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Abstract

Background: Understanding the genetic architecture of temperature adaptation is
key for characterizing and predicting the effect of climate change on natural
populations. One particularly promising approach is Evolve and Resequence, which
combines advantages of experimental evolution such as time series, replicate
populations, and controlled environmental conditions, with whole genome
sequencing. Recent analysis of replicate populations from two different Drosophila
simulans founder populations, which were adapting to the same novel hot
environment, uncovered very different architectures—either many selection targets
with large heterogeneity among replicates or fewer selection targets with a
consistent response among replicates.

Results: Here, we expose the founder population from Portugal to a cold temperature
regime. Although almost no selection targets are shared between the hot and cold
selection regime, the adaptive architecture was similar. We identify a moderate number
of targets under strong selection (19 selection targets, mean selection coefficient =
0.072) and parallel responses in the cold evolved replicates. This similarity across
different environments indicates that the adaptive architecture depends more on the
ancestry of the founder population than the specific selection regime.

Conclusions: These observations will have broad implications for the correct
interpretation of the genomic responses to a changing climate in natural populations.
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Introduction
Adaptation of natural populations to environmental change may either occur from

standing genetic variation or by the acquisition of new mutations. The relative import-

ance of these two paths crucially depends on the underlying adaptive architecture [1]

of the focal trait. The adaptive architecture differs from the genetic architecture, which

is inferred by QTL mapping and GWAS [2, 3], by accounting for pleiotropic

constraints as well as for the large body of deleterious mutations [4, 5].
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Selection targets (Table 1) are identified with genomic selection scans, which apply

statistical tests to detect selection signatures from population polymorphism data [7, 8].

Some selection scans assume that selection targets are shared among populations ex-

posed to the same environment, because such parallel signatures provide additional

statistical support [9–11]. Many selection targets were successfully identified with these

strategies and have contributed to our understanding of the molecular basis of adapta-

tion processes (e.g. [11–15]). It is, nevertheless, not apparent to what extent these

results can be generalized, because most adaptive traits have a polygenic basis [16, 17]

and either only small allele frequency changes [17] or non-parallel responses are

expected [1].

The key concept of polygenic adaptation is that multiple loci are contributing to the

phenotype, and rather than focusing on particular loci, the collective effect of all loci

needs to be considered to estimate the phenotypic value of a given trait. The infinitesi-

mal model [18–20] is the most extreme case of polygenic adaptation and is frequently

approximated by very many contributing loci (Table 1), each of very small effect. When

many loci are contributing to a phenotype under stabilizing selection, any selection re-

gime changing the trait optimum will result only in very small allele frequency shifts

[17, 19] - almost impossible to detect with classic population genetic tests [21–23].

Even when these conditions are relaxed and a distribution of effect sizes with some

large effects is considered, no pronounced allele frequency changes are expected when

the populations are large and in mutation selection equilibrium: targets with large ef-

fects are segregating at low frequencies only and do not contribute much to the pheno-

typic variance of the population upon which selection is operating [24, 25]. Theory

predicts that as the pool of loci contributing to the selected phenotype becomes smaller

(i.e., a decreased mutational target), larger allele frequency changes are expected that

will be detected in population genetic analyses [26]. Therefore, traits with an intermedi-

ate number of contributing loci are particularly interesting, because the response of

these loci can be sufficiently strong to be detected in experiments while, at the same

time, being informative about polygenic adaptation: more loci are segregating in the

population than required to reach a new trait optimum (i.e., genetic redundancy).

The consequence of this genetic redundancy is that the contribution to the phenotype

can be highly heterogeneous for individual loci in differentiated populations if they vary

in frequency. This expectation nicely conforms with empirical data, mostly from QTL

studies, which find heterogeneous sets of contributing loci among different populations

Table 1 Definition of frequently used terms

Term Definition

Contributing loci Loci, which are affecting the trait irrespective of whether they are responding to
selection or not (hence we use contributing loci only in the context of genetic
architecture, but not adaptive architecture)

Selection targets A generic term for loci or SNPs, which are responding to selection (i.e. a subset of the
contributing loci)

Genomic region Describes a physical area of the genome, but does not consider possible associations
between alleles located there

(Selected) haplotype
block

Genomic region with SNPs in linkage disequilibrium that undergo correlated allele
frequency changes during the experiment; it is the smallest unit under selection that can
be experimentally resolved-it may contain one or multiple selected SNPs. Haplotype
blocks are identified and characterized by SNPs with a correlated allele frequency change
after multiple generations of experimental evolution [6].
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[27–36]. In the case of adaptation to a new trait optimum, genetically differentiated

populations will adapt by frequency changes of different sets of loci. Hence, for poly-

genic adaptation, the identity of individual selection targets is not very important to de-

scribe the adaptive architecture, rather information about the number of loci, effect

sizes, and frequencies is needed to understand the selective response.

Selection signatures not shared among natural populations are difficult to interpret, as

the distinction between population-specific selection targets and false positive/negative

signals can be challenging given the high impact of a largely obscure demography on selec-

tion signatures [37–42]. Experimental evolution, in contrast, provides the advantage of

replicate populations, which evolve from the same founder population under controlled

experimental conditions [43]. The potential of experimental evolution to study the gen-

omic signatures of polygenic adaptation has, however, not yet been fully exploited since

most studies apply truncating selection. Thus, the contributing loci experience continued

selection pressure throughout the entire experiment, causing a parallel selection response

in the replicate populations towards an extreme phenotype. Laboratory natural selection is

a specific experimental evolution design, where the evolving populations are exposed to a

new environment [44]. In contrast to truncating selection, populations are expected to

reach a new phenotypic optimum, thus selection depends on the distance to the trait

optimum. In combination with whole genome sequencing, it provides an interesting ap-

proach to study the adaptive architecture experimentally.

Two previous experimental evolution studies conducted in the same novel hot labora-

tory environment showed parallel fitness increase among replicates (see Additional file 1:

Figure S1), but the genomic analysis revealed very different adaptive architectures [45, 46].

In the Portugal experiment, five strongly selected targets were identified and this selection

signal was highly parallel across replicates. For the Florida experiment, 99 selection targets

were identified and considerable heterogeneity was observed between the replicates. Sev-

eral explanations for this different adaptive architecture are conceivable, including differ-

ent ancestral trait optima of the two founder populations [47], or more large effect alleles

segregating at higher frequencies in the Portugal founder population.

Here, we exposed replicate populations of the Portugal founders to a cold

temperature regime to shed more light on the different selection responses. Interest-

ingly, we found very little overlap between the genomic position of the selection targets

in the hot and cold temperature regimes. Most large effect selection targets in the hot

environment did not respond in the cold, suggesting that hot and cold temperature

adaptation may be different traits, rather than a simple shift in optimum of the trait

“temperature adaptation.” Nevertheless, adaptation to both, hot and cold, temperature

regimes had a very similar adaptive architecture—with a comparable number of selec-

tion targets and effect sizes. We conclude that the adaptive architecture differs between

populations and may be trait independent. We discuss to what extent this phenomenon

can be explained by the infinitesimal model.

Results
We studied the genetic architecture of cold adaptation in Drosophila simulans by

combining experimental evolution with whole genome re-sequencing (Evolve and

Resequence, E&R). Five replicate populations originating from the Portuguese founder

population described by Mallard F, Nolte V, Tobler R, Kapun M, and Schlötterer C [46]
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evolved for more than 50 generations (about 4 years) in a cold temperature regime with

daily fluctuations between 10 and 20 °C. Genome-wide allele frequencies were deter-

mined in 10 generation intervals by sequencing pools of individuals (Pool-Seq [48]).

Contrasting generation 0 with 51 we identified 6527 SNPs, which changed in frequency

more than expected by genetic drift either across all five replicates (adapted CMH test

[49], 6510 SNPs) or at least in one replicate (adapted χ2 test [49], additional 17 SNPs).

The X chromosome harbored only 142 SNPs. Such a low number of candidate SNPs on

this chromosome was not seen in other Drosophila E&R studies that observed similar

numbers of candidate SNPs on the X chromosome and autosomes [45, 50–53].

The pronounced peak structure in the Manhattan plot (Fig. 1A) indicates that many

candidate SNPs are not independent due to linkage [54, 55]. We accounted for this and

employed a correlation-based haplotype reconstruction approach to identify independ-

ently selected haplotype blocks based on their distinct trajectories [54, 56] and treated

each of these haplotype blocks as a single selection target [45].

Selected haplotype blocks in the cold-evolved D. simulans population

Because the small number of candidate SNPs precluded haplotype block reconstruction

on the X chromosome, all 15 haplotype blocks were identified on the major autosomes

(Fig. 1B, C). The size of the haplotype blocks ranged from 5 kb to 6Mb. Three of the

15 blocks were located on chromosome 2 while all others fell on chromosome 3.

The 15 selected haplotype blocks were identified by clustering SNPs with similar allele

frequency trajectories in the five replicates and six time points. A conservative assump-

tion is that each of the selected haplotype blocks contains one selection target. Never-

theless, multiple selection targets can recombine during the experiment onto a single

haplotype block, which outcompetes the individual parental haplotype blocks [56]. Such

multiple-target haplotypes will dominate the later phases of the experiment and are

considered as a single selected haplotype. To identify such cases, we repeated the haplo-

type block reconstruction with fewer generations—four time points up to generation 31

—and found that two reconstructed haplotype blocks could be further broken up: block

4 and 10 were split into three different blocks each (4a, 4b, 4c and 10a, 10b, 10c, see

Fig. 1C). This observation confirms that the number of inferred independent haplotype

blocks is a conservative estimate of the number of selection targets, and we used the

sub-blocks for subsequent analyses whenever applicable, analyzing a total of 19 selec-

tion targets.

Selected haplotype blocks are characterized by a set of marker SNPs which show cor-

related allele frequency trajectories across replicates. Nevertheless, the correlation

threshold is not very stringent to account for sequence diversity among the haplotypes

carrying the selection target [56]. Hence, not all of the haplotype block marker SNPs

describe the frequency trajectory of the (unidentified) selection target equally well. Rea-

soning that SNPs with the most pronounced allele frequency change are the best repre-

sentatives of the selection target, we used the 10% most significant marker SNPs of

each haplotype block and refer to them as the selection target. The frequency of each

selection target at every time point is determined as the median frequency of these 10%

of most significant SNPs. We used only replicates with a selection coefficient large

enough to be significantly different from neutrality (p-value < 0.05), therefore we ex-

cluded replicates in which a given selection target did not increase in frequency. The
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Fig. 1 Manhattan plots of the genomic selection signature in response to cold temperature. A p-values
were obtained from an adapted CMH test [49] comparing the founder generation (F0) to the most
advanced (F51) generation. The dotted line indicates the significance threshold (p-value < 0.05 after
correction for multiple testing). B, C A close-up of the Manhattan plot in panel A for chromosomes 2 and 3.
Each selected haplotype block and the corresponding candidate SNPs are shown in a distinct color.
Numbered bars above the Manhattan plot indicate the position of the selected haplotype blocks. Some
blocks, which can be further subdivided by the analysis of earlier time points, are labeled with letters (e.g.,
10a and 10b). SNPs with significant allele frequency changes in both, hot and cold, selection regimes
(shared SNPs) are colored in dark red
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starting frequencies were highly variable among the 19 selection targets. We detected

selection targets with starting frequency as low as 0.06, but also as high as 0.4 (Fig. 2A).

The selection coefficients were rather high and ranged from 0.04 to 0.11 (Fig. 2A).

Overall, we noticed a striking relationship between starting frequency and selection

coefficients. Selection targets starting with lower frequencies had higher selection coeffi-

cients than those with higher starting frequencies. This relationship was significant

when analyzing the full set of 19 blocks including the broken-up haplotype blocks (i.e.,

replacing blocks 4 and 10 by sub-blocks 4a, 4b, 4c and 10a, 10b, 10c) and was not

significantly influenced by block size (linear regression; factor: starting allele frequency

p = 0.004 and factor: block size p = 0.130). The inverse relationship between starting

allele frequency and selection coefficient was robust with respect to the definition of a

selection target (see Additional file 1: Figure S2).

While a negative correlation between frequency and effect size is expected by theory

and has been previously reported for GWAS [5, 57–59] and E&R [45] studies, it is im-

portant to note that a Beavis-like effect [60, 61] may also contribute to this observation:

alleles with low starting frequencies require stronger selection to result in detectable al-

lele frequency changes than alleles starting from intermediate frequencies.

With a median size of 1.5Mb, the selected haplotype blocks were rather large. The

median number of genes per selected haplotype block is 20 but it can reach up to 154

(see Additional file 1: Figure S3) in the largest reconstructed block (block 2, see Fig.

1B). The smallest block contained only a single candidate gene (block number 3, 4.8

kb). All 23 marker SNPs were located within one intronic region of the gene M-spondin

(mspo, FBgn0020269), an extra-cellular matrix protein of Drosophila, putatively involved

Fig. 2 Inverse relationship between starting allele frequency and selection strength. For all experiments, the
selection targets were identified using the same protocol and are based on the top 10% SNPs in reconstructed
haplotypes. A The relationship is shown for the Portugal cold experiment. The color code reflects the size of the
selected haplotype block, and starting allele frequencies and selection coefficient of the selection targets are
plotted on x- and y-axis. The numbers relate to the selected haplotype blocks from Fig. 1B and C with numbers
indicating blocks detected in the analysis using all time points. Sub-blocks resulting from an analysis using
earlier time points are labeled with the letters a, b, or c. B A qualitatively similar relationship between starting
allele frequency of each haplotype block and selection strength is found in the cold-evolved Portugal (blue),
hot-evolved Portugal (red), and hot-evolved Florida (pink) population. Nevertheless, the distribution in the
Florida experiment was shifted towards lower selection coefficients while the two temperature regimes in the
Portugal population were highly similar. We conclude that the adaptive architecture is population-specific but
does not depend on the temperature regime
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in muscle development [62]. The role of this gene in temperature adaption is not appar-

ent and further studies are required for a better understanding of this selection

signature.

Temperature-specific adaptation

Replicates from the same Portuguese founder population were also exposed to a hot

selection regime fluctuating between 18 °C and 28 °C [46]. Both temperature regimes

have the same daily temperature amplitude of 10 °C (cold 10/20 °C and hot 18/28 °C),

but mean temperatures differ (15 °C in the cold and 23 °C in the hot regime). The

temperatures were chosen such that one of the temperatures is stressful, whereas the

other temperature is benign [63, 64]. Contrasting the founder population with hot-

evolved generation 59, Mallard F, Nolte V, Tobler R, Kapun M, and Schlötterer C [46]

identified few (five) very pronounced selection peaks, some of them related to metabolic

alterations in the hot-evolved populations.

For an unbiased comparison of the two experiments, we added time series data for

the hot-evolved populations (F0, F15, F37, F59) and applied the same haplotype recon-

struction pipeline as described above. Similar to the cold-evolved population, the X

chromosome had too few outlier SNPs (114 SNPs) for haplotype reconstruction. 16 se-

lected haplotype blocks were identified on the two major autosomes (Additional file 1:

Figure S4) and their selection coefficients ranged from 0.05 to 0.13 (Fig. 2B). It is

remarkable that not only the number of inferred selection targets, but also the distribu-

tion of selection coefficients is highly similar for the two temperature regimes (hot-

evolved = 16 blocks, cold-evolved = 19 blocks).

Only two haplotype blocks shared more SNPs than expected by chance between the

two temperature regimes. Furthermore, the shared region was in both cases only a small

part of the total haplotype block (Fig. 1B, C; blocks 2 and 15). A prominent similarity

between the selection regimes could be identified in block 15, where the majority of

overlapping SNPs were located in the gene Ace (FBgn000024). Nevertheless, the selec-

tion pattern for Ace differs between both temperature regimes [65]. The shared SNPs of

block 2 were located in several genes, and therefore no clear candidate for common

adaptation could be identified in this region.

We further scrutinized the haplotype blocks that were not shared between the selec-

tion regimes and had a starting frequency higher than 0.15 to rule out that a selection

signature in opposite direction—as expected for a polygenic trait selected in contrasting

environments—was missed. The allele frequency change of all candidate SNPs in a

haplotype block was always higher in the focal temperature regime. Importantly, in

both, hot and cold, selection regimes we very rarely observed a frequency change in the

opposite direction (Additional file 1: Figure S5). We conclude, therefore, that we have

no support for alleles being selected in opposite direction in hot and cold temperatures.

Rather, most alleles show a temperature-specific response.

Population-specific adaptation

Independent of the temperature regime the evolved populations derived from the

Portugal founder population revealed only a moderate number of selection targets. This

contrasts a recent experiment using the same hot temperature regime but a founder

population from Florida [45]. For a consistent comparison to the Portugal population,
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we repeated the analysis of the Florida population using our haplotype reconstruction

pipeline but focused only on the two major autosomes. 31 selected haplotype blocks

were identified on chromosome 2 and 3 (Additional file 1: Figure S6), which are consid-

erably fewer selection targets than the 88 reported by Barghi N, Tobler R, Nolte V,

Jaksic AM, Mallard F, Otte KA, Dolezal M, Taus T, Kofler R, and Schlötterer C [45] for

these two chromosomes. This difference reflects an alternative strategy to identify can-

didate SNP sets for the haplotype reconstruction rather than the clustering method

[56]. Following the same protocol as for the Portugal experiments, 9197 outlier

SNPs were identified, which is more conservative than the 52,199 outlier SNPs used

by Barghi N, Tobler R, Nolte V, Jaksic AM, Mallard F, Otte KA, Dolezal M, Taus

T, Kofler R, and Schlötterer C [45] for haplotype reconstruction. The Florida popu-

lation harbored about twice as many selected haplotype blocks as the hot-evolved

Portugal population. For all experiments, we identified the same relationship be-

tween starting frequency and selection coefficients, but the distribution for Portugal

was shifted towards higher selection coefficients (Fig. 2B). This result is robust with

respect to the definition of selection target (see Additional file 1: Figure S7). This

difference in selection coefficients remains significant when we account for allele

frequencies in the founder populations (contrasts between estimated marginal

means Portugal cold − Florida hot p < 0.0001 and Portugal hot − Florida hot p <

0.0001). No significant difference was observed between the two temperature re-

gimes of the Portugal population (Portugal cold − Portugal hot p = 0.98).

The Florida experiment was based on twice the number of replicates as the

Portugal experiment. To rule out that the number of replicates affects the inferred

adaptive architecture, we repeated the analysis with 100 sets of five randomly sam-

pled Florida replicates. In all 100 random subsets, the selection coefficient was not

different from the full data set (Wilcoxon rank-sum test p > 0.05 adjusted for mul-

tiple testing using the Benjamini-Hochberg method), suggesting that the difference

between the Portugal and Florida data sets cannot be explained by a different num-

ber of replicates.

We quantified the degree of parallelism between the experiments using the Jac-

card index, creating a binary presence/absence matrix of selected haplotype blocks

with s significantly different from zero among replicates. High values indicate paral-

lel genetic responses whereas low values reflect heterogeneous, non-parallel genetic

responses between replicates. Jaccard indices were high for the two Portugal experi-

ments (median similarity between replicates 80% and 82%, respectively). For the

Florida experiment, the Jaccard index was significantly lower (median similarity be-

tween replicates 70% for the full data set; Wilcoxon rank-sum test p-value < 0.001

against each Portugal data set), indicating less parallel genetic responses and there-

fore increased realized genetic redundancy. This pattern was robust with respect to

the method used to define a selection target in a given replicate (Fig. 3 and Add-

itional file 1: Figure S8).

The comparison of selected haplotype blocks between evolved populations derived

from different founder populations is difficult because the selected haplotype blocks are

reconstructed only for significant SNPs and the full sequence of the selected haplotype

block remains unknown. Even if the selected haplotype block is shared in both popula-

tions, the remaining, non-selected, haplotypes differ between the populations. Hence, as
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the frequency change at a given SNP on the selected haplotype depends on the fre-

quency of this SNP in the non-selected haplotypes, different candidate SNPs could be

identified in the two populations- even if the same haplotype block is selected. Thus,

the same selected haplotype block may have different marker SNPs in two different

populations - suggesting that different haplotype blocks are selected. Furthermore, the

low linkage disequilibrium in natural Drosophila populations [66, 67] implies that very

few haplotypes are expected to be shared between samples from different populations.

For these reasons, we did not attempt to test whether the same haplotype blocks are

selected in Portugal and Florida.

Fig. 3 More parallel selection signatures among evolved replicate populations derived from Portugal
founders than from those with Florida ancestry. Jaccard indices comparing the different replicates in the
cold-evolved Portugal (top left), hot-evolved Portugal (top right), and hot-evolved Florida (bottom)
population. Jaccard index was computed based on estimation of significant selection coefficients (p-value <
0.05) for selected haplotype blocks
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Discussion
D. simulans populations of different origins (Portugal and Florida) had very distinct

adaptive architectures in the same hot temperature regime [45, 46]: Portugal had fewer

selection targets, which were strongly selected in a highly parallel manner. Florida

harbored more selection targets with more heterogeneity among replicates and lower

selection coefficients compared to Portugal. In this report, we studied replicate popula-

tions derived from the Portugal founder population, which adapted to a cold

temperature regime to understand why such different adaptive architectures were

inferred in these two populations. Below, we discuss several possible explanations for

the differences in adaptive architecture.

Different trait optima in the ancestral populations

Both founder populations were collected on different locations with their own specific

temperature profile and in different phases of the seasonal cycle (Portugal in July 2008,

Florida in November 2010). Assuming that temperature adaptation is a single high-level

trait, the ancestral trait optimum may differ on the phenotypic axis. This implies that a

population, which is less adapted to hot environments should be better adapted to cold

environments. Less well-adapted populations will experience stronger and more parallel

selection responses across replicates [1, 68], consistent with the pattern observed in the

hot Portugal population. Different trait optima of the founder populations were further

supported by the observation that the Portugal founder population is less fecund than

the Florida founder population when assayed in the novel hot environment (Barghi

et al., unpublished results). This implies that the mean phenotype of the Portugal popu-

lation is more distant from the new trait optimum in the hot laboratory environment

than the Florida population.

The analysis of the cold-evolved replicates casts some doubts on this simple interpret-

ation. We assumed that the hot and cold experiments shifted the trait optimum into op-

posite directions relative to the (unknown) trait optimum of the ancestral Portugal

population. Hence, contributing loci segregating at sufficiently high frequency in the an-

cestral population should be selected in opposite direction in the two temperature re-

gimes. Nevertheless, the results did not fit our expectations—most selected haplotype

blocks were not shared between the two temperature regimes. While selected haplotype

blocks starting from low frequencies may not be identified as selection targets in the op-

posite temperature regime, also haplotype blocks with higher allele frequencies in the

founder population were not selected in opposite direction.

Hence, we conclude that temperature adaptation may not be a single high-level

phenotype. Rather, several sub-phenotypes on a lower level, which are not all shared for

the different temperature regimes, are contributing to adaptation. This conclusion is

further supported by different genomic signatures of hot and cold stressors in E&R [69]

and QTL mapping [70] studies.

Differences in adaptive variation

Autosomal polymorphism levels differ between the two founder populations with

Florida being more variable than Portugal (πFlorida = 0.0076 and πPortugal = 0.0062,

Wilcoxon rank-sum test on non-overlapping 10 kb windows, p-value < 0.001). Assuming

that neutral variability is a good approximation of adaptive variation, which is not
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always the case [71], Portugal is expected to harbor less adaptive variation than Florida.

This implies that Florida reaches the trait optimum faster than Portugal [47, 72], but in

absence of phenotypic time series data, we cannot assess this hypothesis. A particularly

interesting hypothesis related to the different polymorphism levels is that Portugal har-

bors so little adaptive variation that it does not have much genetic redundancy. This

would imply that no (or only limited) excess of adaptive genetic variation is segregating

in the Portugal founder population that can be used to reach the trait optimum.

The Florida founder population, in contrast, harbors a considerable excess. Such

differences in the number of contributing loci can generate quite different patterns of

parallel selection responses [47], matching the Portugal and Florida experiments. Never-

theless, it is not apparent that the moderate differences in genome-wide polymorphism

levels are sufficiently large to explain this pattern.

Linkage disequilibrium

The above discussion about the heterogeneity of the inferred genetic architectures be-

tween populations and selection regimes rests on the central assumption that the major

contributing loci were identified and could be distinguished with a recently developed

haplotype reconstruction approach [56]. In other words, it is assumed that only a mod-

erate number of distinct loci contribute to adaptation.

Alternatively, the observed selection response may be explained by many loci of small

effect - an idea that matches in its extreme form the infinitesimal model [18]. Empirical

support for a highly polygenic architecture of many traits comes from the strong correl-

ation between chromosome length and the fraction of heritability explained [73–75]. If

multiple small effect loci cluster together this may result in a signature that will be

interpreted as a single selection target [76]. Short genomic regions with a local cluster-

ing of contributing loci can even introgress and leave the strong selection signature of a

local allele frequency change [77]. Empirical support for the clustering of contributing

loci comes from the molecular dissection of candidate loci identified in QTL mapping

studies. Single QTL loci can be broken into multiple SNPs contributing to the corre-

sponding trait [78–83].

The situation in polymorphic founder populations is significantly more complicated

than the simple two genotype case studied by Sachdeva H and Barton NH [77], but we

propose that blocks of linked loci can not only generate pronounced selection signa-

tures, but may also explain the differences in adaptive architecture between the Portugal

and Florida experiment. Depending on the extent of linkage disequilibrium (LD) the

clustering of contributing loci can vary. Hence, populations with different levels of LD

may also harbor more or less clustered contributing loci. The influence of haplotype

structure can be illustrated by two extreme cases: in the case of complete linkage equi-

librium, in any genomic region the haplotypes segregating in the population should

have similar fitness effects despite being highly diverse. As a consequence, changes in

trait optimum will result only in rather small frequency changes of the haplotypes in

this genomic window. This pattern becomes more pronounced with an increasing num-

ber of contributing loci.

On the other hand, in the presence of strong linkage disequilibrium, fewer distinct

haplotypes are present in a given genomic window. Sampling variation in the ancestral

population generates haplotypes with different numbers of contributing loci in a given
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genomic window. The more pronounced the difference in the number of loci among

haplotypes in a genomic window is, the stronger will be the differences in fitness effects

among them and thus the allele frequency change after a shift in trait optimum. Hence,

because the difference in the number of contributing loci among haplotypes differs

among genomic windows, linkage disequilibrium generates heterogeneity in selection

response along the chromosome.

We illustrated the impact of LD with the help of forward simulations. We simulated adap-

tation after a shift in trait optimum modeling the associated genotypes, phenotypes, and fit-

ness. The genotypic value of an individual was determined by the additive effect sizes of all

contributing loci while the phenotypic value was calculated by incorporating heritability. Fit-

ness was computed based on the phenotypic value and a Gaussian fitness function.
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Fig. 4 Influence of linkage disequilibrium on the genomic response of a polygenic trait. We simulated 50
generations of polygenic adaptation after a shift in trait optimum. One hundred replicates, each with 10
contributing loci in a 1Mb region either with linkage equilibrium (blue) or strong LD (yellow) are shown in
violin plots. A Mean r2 estimates displaying the degree of LD in the two scenarios. B Independent of linkage
structure, the same mean phenotype was reached, but simulations with high LD were considerably more
scattered. C Pronounced allele frequency changes were obtained for both, linkage equilibrium, and high LD. For
linkage equilibrium, the genomic windows were all rather similar, indicating that no window showed a strong
selection signature distinguishing it from the genomic background. Simulations with strong LD, however,
resulted in highly heterogeneous selection responses, with some windows having a frequency change larger
than 0.6, which is a strong selection signature distinguishing it from the remaining genomic windows. D The
heterogeneity among five replicate populations is measured by the coefficient of variation. The selection
response in simulations with linkage equilibrium was less parallel than in those with strong LD
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We simulated 10 contributing loci in a genomic window of 1Mb in a typical E&R set-

ting [84, 85]. For high LD and linkage equilibrium (Fig. 4A) the same number of chro-

mosomes with contributing loci was used. 100 different genomic windows were

simulated and simulations with higher LD resulted in a more heterogeneous response

to selection. Consistent with a larger phenotypic variance (Fig. 4B) also much more pro-

nounced allele frequency changes were observed for some windows in the presence of

linkage disequilibrium (Fig. 4C). Hence, while very homogeneous moderate frequency

shifts were observed for contributing loci in linkage equilibrium, some pronounced

sweep windows were detected for windows with LD. We also assessed the degree of

parallelism in the response between replicates and found a more parallel response for

the high LD simulations (Fig. 4D).

Thus, for polygenic traits, the inferred adaptive architecture can be strongly affected

by linkage in the ancestral population. The importance of linkage has also been recently

emphasized, in particular for genomic regions (Table 1) with suppressed recombination,

such as inversions [86]. A previous study on the impact of recombination on the re-

sponse to a shift in trait optimum with truncating selection observed more heterogen-

eity among replicates in the case of linkage equilibrium than for complete linkage [87].

We attribute these differences to the small population sizes in [87].

Nevertheless, does this scenario of a highly polygenic architecture with differences in LD

apply to the Florida and Portugal experiments? Following the same rationale as [45, 73]

tested whether longer haplotype blocks were more strongly selected than shorter ones, but

no significant correlation was found. Similar results were observed for the cold evolved

Portugal populations. We caution, however, that these negative results do not provide strong

support for the identification of distinct selection targets. Possible, not mutually exclusive,

reasons for the lack of significance even in the presence of a highly polygenic architecture

are (1) the contributing loci have different effect sizes, thus small haplotype blocks with large

effect contributing loci may be more strongly selected than larger blocks, (2) larger blocks

may harbor more contributing loci with effects in opposite direction than smaller ones, and

(3) since haplotype blocks are still relatively short (compared to full chromosomes), stochas-

tic sampling and heterogeneity in the density of contributing loci may obscure the correl-

ation between the size of the selected haplotype block and the selection response.

The hypothesis that LD differences can explain the heterogeneity in inferred adaptive

architecture is supported by the observation that the two founder populations differed

across all chromosomes in their pattern of linkage disequilibrium (Fig. 5). The higher LD

in Portugal compared to Florida is fully consistent with the prediction that founder popu-

lations with higher LD are more likely to show stronger and more parallel sweep signa-

tures than populations with lower LD. Although this pattern fits our observations, in

absence of more information about the degree of polygenicity and the distribution of con-

tributing loci across the chromosomes and their effect sizes, it is not possible to determine

whether the observed differences in LD are sufficient to explain our empirical data.

Temperature adaptation may involve multiple, temperature-specific traits

While we cannot pinpoint the cause for the differences in the inferred adaptive archi-

tecture between Portugal and Florida, the analysis of cold-evolved replicates sheds some

important light on our understanding of temperature adaptation.
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Many studies, in particular theoretical ones, considered high-level phenotypes,

such as temperature adaptation, as a single adaptive trait, where shifts in mean

temperature are treated as a simple shift in trait optimum (e.g., [88–91]). This

implies that all segregating contributing loci affect the optimal phenotype - irre-

spective of the position of the optimum - i.e. in the case of temperature adaptation

irrespective of whether the optimum is in the hot or cold. The limited overlap

between the selection targets in hot- and cold-evolved replicates is striking, as it

contradicts this assumption. With the exception of the haplotype blocks containing

the Ace locus and a haplotype block across the centromere of chromosome 2, which

changed in the same direction in both temperature regimes, no shared haplotype

blocks were detected. To some extent, the lack of shared haplotype blocks can be

attributed to low starting frequencies, which implies that selection in the opposite

direction does not result in allele frequency changes sufficiently large to be detected.

Nevertheless, even for haplotype blocks starting from intermediate frequency, no

selection signature in the opposite direction was noticed.

This implies that different loci are contributing to adaptation in hot and cold environ-

ments - irrespective of whether a highly or moderately polygenic architecture is

Fig. 5 Linkage disequilibrium in the ancestral Portugal und Florida population as measured by the mean r2

of loci with distances up to 10,000 kb based on 34 individual haplotype sequences
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assumed. A very similar lack of shared candidates was also noticed in a D. melanogaster

experiment, where replicate populations were exposed to the same hot and cold

temperature regimes [69]. This experiment was, however, conducted for a much smaller

number of generations, and the selection signature was analyzed on the SNP-level,

which makes the interpretation of the results particularly challenging given the contri-

bution of large segregating inversions to temperature adaptation in this species [92, 93].

The observation of different selection targets in hot and cold environments is

particularly interesting, because seasonal changes were found to be associated with

cycling allele frequencies in natural D. melanogaster populations [94], which sug-

gests that the same SNPs are being selected in opposite directions in hot and cold

environments. One possible explanation for these differences to our study is that in

natural populations only a moderate number of generations separates the two

temperature regimes, while in our experiment the temperature regime remained

constant across more than 50 generations.

Population-specific adaptive architectures

Various studies, mainly using QTL mapping and GWAS, have identified different

loci contributing to the same trait in diverged populations [27–36, 95]. A recent

experimental evolution study using D. subobscura populations with different gen-

etic backgrounds also observed very little overlap in the genomic regions respond-

ing to a common selection regime [96]. Hence, the different selection targets

obtained from Portugal and Florida experiments conducted in the same hot envir-

onment are not particularly surprising and emphasize the limited insights about

the genetic basis of a polygenic trait from single population studies. Very surpris-

ing, however, was the observation that the adaptive architecture (number of con-

tributing loci, effect sizes, and starting frequencies) was different between

Portugal and Florida, but strikingly similar between the hot and cold selection

regimes.

Although more experiments are needed to nail down why the genetic architecture of

temperature adaptation is highly dependent on the founder population and not on the

selection regime, our results have important implications for all studies attempting to

characterize the response of natural populations to climate change. The analysis of a

single population cannot be sufficient to understand the genetic basis of adaptive traits.

Thus, multiple diverged populations need to be studied to reach conclusions that can

be generalized beyond a limited number of focal populations.

Material and methods
Unless stated otherwise, analysis was conducted using R v3.6.1 [97].

Experimental populations and selection regime

The set-up of the evolution experiment is described in detail elsewhere [46]. In brief, fe-

male flies were sampled from a natural Drosophila simulans population in Northern

Portugal in the summer of 2008 and used to establish 250 isofemale lines. These lines

were kept for 10 generations in the laboratory before starting the experiment. Mated fe-

males of all lines were used to create the starting populations. Ten replicates were cre-

ated by combining an equal number of flies from each line. Five of the replicates were
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then kept in a 12 h:12 h day and night cycle with temperatures of 20 °C during the day

and 10 °C during the night (cold regime). The population size was kept constant at 1250

per replicate in non-overlapping generations.

The other five replicates were used to start the evolution experiment described by

Mallard F, Nolte V, Tobler R, Kapun M, and Schlötterer C [46], which was identical to

the cold regime except for the temperature which fluctuated between 28 °C during the

day and 18 °C at night (hot regime).

Evolve and resequence

For the founder population, we used the sequences described by Mallard F, Nolte V,

Tobler R, Kapun M, and Schlötterer C [46], but added new sequence data from two

replicates of generation F3 from the cold regime to increase coverage. To avoid biases

related to different sequencing approaches, all reads were pooled and then randomly

split into five subsets with a coverage of 100× each. These subsets were used as founder

population replicates throughout the analysis of the cold-evolved and the (re-)analysis

of the hot-evolved populations. While sequence data for the F59 in the hot regime were

available from Mallard F, Nolte V, Tobler R, Kapun M, and Schlötterer C [46], we

added new Pool-Seq data for the intermediate time points F15 and F37 in the hot re-

gime to allow for the time series analysis and haplotype reconstruction in this study. All

sequences used for the founder population (including the F3 from the cold regime) and

all sequences of the hot regime were derived from females only.

Sequencing data from the time points F11, F21, F31, F41, and F51 in the cold regime

were newly generated from pooled females and males. Paired-end libraries were

generated with different protocols and sequenced on different Illumina platforms (see

Supplementary Table S1).

Data processing

Sequencing reads were trimmed using Readtools TrimFastq version 0.2 [98]. with the

parameters --minReadLength 50 --disable5pTrim --mottQualityThreshold 20. The D.

simulans genome sequence created by Palmieri N, Nolte V, Chen J and Schlötterer C

[99] was used as reference for read mapping. To avoid false positive outlier SNPs, which

might arise when libraries with different read lengths and insert sizes are combined in

one analysis [100], three different mappers were used to map reads of the two time

points used for outlier testing (cold regime: F0 and F51; hot regime: F0 and F59). Reads

were mapped using Bowtie2 version 2.2.6 [101] with parameters --end-to-end --X 1500,

bwa mem version 0.7.13 [102] with default parameters and novoalign version 3.03.2

[103] with parameters -i 350,100 -F STDFQ -o SAM -r RANDOM.

The intermediate time points (cold regime: F11, F21, F31, F41; hot regime F15, F37)

used for the detection of selected haplotype blocks were mapped with novoalign only,

as this mapper is known to estimate allele frequencies most accurately [100].

Mapped reads were filtered for mapping quality ≥ 20 and proper pairs using SAM-

tools view version 1.3.1 [104]. Duplicates were removed using picard MarkDuplicates

version 2.1.1 [105]. Barcoded files were split using Readtools AssignReadGroupByBar-

code version 0.2.2 [98] with parameters --maximumMismatches 1. The BAM files were

then used to create mpileup files with SAMtools mpileup version 1.3.1 [104], and fi-

nally, PoPoolation2 mpileup2sync.jar version 1.201 [106] was used to create sync files
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from mpileup files. All subsequent analysis was conducted on the basis of these sync

files.

SNP calling and masking

Single nucleotide polymorphisms (SNPs) were called from the founder population by

creating sync files from BAM files as described above but filtering for polymorphic sites

that had a mapping quality of at least 30 and a minimal count of at least 5 and were de-

tected by the three mapping algorithms in all founder replicates. Filtering resulted in

3.8 million SNPs that were used for further analysis. Indels were detected using the

PoPoolation2 identify-indel-regions.pl script, and transposable elements were detected

with repeatmasker v 1.332 [107]. Custom databases made by combining RepeatMasker

database Dfam_Consensus-20181026, RepBase-20181026, and transposon_sequence_set.

embl.txt from flybase.org (FB 2018_06), and search engine NCBI/RMBLAST v 2.2.27+

were used for repeats > 500 bp. All sync files were masked for these repetitive regions

and for known Y chromosome translocations [108] using the PoPoolation2 filter-sync-

by-gtf.pl script.

Correcting for different insert sizes

To correct for false positive outlier SNPs created by libraries with different insert sizes

[100], mapping results from the three different mappers for the founder (F0) and most

evolved (cold regime: F51; hot regime F59) population were used. χ2 tests were con-

ducted to compare the results of the different mappers per replicate and time point.

After correcting for multiple testing using the Benjamini-Hochberg procedure [109],

only SNPs that showed a consistent response across comparisons (p.adjust ≥ 0.05) were

kept for further analysis.

Candidate SNPs

Candidate outlier SNPs were detected in the filtered sync files created from novoalign

mapping results after correcting for false positive outliers as described above. Allele fre-

quency changes between the founder and the most evolved population were analyzed

using CMH and χ2 tests which are adapted for genetic drift and pool sequencing noise

as implemented in the R package ACER version 1.0 [49]. SNPs within the top 1% of

coverage were excluded from the analysis to avoid copy number variants. Intermediate

generations were included in the correction approach. Effective population size per rep-

licate was calculated using the R package poolSeq version 0.3.5 [110] with the function

estimateWndNe (window size 10 kb, method P.planI, pool size and census size 1250)

and used for CMH and χ2 tests. The CMH test was performed using all population rep-

licates per time point whereas χ2 tests were performed for each replicate separately. All

results were corrected for multiple testing (Benjamini-Hochberg). Finally, candidate

SNPs detected by either test (p.adjust < 0.05) were combined to include consistent re-

sponses across replicates (CMH test) and replicate-specific responses (χ2 test).

Selected haplotype blocks

Selected haplotype blocks were reconstructed from candidate SNP allele frequency data

of all time points and replicates using the R package haplovalidate with MNCS of 0.01

[6]. Haplotype blocks were reconstructed for all time points. As haplotype blocks might
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contain more than one selected allele, early time points (cold regime: F11, F21, and F31;

hot regime: F15 and F37) were used for fine-mapping of selected haplotype blocks [56].

Here, the analysis detected the characteristic signal of reconstructed haplotype blocks

with multiple selection targets, which is the presence of a single haplotype block in the

most evolved generation but several reconstructed haplotype blocks when analyzing the

early generations separately. Haplotype blocks from the early generations showing this

pattern were included in the final analysis.

Selection coefficients for the detected haplotype blocks per replicate were computed

using the allele frequency trajectories of the top 10% outlier SNPs based on CMH and

χ2 test result and using the poolSeq v0.3.5 function estimateSH (method LLS) [110].

Only selection coefficients with p-value < 0.05 were used to calculate the median

selection coefficient for each selected allele. Relationship of selection coefficient, starting

allele frequency and block size were tested using a linear model with log10 transform-

ation of selection coefficients. To test the robustness of our definition for selected al-

leles, we repeated the estimation of selection coefficients using (a) the top 20% SNPs or

(b) all SNPs that had an allele frequency change > 0.1 (Additional file 1: Figure S2). Can-

didate genes per block were detected from the gene annotation of the reference genome

[99] including also SNPs 200 bp up- and downstream of the focal gene.

Comparison to other experimentally evolved D. simulans populations

We used data from the same D. simulans population evolving under a hot temperature

regime [46] to contrast adaptation to different temperatures. For this population, we in-

cluded two additional time points, so that four time points in total were available: F0,

F15, F37, F59. The data set was filtered, candidate SNPs were detected and haplotypes

were reconstructed in the same way as described above including the combined analysis

of all (F0–F59) and early (F0–F37) time points. To estimate how many shared marker

SNPs were expected by chance, we randomly sampled the number of shared SNPs from

the haplotype blocks, calculated the fraction per haplotype block (N = 10,000), and fi-

nally applied a 95 % cut-off.

In addition, a different published hot-evolved D. simulans population from Florida

[45] was used for the comparative analysis. The data set was filtered and candidate

SNPs were detected in the same way as described above. As intermediate time points

were available for this data set (every 10th generation from F0 to F60), haplovalidate [6]

with MNCS of 0.01 was used to detect selected haplotype blocks including the com-

bined analysis of all (F0–F60) and early (F0–F30) time points as described for the

Portugal population. Selection coefficients were computed as described above.

We fitted a linear model with log10 transformed selection coefficients as response

and main effects of population as fixed categorical effect with three levels (Florida hot,

Portugal hot, Portugal cold) and a linear and quadratic covariate for starting allele fre-

quency, to account for their non-linear relationship with the response, as explanatory

variables. Residuals from this model were normally distributed and displayed variance

homogeneity. The model with linear and quadratic covariate for starting allele fre-

quency fit significantly better than a model with only a linear term. Contrasts between

populations were compared based on estimated marginal means (R package emmeans).

We compared the similarity of replicates calculating the Jaccard indices for the

Portugal and the Florida population using the R package philentropy [111]. We created
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binary data based on the replicate-specific selection response, i.e. whether or not a sig-

nificant selection coefficient could be estimated by the poolSeq package (see above) for

the corresponding replicate and allele (p-value < 0.05). Following Barghi N, Tobler R,

Nolte V, Jaksic AM, Mallard F, Otte KA, Dolezal M, Taus T, Kofler R, and Schlötterer

C [45], we created binary data by applying a cut-off of 0.1 to the median allele fre-

quency change of selected alleles per replicate. Jaccard indices between populations

were compared using the two-sample Wilcoxon rank-sum test. To analyze the effect of

the different number of replicates (10 in the Florida and five in the Portugal popula-

tion), we applied the same haplotype reconstruction pipeline as described above to all

Florida subsets. However, haplotype reconstruction was not possible for 95 of 100 sub-

sets, as no correlation signal could be detected. We interpret this as the consequence of

the high redundancy resulting in different selected haplotype blocks in the replicates,

which reduces the power to detect them. Hence, we repeated the analysis of selection

coefficients and Jaccard indices on a downsampled set of Florida replicates. For this

analysis, we took 100 random samples of five replicates from the Florida population

data set and repeated the analysis for each of them as described above.

Nucleotide diversity in the ancestral populations

Nucleotide diversity (π) of each autosome in the ancestral populations was calculated

from the allele frequency data using the formula of Tajima F [112]. For maintaining a

comparable number of low-frequency alleles we subsampled the Florida data set to five

replicates. As different sets of five Florida replicates resulted in very consistent π esti-

mates (data not shown) we only used one set for the direct comparison to Portugal.

Linkage disequilibrium in the ancestral populations

To quantify linkage disequilibrium, we used 189 haplotype sequences of the Florida

founder population [113] and 34 haplotype sequences of the Portugal founder popula-

tion which are described in Langmüller AM, Nolte V, Galagedara R, Poupardin R, Dole-

zal M, Lečić S, and S. S [65]. For maintaining a comparable number of low-frequency

alleles, we subsampled the Florida data set to 34 haplotypes. We calculated the mean r2

for loci (minor allele count = 3, minimum SNP quality = 50) within 10,000 kb distance.

As different sets of 34 Florida haplotypes resulted in very consistent mean estimates

(see Additional file 1: Figure S9) we only used one set for the direct comparison to

Portugal.

Linkage disequilibrium simulations

We illustrated the effect of linkage equilibrium or strong linkage disequilibrium (LD) on

polygenic adaptation after a shift in trait optimum with forward simulations based on

Wright-Fisher populations using MimicrEE2 v208 [114]. Using the qff mode we simu-

lated stabilizing selection on a quantitative trait based on a Gaussian fitness function

and diallelic loci. We used parameters that matched the Portugal D. simulans E&R ex-

periment with five replicates, each starting with the same 1000 homozygous individuals

which evolved for 50 generations and simulated adaptation from standing genetic vari-

ation. For computational simplicity, we simulated one genomic region of 1Mb contain-

ing 10 contributing loci. Each selection target started with an allele frequency of 0.05

and contributed with an additive effect size of 0.05 to the phenotype, while the other
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allele had an effect size of − 0.05. Heritability was set to h = 0.5. We performed 100 in-

dependent simulations. Overall, the genotypic value was estimated as the sum of the ef-

fect sizes of all contributing loci while the phenotypic value was calculated by adding a

Gaussian random number based on heritability (h2) to the genotypic value. Fitness was

finally estimated based on the phenotypic value and the corresponding fitness function.

We used the following Gaussian fitness function as previously described (e.g. [6]): N

(0.5;1.2) scaled to a maximum of 4.5 and a minimum of 0.5 to avoid individuals with a

fitness of 0. The average genotypic value of the ancestral population was 0.45, the aver-

age phenotypic value was 0.449, and the average initial fitness was estimated as 3.41.

We simulated a constant recombination rate based on the average recombination rate

of 1.72 cM/Mb estimated for D. simulans (Dsim_recombination_map_LOESS_100kb_1.

txt, [113]).

We generated two different sets of founder populations, one with strong LD and one

with linkage equilibrium. Both sets of founder populations contained loci with 200

chromosomes carrying an allele contributing to the quantitative trait towards the new

trait optimum and 800 chromosomes with alleles of opposite effect. For high LD, we

generated a defined haplotype structure based on four different sets of selected haplo-

types. The number of contributing loci was randomly distributed between the four sets

of selected haplotypes. Hence, 50 haplotypes shared the same contributing loci, but due

to stochastic sampling the number of contributing loci differed among the four sets of

50 haplotypes. To generate starting populations in linkage equilibrium, we randomly

distributed the contributing loci across 200 haplotypes until each of the loci had a final

frequency of 0.05. Average r2 in these linkage equilibrium simulations ranged from 0.03

to 0.04 (see Fig. 4A).

After 50 generations, we generated “Pool-seq data” with 50× coverage and added

sequencing noise by binomial sampling based on the allele frequencies. We recorded

the phenotypic and mean frequency change across loci and replicates as well as the

coefficient of variation in the mean allele frequency change across the five replicates as

an indicator for the degree of parallel response.
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