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Abstract

Background: Akkermansia muciniphila is a human gut microbe with a key role in the
physiology of the intestinal mucus layer and reported associations with decreased
body mass and increased gut barrier function and health. Despite its biomedical
relevance, the genomic diversity of A. muciniphila remains understudied and that of
closely related species, except for A. glycaniphila, unexplored.

Results: We present a large-scale population genomics analysis of the Akkermansia
genus using 188 isolate genomes and 2226 genomes assembled from 18,600
metagenomes from humans and other animals. While we do not detect A.
glycaniphila, the Akkermansia strains in the human gut can be grouped into five
distinct candidate species, including A. muciniphila, that show remarkable whole-
genome divergence despite surprisingly similar 16S rRNA gene sequences. These
candidate species are likely human-specific, as they are detected in mice and non-
human primates almost exclusively when kept in captivity. In humans, Akkermansia
candidate species display ecological co-exclusion, diversified functional capabilities,
and distinct patterns of associations with host body mass. Analysis of CRISPR-Cas loci
reveals new variants and spacers targeting newly discovered putative
bacteriophages. Remarkably, we observe an increased relative abundance of
Akkermansia when cognate predicted bacteriophages are present, suggesting
ecological interactions. A. muciniphila further exhibits subspecies-level genetic
stratification with associated functional differences such as a putative exo/
lipopolysaccharide operon.

Conclusions: We uncover a large phylogenetic and functional diversity of the
Akkermansia genus in humans. This variability should be considered in the ongoing
experimental and metagenomic efforts to characterize the health-associated
properties of A. muciniphila and related bacteria.
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Introduction
The human body is home to several distinct microbiomes which represent functionally

and phylogenetically diverse microbial ecosystems that are key for human health [1–3].

A frequent and abundant inhabitant of the gut microbiome is Akkermansia mucini-

phila, a Gram-negative, non-motile anaerobic bacterium specialized in the degradation

of mucin [4]. A. muciniphila can utilize mucin as its sole carbon and nitrogen source

[4]; thus, growth in its natural habitat is not directly dependent on the influx of dietary

compounds. A. muciniphila continues to attract attention due to its association with

host health: the relative abundance of A. muciniphila is inversely correlated with obes-

ity in humans [5, 6], and it was shown to alleviate insulin resistance and obesity while

increasing gut barrier function in a mouse model of diet-induced obesity [7]. Its poten-

tial as a next-generation probiotic in the battle against metabolic disorders was con-

firmed in a first intervention trial targeting humans with metabolic syndrome and

obesity [8].

The human microbiome hosts a vast bacterial diversity at the level of distinct strains

belonging to the same species (i.e., conspecific strains) [3, 9–13]. The genomic variation

of conspecific strains often exceeds 3% nucleotide variation in the core genes, and when

comparing pairs of conspecific strains, it is frequently observed that 25% of genes are

present in only one of the two, causing each human microbiome to be unique at the

strain level [3]. Importantly, this subspecies genomic variability translates into pheno-

typic variability, for example, in connection with host lifestyle [14–16] and at the im-

munological level [17, 18]. However, experimental Akkermansia research still heavily

relies on the type strain A. muciniphila MucT (ATCC BAA-835) and on a few more ge-

nomes of newly isolated strains that became available recently [19–21]. Furthermore,

only a single other species in the Akkermansia genus—A. glycaniphila (PytT, DSM

100705)—has so far been described and genomically characterized [22, 23]. There is

thus the urgent need to expand our understanding of the genomic variation and (sub)-

species diversity of Akkermansia for improving both the interpretation of its functions

and its potential use in biomedicine.

Recently, a large number of publicly available metagenomes of human-associated mi-

crobial communities have been mined to produce hundreds of thousands of

metagenome-assembled genomes (MAGs) [3, 24–26] and methods to profile and inves-

tigate strains directly in metagenomes have become increasingly effective [9, 10, 27–

29]. While these tools offer the opportunity to characterize population genomics of im-

portant but poorly characterized human-associated bacteria, only a few species have

been investigated so far at high genomic resolution and global scale [30–33].

Here, we present a comprehensive genomic characterization of Akkermansia mucini-

phila and closely related Akkermansia spp., using a total of 2226 MAGs belonging to

the Akkermansia genus, 188 publicly available isolate genomes, and 6 newly sequenced

isolate genomes. The Akkermansia MAGs were obtained by expanding our recent cata-

log of human-associated MAGs [3] with 166,518 additional MAGs from 45 different

datasets comprising samples also from mice and non-human primates for an integrated

catalog of 321,241 MAGs (see the “Methods” section). Next to the species-level clade

with the A. muciniphila type strain, we show the existence of four other Akkermansia

candidate species that colonize the human gut. These five candidate species display

strong co-exclusion within a given host, are phylogenetically stratified at the subspecies
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level, and are at the same time widely distributed across hosts, age, and geography.

Comparison of candidate species shows differential association with BMI in humans

and vitamin B12 synthesis capabilities. We also analyzed the genomic organization of

CRISPR-Cas loci (providing adaptive immunity against foreign DNA [34]) in Akker-

mansia candidate species and found these to differ in their locus architecture and spa-

cer numbers. We furthermore identified de novo assembled putative bacteriophages

with spacer hits from Akkermansia candidate species and found that viral detectability

correlates strongly with the relative abundance of cognate Akkermansia candidate spe-

cies, suggesting an intimate ecological interplay. These, and other genomic analyses in

this work, provide a solid basis for future mechanistic explorations and biomedical ap-

plications of Akkermansia.

Results and discussion
A large-scale metagenomics-based analysis of Akkermansia candidate species

In order to study the diversity of Akkermansia species in the human microbiome, we

collected all genomes available from isolate sequencing as well as MAGs from large col-

lections of metagenomic datasets and unified them into a single genomic resource. Spe-

cifically, we gathered and quality controlled 119 isolate genomes from NCBI that were

taxonomically annotated as A. muciniphila, as well as 69 labeled as Akkermansia sp. [4,

5, 19, 22, 35–41]. We further obtained 2226 MAGs taxonomically annotated to the

genus Akkermansia from a total of 18,600 shotgun metagenomes (see the “Methods”

section) sampled from multiple hosts including humans, non-human primates, and

mice. Only high-quality MAGs—defined as those with at least 90% estimated genomic

completeness and at most 5% estimated genomic contamination [42]—were included in

the analysis. We further enhanced our genome set with 6 isolate genomes [43]. The in-

tegrated Akkermansia genome resource we consider for downstream analysis thus con-

sists of a total of 2420 genomes (Additional file 1: Table S1).

Multiple under-characterized Akkermansia candidate species are present in the human

microbiome

We reconstructed the phylogeny of all genomes in our set using the 400 universal

marker genes adopted in PhyloPhlAn 3 [44–46] (Fig. 1A, the “Methods” section) in-

cluding Verrucomicrobium spinosum as an outgroup [4]. This revealed the presence of

several well-defined monophyletic clades (Fig. 1A). In addition to the previously de-

scribed A. glycaniphila species [22], these clades—following the validated species-level

genome bins (SGBs) approach based on whole-genome genetic distances [3] (see the

“Methods” section)—delineate candidate species (Fig. 1B). The candidate species are

genetically distinct, with inter-candidate species genome-wide average estimated nu-

cleotide identities generally below 90% (except between a single pair of candidate spe-

cies, Fig. 1B). We confirmed those results using genome similarity estimates obtained

using PhyloPhlAn 3 markers (Additional file 2: Figure S1). One of the five delineated

candidate species (henceforth “A. muciniphila”) includes the type strain of A. mucini-

phila (MucT) [4] as well as 108 isolate genomes. The remaining four candidate species

(SGB9223, SGB9224, SGB9227, and SGB9228) comprise not only MAGs but also iso-

late genomes that were, however, taxonomically described as A. muciniphila or
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Akkermansia spp. in NCBI. Cultivated members of the candidate species were retrieved

not only from humans, but also from mice, non-human primates, and—very rarely—

other mammals, such as elephants, horses, and reindeers [20]. A. glycaniphila was ori-

ginally isolated from a python [22], and we did not uncover new diversity for this spe-

cies in the available datasets, suggesting that A. glycaniphila is not found in mammals.

A reason for the taxonomic assignment of cultivated strains to the A. muciniphila spe-

cies and the generally underestimated diversity of the genus is probably the surprisingly

high similarity displayed by 16S rRNA gene sequences of these strains, with 16S rRNA

gene sequences of strains in different candidate species never diverging by more than

2% (Fig. 1B, the “Methods” section). Taken together, these data show that a total of five

Akkermansia candidate species exist in the human, mouse, and non-human primate

gut microbiomes, four of them remaining under-investigated and uncharacterized.

Akkermansia candidate species are enriched in humans and co-exclude within a host

We next set out to assess host specificity, co-abundance patterns, and metadata associ-

ations of the Akkermansia candidate species. To this end, we first developed a marker-

based method with increased sensitivity compared to metagenomic assembly to detect

the presence and relative abundance of Akkermansia candidate species in metagen-

omes. In brief, this was done by (1) identifying genes that were core to each of the

Akkermansia candidate species and at the same time never detected in other Akker-

mansia or non-Akkermansia species-level groups (marker genes) and (2) using these

Fig. 1 The Akkermansia genus comprises four additional candidate species phylogenetically rooted
between the already characterized A. glycaniphila and A. muciniphila. A Whole-genome phylogeny of the
2420 metagenome-assembled genomes (MAGs) reconstructed here and the genomes from isolate
sequencing available in NCBI taxonomically annotated as A. muciniphila or Akkermansia spp. The
phylogenetic tree is rooted using Verrucomicrobium spinosum as an outgroup and was built using
PhyloPhlAn 3 [46] with 400 universal markers (see the “Methods” section). SGB, species-level genome bin
(see the “Methods” section). B Within- and between-clade whole-genome average estimated nucleotide
identity (fastANI [47], top panels) and full-length 16S sequence distances (bottom panels) among
Akkermansia SGBs provide evidence that these are candidate species
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marker genes as targets for read-mapping inside MetaPhlAn 3.0 [48, 49] to estimate

their coverage and relative abundance (see the “Methods” section). By profiling the 13,

237 metagenomic samples from 98 publicly available datasets with sufficient metadata

(Additional file 1: Table S2), we found that Akkermansia candidate species differed

strongly in their prevalence across hosts. A. muciniphila is by far the most prevalent

candidate species across all hosts, being detected in 34% of adult humans and reaching

a maximum prevalence of 54% in laboratory-held mice (Fig. 2A). The other candidate

species were detected at lower prevalence (< 25%) across all hosts (Fig. 2A). Interest-

ingly, Akkermansia candidate species were found to be much more often present in

captive animals than in free-living ones: while laboratory mice and mice humanized via

microbiome transplantation are fairly likely to host A. muciniphila, SGB9224, or

Fig. 2 Prevalence and insights into the ecological and functional characteristics of Akkermansia candidate
species. A Akkermansia candidate species have variable prevalence across hosts and wild versus captive
mice and non-human primates. We computed prevalences using species-specific marker genes (see the
“Methods” section) applied on a total of 13,237 metagenomic samples. B, C Akkermansia candidate species
are strongly mutually exclusive (analysis based on 4171 Akkermansia-positive human metagenomes). D A.
muciniphila but not the other Akkermansia candidate species is associated with decreased host body mass
index (BMI) according to a meta-analysis random effect model of partial correlations adjusted for age and
sex (see the “Methods” section) comprising 3311 human metagenomic samples from 22 datasets
(Additional file 1: Table S2). E Corrin ring biosynthesis operon genes are consistently present only in
candidate species SGB9227 and SGB9228 (see the “Methods” section). F Growth analysis of the A.
muciniphila and A. glycaniphila type strains shows propionate production by PytT but not MucT in the
absence of vitamin B12. This is indicative of endogenous production of vitamin B12 (acting as a cofactor for
the methyl-malonyl CoA synthase reaction) by PytT but not MucT. G Core gene genetic distances are
correlated with corrin ring biosynthesis gene genetic distances. Pairwise distances were computed only for
strains in which all genes were found together on the same contig
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SGB9228 (up to 54% prevalence), in wild mice, solely SGB9228 was detected in only 5

mice from a single study (out of 60 mice from 3 different studies being assessed; 8%

prevalence). Similarly, merely two out of 162 samples from wild non-human primates

tested positive for any Akkermansia candidate species (1.2% prevalence). Despite poten-

tial biases due to uneven sampling and effects of diet, these data suggest a marked spe-

cificity of Akkermansia candidate species for the human gut (with the exception of A.

glycaniphila), and while strains from these candidate species can colonize mice and

non-human primates, such colonization appears to be predominantly a consequence of

man-made environments, suggesting colonization from care-taking humans as a plaus-

ible mechanism.

While Akkermansia candidate species are found in almost half of all human samples,

the presence of one is strongly anti-correlated with the others (Fig. 2B, C): it is ex-

tremely rare to detect more than one candidate species present in the same host, with

only 46 instances of two co-occurring candidate species in human metagenomes out of

4171 cases in which at least one was present (corresponding to a co-occurrence rate of

~1%), and no instance of more than two co-occurring candidate species. These five

closely related candidate species thus show a mutual exclusion pattern suggestive of

complex and possibly host-mediated ecological interactions that remain to be explored.

A. muciniphila but not the other candidate species is associated with lower BMI

The presence and abundance of A. muciniphila in the gut microbiome has been nega-

tively associated with body mass index in previous studies based on 16S rRNA gene se-

quencing [50, 51], and the link was shown to be causal in both mice and humans by

supplementation with cells of A. muciniphila MucT [7, 8]. Because of the limitations of

16S rRNA gene amplicon sequencing in distinguishing Akkermansia candidate species

(Fig. 1B), we performed an analysis on the association between relative abundances of

individual Akkermansia candidate species and BMI. We considered 3311 samples in 22

different metagenomic datasets from five continents and adjusted for age and sex in a

random effect model meta-analysis (Additional file 1: Table S3). Interestingly, only the

relative abundances of A. muciniphila were found to be significantly negatively associ-

ated with BMI, while associations of other candidate species were not statistically sig-

nificant (Fig. 2D), suggesting that A. muciniphila should be regarded as the primary

candidate for microbiota-based therapeutic interventions aimed at improving host

metabolic health (as a recent proof-of-concept trial also reported [8]).

We next tested whether available host characteristics other than BMI were associated

with Akkermansia candidate species relative abundances and also examined whether

genetic stratification by host parameters could be detected within candidate species. At

the candidate species-level, no association with age was detected, while sex (as self-

declared by the individuals) was associated with the relative abundance of A. mucini-

phila (after adjusting for age and BMI), with women harboring comparatively higher

relative abundances (P-value = 4.8e−05), as observed elsewhere [52]. To test for associ-

ations of candidate species with host metadata at the level of their internal phyloge-

nomic structure, we subsequently computed PERMANOVA statistics for all

combinations of single candidate species and host, age, geography, and Westernization

status. While some significant associations were identified (especially for A. muciniphila
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and SGB9228), the largest effect size among the significant (P-value < 0.05) tests was a

PERMANOVA R2 of 0.10 for SGB9228 with continent (Additional file 2: Figures S2,

S3, S4), suggesting that no strong associations of strain-level structure with host meta-

data are detectable.

With Akkermansia supplementation becoming available [8, 53], it is relevant to verify

that such interventions are not potentially causing microbial anti-drug resistances to

spread in the human gut. To this end, we first screened all Akkermansia genomes for

antibiotic resistance genes using the Comprehensive Antibiotic Resistance Database

(CARD) [54]. Overall, we found only 4 genes known to be involved in antibiotic resist-

ance present in more than 1% of all genomes. Among those, only adeF (encoding a

membrane protein of a drug efflux complex) is consistently found in most genomes

(prevalence of 81% over all genomes), but still never present in SGB9223, SGB9224,

nor SGB9227 (Additional file 2: Figure S5). In addition to these well-cataloged resist-

ance genes, a recent study reported the presence of 8 genes (including 3 antibiotic re-

sistance genes) in A. muciniphila strain GP36 derived from the broad-range plasmid

RSF1010 that is found in many gram-negative bacteria including E. coli [19]. We quer-

ied all genomes for the presence of this plasmid-derived sequence and found 55 ge-

nomes (2.2% overall prevalence) in which we could detect at least 50% of the sequence

of RSF1010 at 70% average sequence identity or higher. A total of 49 of the 55 in-

stances were found in A. muciniphila (2.5% prevalence in A. muciniphila). In all 55

positive cases, these genes were found on contigs larger than the plasmid (~8 kb), sug-

gesting that they may be integrated into the bacterial genome (as also reported in [19]).

Of note, the A. muciniphila type strain MucT carries no antibiotic resistance genes and

its use does not raise any antibiotic resistance concern as also indirectly confirmed by

dose scaling pilot studies in humans and toxicological studies in rabbit and other model

organisms [8, 55]; however, ongoing and future human trials with strains different from

the type strain should carefully consider their antibiotic resistance potential. In conclu-

sion, although the rare occurrence of antibiotic resistance genes from plasmid RSF1010

in some A. muciniphila genomes has evident safety implications for their use in thera-

peutic applications, our findings indicate that Akkermansia candidate species mostly

lack genetic means to defend themselves against currently used antibiotics.

Vitamin B12 synthesis capabilities were independently lost by two Akkermansia

candidate species

Due to its essential nature and limited availability in the human gut, vitamin B12 (co-

balamin) is regarded as a key element in host-microbe interactions [56]. In a recent

study, 75 Akkermansia strains were reported to differ in their potential to produce this

important cofactor [21]. We set out to characterize the vitamin B12 synthesis capabil-

ities of the Akkermansia candidate species as well as A. glycaniphila. By identifying cor-

rin ring biosynthesis genes as a proxy for vitamin B12 synthesis capability [56], we

confirm that the large majority of MAGs from candidate species SGB9227 and

SGB9228 encode most proteins involved in producing vitamin B12 (75% of SGB9227

MAGs encode all proteins except CbiA; 92% of SGB9928 MAGs encode all proteins ex-

cept CbiF), while those genes were never found in A. muciniphila, SGB9223, nor

SGB9224 (Fig. 2E). Interestingly, the more phylogenetically distant A. glycaniphila PytT
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[22] also contains 6 out of 8 corrin ring biosynthesis genes (Fig. 2E). The differential

vitamin B12 synthesis capabilities of Akkermansia spp. were successfully validated by

in vitro assays: propionate production (a proxy for vitamin B12 production, as the path-

way includes the B12-dependent methyl-malonyl CoA synthase reaction [57]) was de-

tected when growing A. glycaniphila PytT but not A. muciniphila MucT in the absence

of vitamin B12 (Fig. 2F, Additional file 2: Figure S6). The cbiA gene that we did not de-

tect in the majority of SGB9227 MAGs is not found in A. glycaniphila PytT either, sug-

gesting that this gene may not be necessary for B12 production in Akkermansia spp.

Furthermore, we detected a strong correlation between pairwise genetic distances of

corrin ring biosynthesis genes and core genes between strains of SGB9227, SGB9228,

and the singular A. glycaniphila genome (Spearman rho = 0.6, P-value <0.001; Fig. 2G),

suggesting that the B12 biosynthesis genes are ancestral to all Akkermansia candidate

species and were lost by A. muciniphila, SGB9223, and SGB9224 candidate species in

the human gut. The most likely evolutionary scenario would consist of two independ-

ent loss events: one after the most recent common ancestor of SGB9223/SGB9224 sep-

arated from the ancestor of the remaining candidate species, and another after the

ancestor A. muciniphila separated from the ancestor of SGB9228 (Additional file 2: Fig-

ure S7). Taken together, these results reveal two independent B12 synthesis loss events

in Akkermansia candidate species and indicate that new Akkermansia strains should be

studied for their potential to increase colonic vitamin B12 biosynthesis.

Akkermansia candidate species encode a novel variant of type I-C CRISPR-Cas loci

CRISPR-Cas systems are widely used by prokaryotes to fend off foreign DNA [58] and

can be exploited to alter the microbiome makeup [59]. However, they have only been

studied in detail for a limited number of bacteria, and strain-level variations have been

documented [59]. We thus screened our catalog of Akkermansia genomes and MAGs

for the presence of CRISPR-Cas loci. A great majority of genomes (68%, Fig. 3A) har-

bored at least one CRISPR-Cas locus, and while type I-C loci [61] were detected in all

Akkermansia candidate species, A. muciniphila is the only species in the genus some-

times carrying a type II-C locus (33%, Fig. 3A). In 9% of the cases, A. muciniphila

strains carried both the type II-C locus and the type I-C locus (Fig. 3A).

The structure of type I-C loci in Akkermansia candidate species differs notably from

the canonical organization [61]: Cas3, Cas5, Cas8c, and Cas7 genes are encoded in the

opposite direction of Cas4, Cas1, and Cas2, thus representing a novel variant of type I-

C CRISPR-Cas loci. The majority of loci (62.4%) contain two CRISPR arrays, one up-

stream and one downstream of the Cas gene cassette. In contrast, the type II-C loci of

A. muciniphila have the canonical structure [62] in 95% of the strains in which the

locus was detected (Fig. 3B). The presence of a type II-C locus in A. muciniphila has

no clear phylogenetic structure (Fig. 3C), highlighting a peculiar evolutionary history.

Akkermansia candidate species also differ in the total number of spacer sequences

encoded in each genome as well as the fraction of loci that contain two (instead of one)

CRISPR arrays (Fig. 3B, D). SGB9223 and SGB9228 on average contain more spacer se-

quences (median 43 s.d. 15.4 and median 36 s.d. 29.5) compared to SGB9224, which

has the lowest number of spacers (median 3, s.d. 16.4). Similarly, 91% of all genomes

from SGB9223 contain two CRISPR arrays (one upstream, one downstream of the Cas
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Fig. 3 (See legend on next page.)
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gene cassette), whereas only 23% of genomes in SGB9224 do so (Fig. 3D). Akkermansia

candidate species thus generally contain CRISPR-Cas systems, with distinct loci struc-

ture and spacer composition, indicating considerable divergence in their exposure to

foreign DNA over their evolutionary trajectory.

Newly discovered putative phages are recognized by Akkermansia CRISPR-Cas systems

and tend to co-occur with cognate candidate species

We next identified de novo assembled, putative intestinal bacteriophages in shotgun

gut viromes defining Viral Clusters (VCs, see the “Methods” section) and screened

them for the presence of Akkermansia CRISPR-Cas spacers. We found no spacer hits

against any of the known intestinal phages currently in RefSeq [63], but we instead de-

tected a total of eight VCs with spacer hits (Additional file 2: Figure S8), four of which

consistently attracted spacer sequences from at least one Akkermansia candidate spe-

cies (Fig. 3F, see the “Methods” section) which we considered for further analysis.

While some VCs exhibited hits from spacers from only one of the candidate species

(SGB9228 for M1241 or M1248), other VCs (M689) were found to attract spacer se-

quences from all candidate species. Regardless of VCs, SGB9228 genomes on average

have the highest total fraction of spacer sequences hit (Additional file 2: Figure S9).

The mapping of Akkermansia spacer sequences against VCs revealed that spacer se-

quences tend to cluster locally in the phage genome and that different locations on the

viral genome attract spacers in a species-dependent fashion (Fig. 3G, Additional file 2:

Figure S8). Furthermore, identification of the sequences directly upstream of all spacer

sequence hits allowed reconstruction of the canonical type I-C protospacer adjacent

motif (PAM) “TTC” (Fig. 3E) found in Bacillus halodurans [64]. The presence of mul-

tiple, distinct hits for some species-VC combination (Fig. 3G, Additional file 2: Figure

S8) suggests that these matches are not spurious and that many combinations of Akker-

mansia candidate species and viral clusters reflect multiple bacterium-phage interac-

tions in the intestinal environment. To further investigate potential ecological

(See figure on previous page.)
Fig. 3 The CRISPR-Cas system of Akkermansia candidate species and their viral targets. A CRISPR locus type
composition of Akkermansia candidate species. All candidate species possess CRISPR locus type I-C, with the
exception of A. muciniphila in which type II-C is present in more than 30% of the genomes. B
Representative locus organization of CRISPR loci over Akkermansia candidate species. Some type I-C loci
contain only one CRISPR array. Gene and CRISPR array lengths are scaled to correspond to the median
length over all loci. C Phylogenetic tree of A. muciniphila subspecies colored by type II-C presence. D The
total number of spacer sequences for the genomes in each Akkermansia candidate species. Type II-C loci
were only found in A. muciniphila. Numbers above the boxplots correspond to the fraction of type I-C loci
with two CRISPR arrays. E Logo plots of predicted PAM sequences in putative (phage) Viral Clusters (VCs,
see the “Methods” section) upstream of sequences with perfect matches against CRISPR spacer sequences
from type I-C loci. F Proportion of CRISPR spacers within candidate species genomes with a near-perfect
match (at most 2 mismatched nucleotides) for four VCs. The number above the box plots corresponds to
the fraction of genomes with at least one spacer hit against a given VC (see the “Methods” section). G
Mapping of spacers from Akkermansia genomes against two representative VCs, visualized with a sliding
window of 150 nt. See Additional file 2: Figure S8 for the remaining VCs. H Distribution of the relative
abundances of the Akkermansia candidate species based on the presence or absence of each cognate VC
in the metagenome (Additional file 1: Table S2, see the “Methods” section). P-values for differential
abundance were determined via two-sided Wilcoxon rank-sum tests. P-values of <0.01 were considered
significant. The numbers above the box plots correspond to the generalized fold change, with negative
numbers indicating a higher bacterial abundance when a VC is detected [60]
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interactions between Akkermansia candidate species and phages, we assessed the co-

occurrence between candidate species and the matching VCs across 13,237 metagen-

omes (see the “Methods” section). For 5 out of 10 putatively interacting pairs of VCs

and candidate species (defined as those pairs where more than 10% of genomes of the

candidate species have at least one VC-matching spacer), we found that a candidate

species is significantly more abundant (P-value <0.01) whenever the cognate VC is de-

tectable (Fig. 3F, H, see the “Methods” section). Taken together, our analysis showed

that CRISPR spacer sequences found in the genome of Akkermansia candidate species

can be frequently mapped to four putative phages that co-occur with their cognate can-

didate species, suggesting that they are ecologically interacting in the human gut.

A. muciniphila is stratified in four subspecies with different host preferences and

functional profiles

In all bacterial species, a large fraction of the phenotypic variability is encoded at the

subspecies level [5, 14–16]. We thus further focused on the intra-species genetic vari-

ation of A. muciniphila given its prevalence and relevance due to its association with

lower host BMI (Fig. 2D). We found A. muciniphila to have four monophyletic sub-

clades that we labeled Amuc1 to Amuc4 (Fig. 4A). We left strains unassigned that are

not part of one of these monophyletic subclades (accounting for 29% of all A.

Fig. 4 A. muciniphila is stratified in multiple subspecies with distinct host preferences. A Phylogenetic tree
of A. muciniphila based on a core-gene alignment built using 169 clade-specific core genes (see the
“Methods” section). The red arrow indicates the MucT type strain. B Within- and between-subspecies core-
gene nucleotide identities confirm the subspecies diversification defined on the phylogeny. C Per-host
frequency of A. muciniphila subspecies assembled from metagenomes. All 174 mouse A. muciniphila
genomes were reconstructed from stool metagenomes of laboratory mice
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muciniphila strains). The subspecies were found to have similar within-subspecies gen-

etic similarities—always exceeding 98% identity—while between-subspecies genetic

similarities range from 95.4% genetic similarity between Amuc1 and Amuc4 to 98.6%

between the more closely related Amuc2 and Amuc3 (Fig. 4B). This inter-subspecies

genetic divergence was coupled also with a diversification of the functional profiles of

the strains (Fig. 5A).

Amuc1 is the most prevalent subspecies in humans (47%), followed by Amuc2

and Amuc3 (27% and 24% respectively, Fig. 4C). To investigate whether these glo-

bal prevalences were driven by particular host factors, we studied the distribution

of A. muciniphila subspecies across host metadata (Additional file 2: Figure S10).

In addition to a significantly higher prevalence of Amuc4 in non-Westernized hu-

man populations compared to non-Amuc4 (Fisher test P-value <0.001), we found

that subspecies were differentially distributed across hosts. In particular, Amuc2

and Amuc3 are specific to humans and never found in mice and non-human pri-

mates, whereas Amuc1 and Amuc4 can be found in both humans and mice (Fig.

4C) but in different proportions, suggesting differential fitness of A. muciniphila

subspecies in mice compared to humans. Notably, all A. muciniphila genomes we

obtained from mice came from laboratory-held mice. Due to the lack of

subspecies-specific marker genes, we were unable to extend prevalence analysis to

samples lacking successfully reconstructed Akkermansia MAGs, but our data none-

theless suggests Akkermansia in mice may be acquired from humans and that there

is a strong preference of laboratory mice to acquire only the Amuc1 (to which

Fig. 5 Functional diversification of A. muciniphila subspecies and cognate exopolysaccharide/LipidA
synthesis operon. A Ordination analysis (Jaccard-distance-based PCoA using gene presence and absence
information) reveals a diversification of gene repertoires of A. muciniphila subspecies. Genes found in less
than 3% of strains were excluded. Subspecies designation is derived from the A. muciniphila phylogenetic
tree in Fig. 4. B Operon archetypes putatively involved in exopolysaccharide/LipidA synthesis in A.
muciniphila GP41 (operon archetype 1) and A. muciniphila MucT (operon archetype 2). C PCoA (same as in
A) colored by operon archetype membership. Genomes in which neither operon could be found were
labeled “Unassigned”
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MucT belongs) and Amuc4 A. muciniphila subspecies, which might have important

implications for pre-clinical mice models.

Two functionally related but distinct glycosyltransferase-rich operons are found in the A.

muciniphila subspecies

Surface glycoconjugates are known to form a species- and sometimes even strain-

specific glycan barcode, conferring bacteria with unique interaction properties [65].

Two well-conserved archetypes of a glycosyltransferase-rich operon were detected in

the same genomic location in different A. muciniphila strains (Fig. 5B, Additional file 2:

Figure S11). Both operon archetypes predominantly contain genes annotated as glyco-

syltransferases (GTs) belonging to two different CAZyme families (GT2 and GT4), al-

beit in different proportions: while archetype 1 contains five GT2 and four GT4 copies

and archetype 2 contains three GT2 and six GT4 copies. GTs belonging to these fam-

ilies are typically involved in lipo- and/or exopolysaccharide biosynthesis, which are key

in microbiota-host interactions [65]. However, despite both operon archetypes being

mostly composed of functionally related GTs, only a few pairs of proteins displayed de-

tectable but very remote sequence similarity (Fig. 5B). The two operon archetypes were

notably differentially distributed among A. muciniphila subspecies: subspecies Amuc2

and Amuc4 always possessed archetype 2 (whenever detectable), whereas strains be-

longing to Amuc1 and Amuc3 had either archetype. A. muciniphila thus encodes one

of two possibly very distantly related operons that are putatively involved in lipo/exopo-

lysaccharide (LPS/EPS) biosynthesis functions, hinting at a possible divergence of their

surface glycoconjugates as well as host-specific selective advantages.

Discussion
The possibility of extracting whole (draft) microbial genomes of sufficient quality dir-

ectly from metagenomic sequences [3, 9, 24–26, 66] together with the quickly increas-

ing availability of metagenomes from diverse populations [67] is revolutionizing the

way human-associated microbes can be studied and characterized [30–33]. Exploiting a

combined set of over 18,600 metagenomic samples from multiple hosts, we studied the

population genomics and genetic characteristics of bacterial strains belonging to the

Akkermansia genus. While A. muciniphila is recognized as a keystone species of the

human microbiome, current biomedical and translational research is still driven by the

type strain MucT [4], thus neglecting the genomic and phenotypic variability of conspe-

cific strains as well as of closely related species. Previous comparative genomic efforts

were able to survey only a fraction of the diversity in the Akkermansia genus we de-

scribe here due to the limited availability of isolate genomes [19, 20, 39]. At the same

time, we extended similar ongoing work using MAGs for this genus [68] with a larger

genome set and more diverse metagenomic sample set including non-human hosts,

allowing us to explore aspects such as the association of Akkermansia abundances with

phenotypes (particularly with respect to BMI), the in-depth analysis of some of its gen-

etic features such as the machinery for vitamin B12 synthesis and a novel LPS/EPS op-

eron, and the discovery of bacteriophages likely interacting with Akkermansia in the

human gut.
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Our analysis of 2420 Akkermansia genomes delineates four candidate species in

addition to the well-defined A. muciniphila species. The five candidate species are

prevalent in the human gut microbiome and are found in other mammals such as mice

and non-human primates almost exclusively when living in man-made environments,

suggesting that all Akkermansia candidate species are specifically adapted to the human

gut. All candidate species have very high pairwise sequence similarity of the full-length

16S rRNA gene (> 98%) and substantially lower whole-genome similarity (< 90% for all

pairs except SGB9223 and SGB9224). These unusual genomic characteristics are likely

the reason why the diversity of the Akkermansia genus has been overlooked by exten-

sive 16S rRNA gene amplicon sequencing surveys in the past. Most bacterial species at

<95% genomic similarity have >3% divergence of the 16S rRNA gene [3], and the sub-

stantially different pattern observed in Akkermansia might suggest rapid genomic diver-

sification of these clades in humans.

A potential instance of adaptive evolution in Akkermansia emerging from our ana-

lysis could be the loss of vitamin B12 synthesis capabilities that likely occurred inde-

pendently in the ancestors of two candidate species. Vitamin B12 promotes symbiotic

metabolic relationships between gut microbes [56]. Notably, a bidirectional syntrophy

has been described between A. muciniphila MucT and Anaerobutyricum soehngenii

(formerly known as Eubacterium hallii [69]), with MucT converting mucin into oligo-

saccharides and acetate which are used by the butyrate-producer Anaerobutyricum

soehngenii, in turn providing (pseudo)vitamin B12 to enable propionate production by

MucT [70]. Hence, loss of vitamin B12 synthesis genes might have been metabolically

favorable for Akkermansia candidate species SGB9223/9224 and A. muciniphila given

the potential to syntrophically interact in this way with other species. Our results war-

rant future investigations also at the level of subspecies clades: for example, the pres-

ence of one of the two putative LPS/EPS operons we described in A. muciniphila may

be driven by host-microbe interactions and host-specific factors such as diet or

lifestyle.

Experimental efforts to investigate Akkermansia-host interactions that are currently

fueled by findings of their potential role in biomedical settings (ranging from obesity

[5–8] to cancer treatments [71, 72]) should consider some aspects of the genus-wide

genomic diversity we are reporting here. For example, only A. muciniphila was con-

firmed in our analysis to be associated with decreased BMI and it is possible that the A.

muciniphila subspecies might also display different strengths of association. Moreover,

the limitations of animal-based experimental approaches should be particularly consid-

ered for Akkermansia: our finding that no Akkermansia candidate species is consist-

ently detected in wild mice and primates may indeed suggest that these animals are not

natural hosts for Akkermansia, and raises the question whether host-Akkermansia in-

teractions can be meaningfully recapitulated in mice. Similarly, we obtained MAGs

from only two out of four A. muciniphila subspecies from mice, suggesting that not all

subspecies may be well adapted to the mouse gut, which has important implications for

in vivo experiments. Further delineation of subspecies through bacterial isolation or

single-cell sequencing will be required to answer this question conclusively.

The ecology of Akkermansia may however be driven not only by aspects of host fit-

ness, as interaction with bacteriophages also potentially contribute to shaping the popu-

lation structure and diversity of this microbe. While no known phages have been so far
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linked with Akkermansia as a host, we identified at least four putative phages from gut

viromes and gut metagenomes that display genomic regions recognized by spacer se-

quences in CRISPR-Cas loci in a species-specific manner. These putative phages also

tend to co-occur with their cognate candidate species. Understanding the mechanisms

of interaction between these phages and their targets could be an important experimen-

tal step in order to develop intervention strategies to modulate the presence and abun-

dance of Akkermansia candidate species in the gut.

Our work provides a large-scale strain-level analysis of Akkermansia that can be the

basis for future further investigations of this genus. We also further highlighted the po-

tential of metagenomics-based investigations of bacteria of the human microbiome,

which is particularly important given that most bacterial species have very little gen-

omic information available from cultivation efforts. In our work, we also introduced

new analysis types for MAG-based investigations complementing those already per-

formed on other bacteria such as Eubacterium rectale [31], Prevotella copri [30], Rumi-

nococcus gnavus [32], and Faecalibacterium prausnitzii [33]. Further extending and

applying this approach to the hundreds of species in the human microbiomes will be

crucial to better understand the bacterial constituents of human-associated microbial

ecosystems.

Material and methods
Collection and taxonomic annotation of Akkermansia sp. genomes

The Akkermansia genomic sequences used in this work were retrieved from four

sources: (i) newly sequenced Akkermansia genomes from cultivated strains [43], (ii)

publicly available isolated genomes from NCBI (downloaded as of March 2020) that

were labeled as Akkermansia muciniphila or Akkermansia sp., (iii) metagenome-

assembled genomes (MAGs) coming from a collection of metagenomes from human

microbiome by Pasolli et al. [3], and (iv) 166,518 additional MAGs reconstructed from

9172 metagenomes (Additional file 1: Table S4) obtained with a validated assembly-

based pipeline similarly to Pasolli et al. [3].

For the 166,518 additional MAGs reconstructed specifically for this work, the meta-

genomes were assembled using metaSPAdes [73] if paired-end metagenomes were

available, and MEGAHIT [74] otherwise. In both cases, default parameters were used.

Contigs longer than 1500 nucleotides were binned into MAGs using MetaBAT2 [75].

We assigned MAGs to previously defined species-level genome bins (SGB) (Pasolli

et al. [3]) based on whole-genome nucleotide similarity estimation using Mash [76] and

only MAGs falling in the SGBs belonging to the Akkermansiaceae family were further

considered. We then quality controlled the MAGs and genomes using checkM (version

1.1.3) [42] and kept genomes estimated to be high-quality according to genomic com-

pleteness >90% and genomic contamination <5%.

The above procedure resulted in a total of 2420 Akkermansia genomes being consid-

ered in this work (http://segatalab.cibio.unitn.it/data/Akkermansia_Karcher_et_al.html):

188 isolate genomes from NCBI (119 labeled as Akkermansia muciniphila and 69 la-

beled as Akkermansia sp.), 2226 MAGs, and 6 novel genomes coming from strains iso-

lated from the human gut. The 2420 genomes were assigned to a total of five candidate

species which includes the already recognized Akkermansia muciniphila species and
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four additional SGBs: SGB9223, SGB9224, SGB9227, and SGB9228 as summarized in

Table 1.

Identification and comparison of the 16S rRNA genes from genomes and MAGs

16S rRNA genes were identified using Barrnap (version 0.9) with default parameters.

We only considered extracted 16S rRNA gene sequences longer than 1000 nucleotides.

We retained a total of 445 16S rRNA sequences (255 from isolate genomes and 190

from MAGs). Mapping all these sequences against the NCBI’s 16S rRNA gene set iden-

tified 11 outlying 16S rRNA genes that had >98% whole-gene identity to a 16S rRNA

gene of a family other than Akkermansiaceae, which we removed. We then aligned the

sequences using mafft (version v7.471, [77]) with parameters: --quiet --anysymbol

--localpair --maxiterate 1000) and computed pairwise edit distances between all

sequences.

Genome annotation and gene clustering

We detected and annotated ORFs on all genomes using Prokka (version 1.14) [78].

Coding sequences (CDS) were then assigned to a UniRef90 cluster [79] by per-

forming a Diamond search (version 0.9.24) [80] of the CDS against the UniRef90

database (version 201906) and assigning a Uniref90-ID if the mean sequence iden-

tity to the centroid sequence is over 90% and if it covers more than 80% of the

centroid sequence. Protein sequences that could not be assigned to any UniRef90

cluster were de novo clustered using MMseqs2 [81] following the Uniclust90 cri-

teria [82].

Whole-genome phylogenetic analysis

The phylogenetic analyses were performed with PhyloPhlAn3 [46], using either 400

universal marker genes when applied on the 2420 Akkermansia genomes or core genes

when applied to each separate candidate species. Core genes of an Akkermansia candi-

date species were those ORFs whose assigned UniRef90 annotation (or de novo clus-

tered gene family) was present in at least 80% of the genomes of the candidate species.

The number of core genes varied across candidate species, with 1131 for SGB9223, 799

for SGB9224, 996 for SGB9228, and 169 for A. muciniphila. The phylogenies were ob-

tained using PhyloPhlAn 3.0 using the following flags, in both cases, universal markers

and specific core genes: “--force_nucleotides --trim greedy --fast --diversity low”. The fol-

lowing tools with their specific parameter are used inside the PhyloPhlAn3 framework,

diamond was used over blast to generate the database when the database sequences

were in proteins:

Table 1 Summary of the number of genomes per candidate species

SGB9223 SGB9224 A. muciniphila SGB9227 SGB9228 Total

MAGs 29 93 1802 4 298 2226

Isolate genomes (NCBI) 66 3 108 2 9 188

Isolate genomes (generated) 0 0 6 0 0 6

Total 95 96 1916 6 307 2420
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– diamond (version v2.0.2.140, [80]) with parameters: makedb (to generate the

database), “blastx --quiet --threads 1 --outfmt 6 --more-sensitive --id 50 --max-hsps

35 -k 0” (to map the dna) and “blastp --quiet --threads 1 --outfmt 6 --more-sensitive

--id 50 --max-hsps 35 -k 0 ”

– blast (version 2.10.1+, [83, 84]) with parameters: “makeblastdb -parse_seqids

-dbtype nucl and blastn -outmft 6 -max_target_seqs 1000000”

– Mafft (version v7.471, [77]) with parameters : “--quiet --anysymbol --localpair

--maxiterate 1000”

– trimal (v1.4.rev15 build[2013-12-17], [85]) with parameters: “:-gappyout”

– RAxML (version 8.2.12, [86]) with parameters: “-p 1989 -m GTRCAT -x 1989 -#

100 -f a”

Relative abundance estimation of candidate species

In order to estimate the presence and relative abundance of the Akkermansia candidate

species, we extended the database of unique marker genes of MetaPhlAn 3.0 [49, 87]

with those of the newly defined Akkermansia candidate species. Unique marker genes

were defined starting from the core genes of each of the 5 Akkermansia candidate spe-

cies identified on the clustered gene families described above. Core genes of each

Akkermansia candidate species were divided into 150 nucleotide fragments and then

aligned against the genomes of all SGBs including both the other Akkermansia candi-

date species as well as the whole set of bacterial and archaeal SGBs defined in Pasolli

et al. [3] using bowtie2 (version 2.3.5.1; --sensitive option) [88]. A core gene was con-

sidered present in a genome if at least one of the gene’s fragments was mapping against

it. Core genes never found in more than 1% of the sequences included in any other

SGBs were selected as marker genes, obtaining 39, 22, 115, 100, and 135 species-

specific unique markers for SGB9223, SGB9224, SGB9227, SGB9228, and A. mucini-

phila, respectively. MetaPhlan 3 was then used with default parameters. The prevalence

of candidate species was defined as the percentage of samples in which the candidate

species was detected. Similarly, the prevalence of the Akkermansia genus was defined

as the percentage of samples in which at least one of the candidate species could be

detected.

Covariation among candidate species

Covariation among relative abundances of Akkermansia candidate species was assessed

in 4171 human metagenome samples in which at least one of the candidate species was

detected (out of the 11,014 metagenomes from humans, Additional file 1: Table S2) by

performing pairwise Spearman’s correlations (cor.test in the stats R package [89]). We

corrected for multiple testing using the Benjamini-Hochberg procedure at 10% FDR.

Association between candidate species and metadata parameters

The association between relative abundances of Akkermansia candidate species and

host BMI, age, and gender was analyzed in 3311 human metagenomic samples from 22

datasets in which this information was available (Additional file 1: Table S3). For con-

tinuous variables (age and BMI), Spearman’s correlations were computed using the

pcor.test function from the ppcor R package [90] controlling for the remaining
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covariates. Resulting correlations were used as input in the metacor function from the

meta R package [91] using Fisher’s Z transformation of correlations and the Paule-

Mandel estimator of between-study variance in the random effects model. For categor-

ical variables (sex), an ordinary least squares (OLS) model was first used to adjust for

age and BMI. Statistical significance (Wald test) and effect sizes (standardized mean

difference) of the associations were extracted from the sex beta coefficients. Resulting

effect sizes were inverse-variance averaged using the Paule-Mandel estimator of

between-study variance as implemented in the statsmodels python library [92] and cus-

tom code. We corrected for multiple testing using the Benjamini-Hochberg procedure

at 10% FDR.

Identification of corrin ring biosynthesis genes

Anaerobic corrin ring biosynthesis gene names were obtained from [93]. Corresponding

KEGG Orthologs (KOs) were then identified in the clustered gene sequences (see

above) using KOFAM [94]. Only those hits that passed the optimized bit-score cutoffs

from KOFAM were considered. We found a total of 316 genomes with at least one sig-

nificant hit.

Determination of vitamin B12 utilization and production by A. muciniphila and A.

glycaniphila

The type strains A. muciniphila MucT (ATCC BAA-835) and A. glycaniphila PytT

(DSM 100705) were grown in minimal bicarbonate buffered medium supplemented

with 0.6% threonine, 30 mM 3:1 Glc:GlcNAc, and a vitamin mixture with and without

added vitamin B12 [95]. Cultures were inoculated with a preculture produced on

mucin-supplemented medium. At several time points (0, 3, 8.5, 21, 28, 33, 48 h), a 1-

mL sample was collected to measure cell density (OD 600nm) and determine propion-

ate concentration as a proxy for vitamin B12 production. Substrate utilization and me-

tabolite production were quantified on a Thermo Scientific HPLC system equipped

with an Agilent Metacarb 67H 300 × 6.5 mm column. The column was kept at 45°C,

running 0.005 M H2SO4 eluent at a flow rate of 1 mL/min. Detection was performed

using a refractive index detector. All measurements were performed in duplicate.

LPS operon identification

The pangenome of A. muciniphila was reconstructed using the UniRef90 assignments

and complemented with the de novo clustered gene families (see above). Pan-genes

were then also annotated with CAZy using a local dbCAN distribution [96] (database

version V9 with suggested E-value and HMM coverage cutoffs of 1E−18 and 0.35, re-

spectively). We specifically focused on the differential copy number and distribution of

the glycosyltransferase enzymes class 2 and 4 (GT2/GT4) in the A. muciniphila ge-

nomes. We observed two groups within this set of genes that were co-present and mu-

tually exclusive in genomes, suggesting a large structural variation and operon-type

distribution of genes. We then determined the two putative archetypes by manual in-

spection of gene distribution and order on isolate genomes. Finally, the detected di-

chotomy was confirmed by performing BLAST on operon genes (including bordering
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genes from the isolate genomes) against all genomes and observing their presence/ab-

sence (Additional file 2: Figure S11).

CAZy annotation and gene clustering

dbCAN2 ([97], database version 07312020) was used to annotate centroid sequences of

gene clusters (see above) with Carbohydrate-Active enZYmes (CAZY) information [98].

dbCAN2 was used with default parameters, and hits with an E-value >10E−15 and

those that covered less than 35% of a given dbCAN2-HMM were removed.

Retrieval of CRISPR spacers in viruses from metagenomes and viromes

Metagenomes enriched for virus-like particles (i.e., viromes) were retrieved through

SRA [99] from 708 samples from five studies [100–104]. Samples were uniformly pre-

processed with TrimGalore version 0.4.4 [105] to remove low quality and short reads

(Phred quality <20, read length < 75; parameters: --stringency 5 --length 75 --quality 20

--max_n 2 --trim-n). Reads aligning to the human genome (hg19) were identified and

subsequently removed via mapping with Bowtie2 version 2.4.1 [88] in global mode.

Raw reads were assembled with metaSPAdes [73] version 3.10.1 (k-mer sizes: -k 21,33,

55,77,99,127). The efficacy of viral enrichment of each virome was evaluated with Viro-

meQC [106], and 126 out of 708 samples had an enrichment higher than 50-fold. Con-

tigs (a) longer than 1500bp; (b) originating from highly enriched viromes (i.e.,

enrichment ≥ 50x); (c) found binned in the same Species-level Genome Bin [3] in less

than 30 metagenomes; and (d) found in the unbinned fraction of more than 20 meta-

genomes [3] were retained as putative viral contigs. After this, contigs originating from

non-highly enriched viromes with a high sequence similarity were added to the collec-

tion (BLAST identity ≥ 80%, length ≥ 1000 nucleotides, by using BLAST, version 2.6.0

[107]). Sequences homologous to the virome-derived contigs were searched in

unbinned contigs of Pasolli et al. with mash version 2.0 [76], and contigs with a dis-

tance lower than 10% (p-value ≤ 0.05) to any viral contig were added to the collection.

Finally, we added 699 full genomes of taxonomically annotated gut bacteriophages from

RefSeq, release 99 [63] that were also found in at least 20 metagenomes of the

unbinned fraction of Pasolli et al. [3].

Putative viral contigs were then clustered at 70% identity with VSearch version 2.14.2

[108] (parameters --cluster_fast --id 0.7 --strand both) and further grouped if they

shared more than one third of their sequence at 90% sequence identity or more to pro-

duce 1345 “Viral Clusters” (VCs) that were further analyzed.

CRISPR arrays and Cas genes were predicted using CRISPRCasTyper version 1.2.1

(default parameters) [62]. In order to understand potential interaction of candidate spe-

cies and VCs, we aligned spacer sequences against VCs with BLAST version 2.2.31 (pa-

rameters -task blastn-short -gapopen 1 -gapextend 2 -penalty -1 -reward 1 -evalue 1

-word_size 10). Near-perfect matches were defined as matches with an edit distance ≤

2. CRISPR-Cas loci structures were plotted using DNA Features Viewer version 3.0.3

[109]. Sequence logos were generated using Logomaker version 0.8 [110]. We used

spacers from orphan as well as non-orphan CRISPR arrays for all spacer-based analyses

(Fig. 3D, F–H). For subsequent analysis, we considered only those four VCs where at
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least 5% of the genomes of a given candidate species had at least one spacer sequence

with a hit.

In order to detect the presence of a VC in a metagenome, we mapped a total of 13,

381 gut metagenomes against VC contigs with Bowtie2 [88] version 2.4.1 in global

mode. Breadth and depth of coverage were evaluated for each VC with bedtools version

2.29.1 [111] (genomecov command, default parameters). Only alignments with a Bow-

tie2 alignment score (AS:i tag) greater than −50 were considered. A VC was considered

detected if at least one sequence in the cluster had a breadth of coverage of at least

50%. Differential abundance of VCs in subspecies was assessed with two-sided Wil-

coxon rank-sum tests. P-values of < 0.01 were considered significant.
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