 individual perturbations at 3 levels each discussed previously, and then 27
sets represent each pairwise combination of 3 perturbations at 3 levels. We grouped these
results into 9 scenarios, 3 of which represent individual perturbations and 6 of which rep-
resent each pairwise comparison of perturbation (Fig. 2A). For example, in Scenario 2, we
plotted the decrease of the similarity score as the add perturbation is increased, with the
drop perturbation held constant. For each pairwise scenario, we used 3 different levels
(high, moderate, and low) of one type of perturbation in combination with another per-
turbation held constant, resulting in 3 plots per pairwise scenario. To summarize these
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Fig. 2 Bedshift and similarity score results. A Similarity scores for shift, drop, and add perturbations, along
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each metric to the three different perturbations

results, we computed the decrease across three levels of perturbation increase (Fig. 2B) in
each line plot. As a further summary, we created a heat map of each scores’ sensitivity to
the three perturbations we tested (Fig. 2C).

Multiple perturbations decrease similarity score and preserve sensitivity

Our results show that the similarity scores for combinatorial perturbations are lower than
each perturbation individually, showing that the similarity scores accurately recognize
that more perturbation, even of different types, leads to lower similarity (Fig. 2A). Fur-
thermore, the overall sensitivity trends remain intact (Fig. 2B). For instance, the coverage
score is clearly still most sensitive to shift, even in the presence of add and drop. Simi-
larly, the Jaccard score remains most sensitive to drop, and, to a lesser degree, to add in
the combinatorial analysis. Furthermore, all metrics remain more sensitive to drop than
to add (Fig. 2B). This indicates that these metrics are robust and detect changes that are
compounded on each other.

Euclidean distance is the least sensitive overall

This analysis also shows that across all individual and combinatorial perturbations, our
Euclidean distance metric is the least sensitive to changes (Fig. 2C). This result indi-
cates that these metrics could be useful for different purposes, with Euclidean distance as
implemented here more likely to be useful for more distant relationships among region
sets. Interestingly, the cosine similarity and coverage scores behave almost identically to
the add, drop, and add + drop scenarios, but differ dramatically when shift is included,
due to the increased sensitivity of coverage to shift.

Experiment 3: Testing across input files

To ensure that the results are not specific to input file, we ran the experiment again on
two additional files. The original file contained CTCF data with an average region length
of 301 bp, and the other two files contain DNA methylation data and DNAse-seq data,
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with average region length of 1161 bp and 150 bp, respectively. These therefore reflect a
variety of data types and region sizes. The three files experiment shows that, in general,
the original analysis results hold across all three input files: coverage is most sensitive to
shift; jaccard is most sensitive to add and drop; Euclidean distance is least sensitive overall;
etc. (Additional file 1: Figure S2). However, this analysis also reveals an interesting obser-
vation that the metrics do behave differently for the different files. Most pronounced, we
observe that different region length in the two new files caused results to vary in all of
the shift perturbation combinations, especially for the coverage score (Additional file 1:
Figure S2, Scenario 1). The file with the highest similarity score decrease was the file with
the smallest average region length, while the file with larger regions had a less pronounced
sensitivity to shift. This reflects the constant shift distance across the files, so the file with
the smallest region length would be the most likely to have regions shifted further from
their original locations. In conclusion, specific similarity results are clearly affected by
input file, but general sensitivity trends among metrics hold across input files.

Experiment 4: Testing across universes

In addition to the multiple file analysis, we also wanted to see if the universe choice
would impact the results. We chose to use three subsets of the SCREEN universe: CTCF
sites only, promoter-like sequences (PLS), or DNase-H3K4me3 sites, and re-ran the anal-
ysis using the original file, but switching the universe (Additional file 1: Figure S3). We
observed that the coverage and Jaccard scores were invariant across the three universes
under the same operations, whereas Euclidean distance and cosine similarity varied sig-
nificantly. This is expected, as the coverage and the Jaccard scores are not vector-based
similarity measures, while Euclidean distance and cosine similarity are, and therefore
depend on the chosen universe. If the universe does not encapsulate the regions in the
file we are perturbing, then the Euclidean distance and cosine similarity score will be less
accurate. In addition, we noticed that as the size of the universes decreased, Euclidean
distance and cosine similarity became more sensitive. This can be explained by the pro-
portion of vector components that change. When the dimension of a vector is smaller,
one component of the vector changing due to an add, drop, or shift will cause the vector
to change proportionally more.

In Scenario 6, we observe an interesting anomaly, that for the Euclidean distance, the
slope turns positive, indicating that when adding regions is held constant, dropping more
regions actually increases similarity between the files. This counterintuitive result can be
explained by the possibility of dropping regions that were just added. In most cases, this
is not a problem because the probability of dropping regions that were just added is low;
however, in very specific situations, such as this particular scenario in our study, this effect
can occur. The effect would be most pronounced when universes are very different from
the query file, because the add operation is adding regions unlikely to be in the original
file, making it more likely that drop will drop something that’s different from the original
file, increasing similarity. Also, it makes sense that this is more pronounced when add is
higher, because it increases probability of dropping a region that is different. Further, we
can explain that it only occurs for Euclidean distance, not for cosine distance, because
for widely divergent universes, when adding lots of new unrelated dimensions, cosine
distance is unaffected, as the angle between two vectors is only calculated on the basis
of dimensions present; in contrast, Euclidean distance explodes. This result emphasizes



Gu et al. Genome Biology (2021) 22:238 Page 8 of 14

the importance of choosing an appropriate, fitting universe for vector-based approaches;
if the universe is not a good reflection of the underlying data, then distance metrics may
potentially behave counterintuitively, particularly for the Euclidean distance.

Conclusion

In this paper we present Bedshift, a new tool to help researchers evaluate the effective-
ness of region set similarity metrics. Similarity scoring metrics and tools are becoming
increasingly common, and it is important to know how each tool performs on different
datasets. Bedshift is a way to generate new BED files with perturbations such as shifted
regions, added regions, dropped regions, and more.

Our results provide an initial analysis to compare different similarity scoring metrics.
In our study design, we considered scores that measure differences among similar region
sets, as opposed to scores that test a hypothesis that region sets are independent. Our
results inform about the relative performance of these metrics. The key conclusion is
that similarity scores have unique sensitivities to types of perturbation. One key caution
is that a metric that is more sensitive will more quickly reach a saturation point; at this
stage, the metric becomes unreliable. In our analysis, we did not identify a global “best”
metric, but each metric is likely to be more appropriate depending on use case. For exam-
ple, Euclidean distance and cosine similarity were generally the least sensitive overall and
would therefore be more useful for measuring similarities between distant region sets.
Overall, the Jaccard score seemed to be the most sensitive, and may therefore be most
useful for highly similar region sets. It also showed consistency in the slope decrease
across multiple levels of perturbation. The coverage score would be most appropriate for
detecting slight shifts. Discovering the performance of these different similarity metrics
showcases a powerful use for Bedshift, as it has allowed us to discover pros and cons of
different similarity metrics.

Our analysis leads to several directions for future work. First, it is possible that the
universe-based measures would behave differently depending on the universe used to
construct the vectors. More work needs to be done to explore optimal ways for con-
structing universes, which would benefit vector-based similarity metrics. Second, it will
be interesting to explore the behavior of new similarity metrics. Finally, similarity scor-
ing methods could be combined for increased confidence in results. In addition, future
work could extend Bedshift to address additional questions. For example, Bedshift does
not consider strandedness in perturbations, but adding strand-aware perturbations would
allow testing how strand-aware similarity metrics behave. There could also be a new
perturbation that flips the strand. Another extension is a perturbation similar to Bed-
Tools shuffle that moves regions to completely new locations in the genome, but does
not change their length. Finally, we are working on ways to increase efficiency of the shift
operation, which currently is the slowest operation because it iterates over and edits each
region. Bedshift will be a helpful tool going forward as we develop and evaluate new ways
to measure similarity of region sets.

Methods

Data set

The 3 query files used as the original file, which is then perturbed with Bedshift are all
from the ENCODE consortium: (1) CTCF TF ChIP-seq on human HCT116 (primary file,
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ENCFF549PGC); (2) K4me3 Histone ChIP-seq on human GM12864 (ENCFF749NUK);
and (3) DNase-seq on human stromal cell of bone marrow (ENCFF409URA).

The 4 universe region sets used in this analysis are from the SCREEN ENCODE
database: (1) GRCh38-ccREs (Primary universe); (2) DNase-H3K4me3, defined by the
ENCODE project as “high H3K4me3 max-Z scores but low H3K27ac max-Z scores and
do not fall within 200 bp of a TSS”; (3) CTCF-only; and (4) PLS, promoter-like sequences.
See the SCREEN database documentation for further details.

Bedshift operations

The order of operations is shift, add, cut, merge, and drop. From the command line
interface, a call to bedshift will use the all perturbations function to run up
to all 5 perturbations, then output the file either in a user specified location using the
--outputfile option, or in the same directory with the original filename prepended
with bedshifted . From the Python API, the user has more flexibility to call the per-
turbations individually, or use the same all perturbations function. Bedshift stores
the state of the BED file in a Pandas dataframe, and each perturbation operates on the
result of the previous one, which is why the order is important. When using the Python
AP], the state of the BED file can be reset to its original state using the reset bed ()
method.

Shift

Using the rate parameter as a proportion of the total number of regions in the BED file, a
subset of regions to shift is chosen from the BED file. The start and end position of each
of these regions is adjusted by the same distance. The distance is chosen from a normal
distribution (--shiftmean, - -shiftstdev), which defaults to N(0, 150). In order
to use shift, a genome file containing chromosome lengths must be provided with the
- -chromosome-1lengths option, to ensure that regions are not shifted off the ends of
chromosomes.

Shift from file

Shift from file uses a file specified through --shiftfile to determine which regions
to shift. If pyranges tool is available on the user’s machine, then --shiftfile will
consider only intersecting regions as candidates to be shifted. Otherwise, only regions
that are exact matches will be candidates for shifting.

Add

The number of regions to add is determined from the rate parameter as a proportion of
the total number of regions in the BED file. For each added region, first a chromosome
is chosen with proportional odds to the length of each chromosome; then a start posi-
tion is chosen anywhere along the chromosome; then a length is computed based on a
normal distribution defaulting to N(320, 20) (- -addmean, - -addstdev) and added to
the start position to arrive at the end position. In order to use add, a .fasta file containing
chromosome lengths must be provided with the - -chromosome - lengths option.

Add from file

Instead of adding randomly generated regions, the user can specify a file to the
--addfile option which contains candidate regions to add. From these regions, a
number of them is chosen based on the rate parameter and added to the file.
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Add in valid regions

Another way to add regions is to specify a file with valid regions where random new
regions can be added. The option is called - -valid-regions. The user would use this
option instead of - -addfile if they wanted to add more random regions instead of spe-
cific regions from a file, but wanted to restrict these to certain valid areas of the genome.
The valid regions file could contain very large areas of the genome such as introns or
promoters. Random region generation works the same as the basic add operation, but
restricts the chromosomes and regions to the ones specified in the - -valid-regions
file.

Cut

Using the rate parameter as a proportion of the total number of regions, the regions to cut
are determined. For each of these regions, the cut is made at the midpoint of the start and
end position, creating two new regions. The original region is dropped from the BED file.

Merge

Using the rate parameter as a proportion of the total number of regions, the regions to
merge are determined. For each of these regions, they are merged with the next subse-
quent region in the BED file if they are both on the same chromosome by taking the start
position of the first region and the end position of the second region. We recognize that
this method has the potential to create very large regions.

Drop

Using the rate parameter as a proportion of the total number of regions, the regions to
drop are determined. They are simply removed from the BED file.

Drop from file

Similar to add from file and shift from file, drop from file uses a file specified through
--dropfile to determine which regions to drop. If pyranges tool is available on the
user’s machine, then - -dropfile will consider only intersecting regions as candidates
to be dropped. If those tools are not available, then only regions that are exact matches
will be candidates.

Seed

Sometimes, users may wish their Bedshift perturbations to be identically reproducible.
Assuming every other operation remains constant, setting the same integer-valued seed
through - - seed will allow Bedshift to produce identical perturbations.

Bedshift file generation

We ran the bedshift experiments by specifying each experiment as a Portable Encapsu-
lated Project [33]. We specified each perturbation parameter set as a row in a CSV file
using the same 4 columns (sample_name, shift, add, and drop; Supplemental Table S1).
The normal distributions used in shift and add are the default parameters. We leveraged
the Looper tool (http://looper.databio.org) to create hundreds of perturbation replicates,
with looper constructing a Bedshift command with the specified shift, add, and drop from
the CSV table. Details and scripts used in the analysis can be found in the documentation
for bedshift.
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Jaccard score
The first metric was the Jaccard score based on overlapping regions between two BED
files, computed by the formula

|A N B
|AUB|

(1)

where A and B are the two BED files. Any region with at least 1 base pair overlap was
counted in the total number of overlaps. Overlaps were computed using Augmented
Interval List (AIList) [34].

Coverage score

The BedTools coverage function was used, which takes in two BED files and uses the
first one as the reference region set to determine coverage for each region in the second
BED file [31]. A normalization technique was applied to assign coverage scores to every
region in both files. First, BedTools coverage (in the Python wrapper PyBedTools) was
run with the perturbed file as the first argument and the original file as the second. No
additional arguments were provided other than the two files. Then the files were passed as
arguments to the coverage tool in the opposite order, in order to account for coverage in
regions across both files. This produced a coverage score between 0 and 1 for each region
in both the original and the perturbed file. To get the final similarity score, the mean was
taken of coverage values for every region in both files:

(ECovemge(A,B)i N Z‘Covemge(B,A)i) /2 (2)

Al B

where A and B are the two BED files and Coverage is the BedTools coverage score.

Euclidean distance

In vector-based similarity methods, a standard vocabulary was needed to represent each
region as a position in the vector. To do this, a “vocabulary,” or a universe, was used. For
our primary analyses, we used the general set of regulatory elements from the SCREEN
database ([32]). We also tested other universes in the universe experiment. When casting
new files into the universe to create a vector, if a region in the new file overlapped with a
universe region, then that index in the vector was set to 1. Therefore, each BED file was
represented by a vector of 0’s and 1’s. The Euclidean distance is defined as

VE(A; — B)? ®3)

where A and B are the two vectors representing the BED files. A normalized Euclidean
distance was calculated by dividing by the maximum distance of two vectors (a vector of
all 0’s and a vector of all 1’s), which was 518.02. That value was subtracted from 1, because
a smaller normalized distance indicates a higher similarity.

Cosine similarity
The same vectorization technique and vectors used for the Euclidean distance metric
were also used for the cosine similarity analysis. The cosine similarity is defined as

A-B

JATIBI @
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where A and B are the two vectors representing the BED files. In vector space, the closer
two vectors are, the closer their cosine is to 0. Thus, the resulting cosine score was
subtracted from 1 to get the final similarity score.

Similarity score change

The change in similarity was measured by taking the difference between the highest and
lowest score in the perturbation level (for example, the score difference between add 0.1
and add 0.3 using the Jaccard score was 0.15). For groups of 9 perturbation parameters,
such as increasing shift from 0.1 to 0.3 while holding add constant at 0.1, 0.2, and 0.3, the
three scores from the levels of add were averaged.

Supplementary Information
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