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Abstract

Large-scale phenotype data can enhance the power of genomic prediction in plant
and animal breeding, as well as human genetics. However, the statistical foundation of
multi-trait genomic prediction is based on the multivariate linear mixed effect model, a
tool notorious for its fragility when applied to more than a handful of traits. We present
MegaLMM, a statistical framework and associated software package for mixed model
analyses of a virtually unlimited number of traits. Using three examples with real plant
data, we show that MegaLMM can leverage thousands of traits at once to significantly
improve genetic value prediction accuracy.

Keywords: Multi-trait Linear Mixed Model, Genomic prediction, High-throughput
phenotyping, Multi-environment trial

Background
New high-throughput phenotyping technologies hold promise for a revolution in data-
driven decisions in plant and animal breeding programs [1, 2]. For example, drone-based
hyperspectral cameras can image fields at high resolution across hundreds of spectral
bands [3], wearable sensors can continuously monitor animals health and physiology
[4], and RNA sequencing and metabolite profiling can simultaneously assay the concen-
trations of tens-of-thousands of targets [5]. These high-dimensional traits could allow
breeders to rapidly assess many aspects of performance more accurately or earlier in
development than was possible using traditional tools. This can increase the rate of gain in
target traits by increasing selection accuracy, increasing selection intensity, and reducing
breeding cycle durations.
However, efficiently incorporating high-dimensional phenotype data into breeding

decisions is challenging.Whenever two traits are genetically correlated, joint analyses can
improve the precision of variety evaluation [6]. However, two key problems emerge. First,
the number of traits in high-dimensional datasets is often much larger than the number
of breeding lines, which means that naive correlation estimates are not robust. Second,

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02416-w&domain=pdf
http://orcid.org/0000-0002-3008-9312
mailto: deruncie@ucdavis.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Runcie et al. Genome Biology          (2021) 22:213 Page 2 of 25

phenotypic correlation among traits are often poor approximations to genetic correla-
tion, so not all correlated traits are useful for breeding decisions [7]. For example, plants
grown inmore productive areas of a field will tend to produce higher yields and be greener
(measured by hyperspectral reflectance). Yet, selecting indirectly based on green plants
instead of directly on higher yields may be counter-productive because “green-ess” may
indicate an over-investment in vegetative tissues at the expense of seed. This contrasts
with the problem of predicting genetic values from genotype data (e.g., genomic predic-
tion; [8]), where all correlations between candidate features and performance are useful
for selection.
The multivariate linear mixed model (MvLMM) is a widely-used statistical tool for

decomposing phenotypic correlations into genetic and non-genetic components. The
MvLMM is a multi-outcome generalization of the univariate linear mixed model (LMM)
that forms the backbone of themajority ofmethods in quantitative genetics. TheMvLMM
was introduced over 40 years ago [9], and has repeatedly been shown to increase
selection efficiency [10–12]. Yet, MvLMMs are still rarely used in actual breeding pro-
grams because naive implementations of the framework are sensitive to noise, prone
to overfitting, and exhibit convergence problems [13]. Furthermore, existing algorithms
are extremely computationally demanding. The fragility of naive MvLMMs is due to
the number of variance-covariance parameters that must be estimated which increases
quadratically with the number of traits. The computational demands increase even more
dramatically: from cubically to quintically with the number of traits [14] because most
algorithms require repeated inversion of large covariance matrices. These matrix oper-
ations dominate the time required to fit a MvLMMs, leading to models that take days,
weeks, or even years to converge.
Here, we describe MegaLMM (linear mixed models for millions of observations), a novel

statistical method and computational algorithm for fitting massive-scale MvLMMs to
large-scale phenotypic datasets. Although we focus on plant breeding applications for
concreteness, our method can be broadly applied wherever multi-trait linear mixed mod-
els are used (e.g., human genetics, industrial experiments, psychology, linguistics, etc.).
MegaLMM dramatically improves upon existing methods that fit low-rank MvLMMs,
allowing multiple random effects and un-balanced study designs with large amounts of
missing data. We achieve both scalability and statistical robustness by combining strong,
but biologically motivated, Bayesian priors for statistical regularization–analogous to
the p >> n approach of genomic prediction methods–with algorithmic innovations
recently developed for LMMs. In the three examples below, we demonstrate that our algo-
rithmmaintains high predictive accuracy for tens-of-thousands of traits, and dramatically
improves the prediction of genetic values over existing methods when applied to data
from real breeding programs.

Results
Methods overview

MegaLMM fits a full multi-trait linear mixed model (MvLMM) to a matrix of pheno-
typic observations for n genotypes and t traits (level 1 of Fig. 1A). We decompose this
matrix into fixed, random, and residual components, while modeling the sources of vari-
ation and covariation among all pairs of traits. The main statistical and computational
challenge of fitting large MvLMMs centers around the need to robustly estimate t × t
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Fig. 1 Overview of the MegaLMMmodel: A MegaLMM decomposes a typical MvLMM into a two-level
hierarchical model. In level 1, raw data from t traits on each of the n plants (more generally observational
units) (yi·) are combined into an n × t trait matrix Y. Variation in Y is decomposed into two parts: a low-rank
model (F�) consisting of K latent factor traits, each of which controls variation in a subset of the original traits
through the loadings matrix �, and a residual matrix (E) of independent residuals for each trait. The latent
factor traits and the t residual vectors are now mutually un-correlated, and are each modeled with
independent LMMs in level 2. Experimental design factors, genetic background effects, and other modeling
terms are introduced at this level. Cells highlighted in green show observations and associated parameters
for plant i. Cells highlighted in orange highlight observations and associated parameters for trait j. B Two
multi-trait genomic prediction applications: i) the use of high-throughput phenotyping data to supplement
for expensive direct measures of focal traits like grain yield, and ii) the analysis of large multi-environment
trials. In each case, observed data of focal traits (green) and secondary traits (blue) are used to predict genetic
values for individuals without direct phenotypic observations (grey)

covariance matrices for the residuals and each random effect. Each covariance matrix has
t(t − 1)/2 + t free parameters, and any direct estimation approach is computationally
demanding because it requires repeatedly inverting these matrices (anO(t3) operation).
We solve both of these problems by introducing K un-observed (latent) traits called

factors (fk) to represent the causes of covariance among the t observed traits. We treat
each latent trait just as we would any directly measured trait and decompose its variation
into the same fixed, random and residual components using a set of parallel univariate
linear mixedmodels (level 2 of Fig. 1A).We thenmodel the pairwise correlations between
each latent trait and each observed trait through K loadings vectors λk·.
Together, the set of parallel univariate LMMs and the set of factor loading vectors result

in a novel and very general re-parameterization of the MvLMM framework as a mixed-
effect factor model. This parameterization leads to dramatic computational performance
gains by avoiding all large matrix inversions. It also serves as a scaffold for eliciting
Bayesian priors that are intuitive and provide powerful regularization which is neces-
sary for robust performance with limited data. Our default prior distributions encourage:
i) shrinkage on the factor-trait correlations (λjk) to avoid over-fitting covariances, and
ii) shrinkage on the factor sizes to avoid including too many latent traits. This two-



Runcie et al. Genome Biology          (2021) 22:213 Page 4 of 25

dimensional regularization helps the model focus only on the strongest, most relevant
signals in the data.
While others have used latent factor approaches to reduce dimensionality of MvLMMs

(e.g., [15–18]), these methods only use factors for a single random effect (usually the
matrix of random genetic values)–with the exception of BSFG which uses factors for the
combined effect of a single random effect and the residuals [17]. In MegaLMM, we expand
this framework and use factors to model the joint effects of all predictors: fixed, random
and residual factors on multiple traits.
We combine this efficient factor model structure with algorithmic innovations that

greatly enhance computational efficiency, drawing upon recent work in LMMs [19–
22]. While Gibbs samplers for MvLMMs are notoriously slow, we discovered extensive
opportunities for collapsing sampling steps, marginalizing over missing data, and dis-
critizing variance components so that intermediate results can be cached (Additional
file 1: Supplemental Methods).
Genomic prediction using MegaLMM works by fitting the model to a partially observed

trait matrix, with the traits to be predicted imputed as missing data. MegaLMM then
estimates genetic values for all traits (both observed andmissing) in a single step (Fig. 1B).

MegaLMM is efficient and effective for large datasets

We used a gene expression matrix with 20,843 genes measured in each of 665 Ara-
bidopsis thaliana accessions (a total of nearly 14 million observations), to evaluate the
accuracy and time requirements for trait-assisted genomic prediction–a classic example
of an applied use of MvLMMs–across a panel of existing software packages. We created
datasets with 4 to 20,842 “secondary” traits with complete data, and used these data to
predict the genetic values of a single randomly selected “focal” gene with 50% missing
data.
Despite the limited number of independent lines in this data set, adding up to ≈ 200

secondary traits improved the genomic prediction accuracy of MegaLMM and two other
Bayesian methods: MCMCglmm and phenix (Fig. 2A). The maximum likelihood method
MTG2 [23], on the other hand, did only marginally better than single-trait prediction, and
genomic prediction accuracy declined with 32 traits, likely due to overfitting. We note
that the results here are averages over 20 randomly selected focal genes. The prediction
accuracy and benefits of multi-trait prediction varied considerably among genes (Addi-
tional file 1: Figure S1 and Figure S2), but comparisons among methods were largely
correlated. Using simulated datasets where we knew the true genetic and residual covari-
ances among traits, we also found that MegaLMM was at least as accurate in estimating
covariance parameters as the competing methods (Additional file 1: Figure S3).
Beyond 32 secondary traits, computational times for MCMCglmm and MTG2 became

prohibitive (Fig. 2B). Using extrapolation, we estimated that fitting these methods for 512
traits would take 20 days and 217 days, respectively, without considering issues of model
convergence. In contrast, phenix and MegaLMM were both able to converge on good
model fits for 512 traits in approximately one hour.
Beyond 512 traits, MegaLMM was the only viable method as phenix cannot be applied

to datasets with t > n phenotypes. Although the genomic prediction accuracy of
MegaLMM did not increase further after ≈ 256 traits, performance did not suffer even
with the full dataset of > 20, 000 traits and the analysis was completed in less than a day.
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Fig. 2 MegaLMM scales efficiently for very high-dimensional traits. Four competing methods were used to fit
multi-trait genomic prediction models to predict genetic values for a single focal gene expression trait using
complete data from t additional traits. Data are from an Arabidopsis thaliana gene expression data with
20,843 genes and 665 lines. A Average estimated genomic prediction accuracy across 20 focal traits using t
additional secondary traits for each of the four prediction methods (rrBLUP is a univariate prediction
method and was only run for the focal trait). Genomic prediction accuracy was estimated by cross-validation
as ρg = corg(û, y)

√
h2(û) to account for non-genetic correlations between the secondary traits and focal

traits since all were measured in the same sample. Smoothed curves are estimated by stats::lowess.
The number of latent factors used for MegaLMM (K) is listed in red at the top of the figure. B Computational
times required to find a solution for each MvLMM. For the MCMCmethods MCMCglmm and MegaLMM, times
were estimated as the time required to collect an effective sample size of at least 1000 for > 90% of the
elements in the genetic covariance matrix U. Computational times for MCMCglmm and MTG2 above 64 traits
were linearly extrapolated (on log scale) based on the slope between 32 and 64 traits. Black lines show the
slope of exponential scaling functions with the specified exponents for reference

This shows that MegaLMM is feasible to apply to very high-dimensional studies and, in
most cases, does not require pre-filtering of traits–something that requires great care in
genomic prediction applications to avoid misleading results [24].
An important feature of MegaLMM is that the choice of the number of latent factors K

is less critical than in most factor models. Since factors are ordered from most-to-least
important by the prior (See Methods), as long as enough factors are specified to capture
the majority of the covariance among traits, adding additional latent factors does not lead
to over-fitting (Additional file 1: Figure S4A). Additional factors do increase the run-time
of the algorithm, though (Additional file 1: Figure S4B), so some optimization of K during
the burn-in period can reduce computational demands during posterior sampling.

Applications to real breeding programs

To demonstrate the utility of MegaLMM, we developed two classes of genomic prediction
models for high-dimensional phenotype data in real plant breeding programs.

Genomic prediction using hyperspectral reflectance data

When the final performance of a variety is difficult or costly to obtain, breeding programs
can supplement direct measures of performance with data from surrogate traits that can
be measured cheaply, earlier in the breeding cycle, and on more varieties. For example,
in the bread wheat breeding program at CIMMYT, hyperspectral reflectance data can be
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collected rapidly and repeatedly by aerial drones on thousands of plots [25].We developed
a multi-trait genomic prediction model to incorporate 62-band hyperspectral reflectance
data from 10 different drone flights over the course of one growing season, and compared
the accuracy of these genetic value predictions against more traditional approaches.
We first compared three standard univariate methods: GBLUP [26], Bayesian

LASSO (BL) [27], and Reproducing kernel Hilbert space (RKHS) regression [28]. GBLUP
achieved a prediction accuracy of ρg = 0.43 for yield (Fig. 3A). Both the BL and RKHS

methods showed modest improvements, with ρg = 0.47 and ρg = 0.49, respectively in
these data. The RKHS model often out-performs GBLUP in plant breeding datasets, but
improvements are generally slight and inconsistent depending on the genetic architecture
of the targeted trait.
In the original analysis of this dataset, [25] achieved increased performance by replacing

the genomic kernel (K in our notation) with a kernel based on the cross-product of hyper-
spectral reflectances across all wavelengths and time points (termed the H matrix). We
replicated these results, achieving a prediction accuracy of ρg = 0.58 (HBLUP method).
These authors also proposed a multi-kernel model combining the K and H kernel
matrices, although they only applied this to cross-treatment genotype-by-environment
predictions. We found that applying this multi-kernel method to the within-environment
data resulted in additional accuracy gains (ρg = 0.64) (GBLUP+Hmethod; Fig. 3A).
While more effective than univariate methods, predictions based on the H kernel

matrix are biased by non-genetic correlations between surrogate traits and yield because

Fig. 3 Performance of single-trait and multi-trait genomic prediction for wheat yield. A 8 methods for
predicting Grain Yields of 1,092 bread wheat lines. Genetic value prediction accuracy was estimated by
cross-validation. Complete data (yield, marker genotypes, and 620 hyperspectral wavelength reflectances)
was available for all lines, but 50% of the yield values were masked during model training. Genetic value
prediction accuracy was estimated as ρg = corg(û, y)

√
h2(û) because hyperspectral data and actual yields

were collected on the same plots [24]. Bars show average estimates (± standard error) over 20 replicate
cross-validation runs for each method. Details of each model are presented in Additional File 1: Supplemental
Methods. Briefly, the three single-trait methods only used yield and genotype data. The five multi-trait
methods additionally used hyperspectral data measured on all 1,092 lines. B Phenotypic correlation (black
lines), and estimates of genetic correlation (red lines) between each hyperspectral wavelength measured on
each of the 10 flight dates with final grain yield. Genetic correlations were estimated with the MegaLMM
GBLUPmethod using complete data. Ribbons show the 95% highest posterior density (HPD) intervals
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they do not directly model the genetic component of these correlations. MegaLMM imple-
ments a full multi-trait mixed model and thus can separate these sources of correlation.
We fit three different multi-trait prediction models with MegaLMM. The first was a
standard multi-trait mixed model with a single random effect based on the genomic
relationship matrix K. This method achieved a dramatically higher prediction accuracy
than any of the previous approaches (ρg = 0.73). Second, because the RKHS model
had the highest performance among univariate predictions, we implemented an approxi-
mate RKHSmethod in MegaLMM based on averaging over three kernel matrices [28]. We
are not aware of any other high-dimensional MvLMM implementations that allow mod-
els with multiple random effects. This model achieved the highest predictive accuracy
(ρg = 0.77). Finally, we repeated the MegaLMM-GBLUP analysis but this time masking all
phenotype data (both grain yield and hyperspectral data) from the testing set. We called
this approach MegaLMM-GBLUP-CV1 following the nomenclature from [29]. Genetic
prediction accuracy in the CV1 setting was similar to the univariate methods (ρg = 0.49),
showing that nearly all benefit of MegaLMM in this dataset came through the optimal use
of secondary trait phenotypes on the lines of interest.
In summary, by directly modeling the genetic covariance between the surrogate traits

(hyperspectral reflectance measures), we achieved performance increases of 56%-79%,
and up to 36% over the HBLUP method. To show that these conclusions were robust in
other datasets, we repeated the same analyses in the other 19 trials reported by [25] and
results were highly similar in all trials (Additional file 1: Figure S5).
To explore why directly modeling the genetic correlation is important, we com-

pared the estimated genetic correlations between each hyperspectral band and grain
yield to the corresponding phenotypic correlations (Fig. 3B). Most genetic correlation
estimates closely paralleled the phenotypic correlations, with the largest values for low-
to-intermediate wavelengths occurring on dates towards the end of the growing season
while plants were in the grain filling stage [25]. However, there were notable differ-
ences. For example, genomic correlations were moderate (ρg ≈ 0.2) for most wavelengths
during early February sampling dates while phenotypic correlations were near zero;
yet, during early March time points, phenotypic correlations between yield and bands
around 800 nanometers were moderate (ρy ≈ −0.2) but genomic correlations were
near-zero. MegaLMM is able to model the discrepancy between genomic and phenotypic
correlations, but methods based on theHmatrix (e.g., HBLUP) are not.

Genomic prediction of agronomic traits across multi-environmental trials

Multi-trait mixed models are also used to analyze data from multi-environment tri-
als to account for genotype-environment interactions and select the best genotypes in
each environment. The Genomes2Field initiative (https://www.genomes2fields.org/) is an
ongoing multi-environment field experiment of maize hybrid genotypes across 20 Amer-
ican states and Canadian provinces. Data from the years 2014-2017 included 119 trials
with a total of 2102 hybrids. As in many large-scale multi-environment trials, only a small
proportion of the available genotypes were grown in each trial. Therefore, the majority of
trial-genotype combinations were un-observed.
We selected four representative agronomically important traits and compared the

ability of four modeling approaches to impute the missing measurements. Including
across-trial information was beneficial for each of the four traits, suggesting generally

https://www.genomes2fields.org/
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positive genetic correlations across trials. However, applying MegaLMM to each of the four
trait datasets improved predictions dramatically, with average benefits across trials rang-
ing from ρy = 0.10 to ρy = 0.17 (Fig. 4). The performance of phenix was inconsistent
across traits and trials, likely because its model for the non-additive genetic covariance
(i.e., the residual) is less flexible than MegaLMM.
To explore why jointly modeling all genetic and non-genetic covariances for each pair of

trials improved prediction accuracy for each trait, we assessed the per-trial differences in
performance between MegaLMM and the corresponding within-trial genomic prediction
model. Trials varied considerably in how much MegaLMM improved genomic prediction
accuracy, with several trials seeing improvements of ρ > 0.4. The magnitude of the
MegaLMM effect on genomic prediction accuracy was largely explained by the maximum
genetic covariance between that trial and any other trial in the dataset (Additional file 1:
Figure S6). This is expected because the benefit of a MvLMM is largely dependent on the
magnitude of genetic covariances between traits.
A common approach in multi-environment trials is to combine similar trials (based on

geographic location or similar environments) into clusters and make genetic value pre-
dictions separately for each cluster [30]. However, this will not be successful if clusters
cannot be selected a priori because using the trial data itself to identify clusters can lead to
overfitting if not performed carefully [24]. In these data, the distribution of genomic cor-
relations between trials differed among traits, so it is not straightforward to identify which

Fig. 4 Average within-trial prediction accuracy for four maize traits in the Genomes2Fields Initiative
experiment. Traits included: days to silking (DTS), anthesis-silking interval (ASI), grain yield, and plant height.
Bars show the average ±95% confidence intervals of prediction accuracy for each method across the 76-99
trials with sufficient training data for each trait. For each trail, prediction accuracies were estimated as the
mean over 20 randomized cross-validation replicates
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pairs or subsets of trials could be combined. The most obvious predictor of trial similarity
is geographic distance, but we did not see consistent spatial patterns in the among-trial
covariances across the four traits. The trials with the greatest benefit from our MvLMM
showed geographic clustering in the central mid-west for the anthesis-silking interval
(ASI) but not for the other three traits (Fig. 5A). Genetic correlations tended to decrease
over long distances for ASI and over short distances for plant height, but not for the
other two traits (Fig. 5B), resulting in obvious geographic clustering of genetic corre-
lations for ASI but not the other traits (Fig. 5C). This suggests that including all trials
together in one model is necessary to maximize the benefit of the MvLMM approach to
multi-environment plant breeding.

Discussion
Novel statistical methods can help optimize plant and animal breeding programs to meet
future food security needs. In the above examples, we highlighted two areas where large-
scale phenotype data can improve the accuracy of genomic prediction in realistic plant
breeding scenarios: by incorporating high-throughput phenotyping data from remote
sensors, and by synthesizing data on gene-environment interactions across large-scale
multi-environment trials. In both examples, we apply high-dimensional multivariate lin-
ear mixed models to efficiently integrate all available genotype and phenotype data into
genetic value predictions. MegaLMM is a scalable tool that extends the feasible range of
input data for multivariate linear mixed models by at least two orders of magnitude over
existing methods, while providing the flexibility to plug directly into existing breeding
programs.

Fig. 5 Benefit of MegaLMM and geographic distributions of among-trial genetic correlations vary among
traits. Traits analyzed included: days to silking (DTS), anthesis-silking interval (ASI), grain yield, and plant
height. A Trial locations for each trait are shown. Points were jittered west-to-east to prevent overlap of
repeated trials across years. Size and color of each point correspond to the increase in prediction accuracy for
MegaLMM versus a univariate LMM. B Smoothed estimates (computed using geom_smooth with a
bandwidth of 1.0) of the relationship between geographic distance and genetic correlation for each trial. Line
colors correspond to the benefit of MegaLMM in each focal trial. C Genetic correlations between the trial with
the greatest benefit of MegaLMM for each trait and each other trial
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Computational and statistical efficiency

Computational issues in single-trait LMMs have been studied extensively, allowing imple-
mentations for large datasets [14, 21, 22, 31]. Most of these algorithms diagonalize
the genomic relationship matrices to improve computational efficiency. This technique
dramatically improves the performance of simple, low-dimensional MvLMMs as well
(e.g., [14, 23]). However, diagonalization does not address the computational challenge
imposed by large trait-covariance matrices, and can only be applied to models with a sin-
gle random effect and no missing data. Therefore, these tools cannot be applied to the
datasets studied here or, more generally, to most large-scale studies of gene-environment
interactions that frequently have large proportions of missing data [10] (Fig. 1) and to
studies that have experimental designs with multiple sources of covariance (e.g., spatial
environmental variation or non-additive genetics).
Our work builds on the factor-analytic approach to regularizing MvLMMs [15–18] and

is most similar to BSFG [17] and phenix [18], which improve upon traditional quanti-
tative genetic factor models by specifying sparse or low-rank factor matrices to improve
robustness in high dimensions. Importantly, however, these models are limited to a sin-
gle random effect and are not tractable for datasets with large numbers of traits because
of computational inefficiencies (BSFG), or a lack of strong regularization on the resid-
ual covariance matrix (phenix). MegaLMM generalizes both methods and dramatically
improves their weaknesses, allowing analyses with >20,000 traits to be completed in less
than one day. Since MegaLMM scales approximately linearly with the number of traits
(Fig. 2), applying it to datasets with many more traits may be feasible. While we have
designedmany of our routines to take advantage ofmulti-core CPUs, graphical processing
units may offer additional performance gains.
Two key advantages of MegaLMM are its flexibility and generality. We have designed

the MegaLMM R package to be as general as possible so that it can be applied to a wide
array of problems in quantitative genetics. MegaLMM tolerates unbalanced designs with
incomplete observations (something that makes MCMCglmm and MTG2 very slow), arbi-
trarily complex fixed effect specifications to model experimental blocks, covariates, or
other sources of variation among samples (unlike phenix), and most importantly, multi-
ple random effects (unlike phenix, GEMMA, or MTG2). Multiple random effect terms can
be used to account for spatially correlated variation across fields, non-additive genetic
variation that is not useful for breeding, or to more flexibly model non-linear genetic
architectures as we demonstrated with the approximate RKHS regression approach in the
wheat application (Fig. 3). To make multiple-random-effect models computationally effi-
cient, we take our earlier work with LMMs [22] and extend the same discrete estimation
procedure to MvLMMs where the impact on computational efficiency is exponentially
greater. Other commonly used tools for fitting MvLMMs such as ASREML [32] allow
more flexibility in the specification of multiple variance-component models with corre-
lated random effects that are not currently possible in MegaLMM. However, these tools
do not scale well beyond ≈ 10 traits, so are not feasible to apply directly to large-scale
datasets in plant breeding.

Applicability to high-throughput phenotypic data

Large-scale phenotype data collection is rapidly emerging as a standard tool in plant
breeding and other fields that use quantitative genetics [1, 33, 34]. These deep pheno-
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typing datasets can be used as high-dimenisional features to predict genetic values in
agronomically important traits and serve as substitutes for direct assays where these are
more time-consuming or expensive to collect.
Breeding objectives differ from the goals of polygenic risk score predictions for human

diseases because the prediction target is not the phenotype of an individual, but its genetic
value [24]. Genetic values quantify the expected phenotype of a plant’s offspring, and so
exclude impacts of the plant’s own microenvironment on its phenotype [7]. Therefore,
accurate genetic value prediction requires models that can distinguish between genetic
and non-genetic sources of covariation among traits.
The MvLMM is considered the gold-standard method for isolating genetic correlations

from non-genetic correlations in genetic value prediction [10]. However, it has rarely been
applied in breeding programs because of the computational challenges associated with
estimating multiple large covariance matrices. With high-throughput phenotype (HTP)
data, MvLMMs have only been applied directly to sets of ≈ 2 − 5 traits. Instead, several
authors have used a prior round of feature selection or calculated summary statistics of
the HTP to generate model inputs rather than using the raw high-dimensional data itself
(e.g., [3, 12, 35–37],). Other authors have replaced the MvLMM with a direct regression
on the HTP data, using techniques such as factorial regression [38], functional regression
[39], kernel regression [25], and deep learning[40]. While straightforward to implement,
this conditioning on the HTP traits creates a form of collider bias which can induce
genotype-phenotype associations that do not actually exist and impede genetic value pre-
dictions [24]. Alternative methods including IBCF [41]) and regularized selection indexes
[42] avoid computational complexities of the full MvLMMs, but do not make full use of
the trait correlations in the data.
MegaLMM, on the other hand, fits a full MvLMM to an arbitrary number of HTP traits

and should be more efficient at leveraging high-dimensional genetic correlations while
accounting for non-genetic sources of covariance, particularly for datasets when HTP
traits and focal performance traits are measured on the same plants. Non-genetic cor-
relations will be less important on datasets where these sets of traits are measured on
different plots. At least in the wheat breeding trial datasets we examined, the benefit of
multi-trait modeling was much greater when traits were partially observed on each indi-
vidual than when secondary traits were only observed in the training partition. This is
expected theoretically and has been demonstrated previously in simulations [24], but the
magnitude of the benefit was particularly dramatic here. This suggests that breeding pro-
grams should focus on developing HTP technologies that can measure secondary traits
on the target individuals; HTP measurements on training individuals may be less useful
for prediction applications. Unlike other methods, including too many traits, or including
redundant traits that are highly correlated is unlikely to significantly impact prediction
accuracy, reducing the need to carefully choose which traits to include and which to
exclude a priori; MegaLMM allows users to simply include all traits they have at once.

Applicability to multi-environment trial data

The analysis of multi-environment trials provides a separate set of computational and
statistical challenges for plant breeders. Multi-environment trials (METs) are necessary
because gene-environment interactions (GEIs) often prevent the same variety from per-
forming best in all locations where a crop is grown [10]. However,METs are expensive and
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logistically difficult. Genomic predictions in METs could reduce the need to test every
variety in every environment, allowing smaller individual trials [43].
GEIs can be modeled in two ways: (i) as changes in variety effects on the same trait

across environments (i.e., variety-by-environment interactions), or (ii) as a set of geneti-
cally correlated traits, with each trait-environment combination considered as a different
phenotype [10]. When formulated with linear mixed models and random genetic effects,
these two approaches are mathematically equivalent. Traditionally, the most common
model for analyzing METs has been the AMMI model in which the genetic effects of
each variety in each environment are modeled using a set of products between genetic
and environmental vectors [44]. AMMI models are used to rank genotypes in different
environments and to identify environmental clusters with similar rankings of varieties.
However, AMMI models cannot easily incorporate marker data. When genetic values are
treated as random effects, AMMI models becomes factor models (generally called factor
analytic models in this literature) (e.g. [45, 46]), and can incorporate genetic marker data
(e.g. [47]). MegaLMM extends this factor-analytic method for analyzing METs, making the
methods robust for METs with hundreds or more individual trials.
A limitation of the AMMI factor-analytic approach to analyzing METs is that there is

no mechanism for extending predictions to new environments outside of those already
tested. Even large-scale commercial trials cannot test every field a farmer might use.
Several authors have proposed using environmental covariates (ECs) to model environ-
mental similarity in METs and predict GEIs for novel environments (e.g., [47–49]). These
approaches all involve regressions of genetic variation on the ECs, and so, if relevant ECs
are missing or the relationship between variety plasticity and ECs is non-linear, these
models will under-fit the GEIs. Nevertheless, these approaches are promising and have
been successfully applied to large METs (e.g. [47],). MegaLMM cannot currently incor-
porate ECs to predict novel environments. However, a possible extension could involve
replacing the iid prior on the elements of the factor loadings matrix with a regression
on the ECs. This hybrid of ECs and a full MvLMM could leverage the strengths of both
approaches.

Model limitations

While MegaLMM works well across a wide range of applications in breeding programs,
our approach does have some limitations.
First, since MegaLMM is built on the Grid-LMM framework for efficient likelihood cal-

culations [22], it does not scale well to large numbers of observations (in contrast to large
numbers of traits), or large numbers of random effects. As the number of observational
units increases, MegaLMM’s memory requirements increase quadratically because of the
requirement to store sets of pre-calculated inverse-variance matrices. Similarly, for each
additional random effect term included in the model, memory requirements increase
exponentially. Therefore, we generally limit models to fewer than 10,000 observations
and only 1-to-4 random effect terms per trait. There may be opportunities to reduce this
memory burden if some of the random effects are low-rank; then these random effects
could be updated on the fly using efficient routines for low-rank Cholesky updates. We
also do not currently suggest including regressions directly on markers and have used
marker-based kinship matrices here instead for computational efficiency. Therefore as a
stand-alone predictionmethod, MegaLMM requires calculations involving the Schur com-
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plement of the joint kinship matrix of the testing and training individuals which can be
computationally costly.
Second, MegaLMM is inherently a linear model and cannot effectively model trait rela-

tionships that are non-linear. Some non-linear relationships between predictor variables
(like genotypes) and traits can be modeled through non-linear kernel matrices, as we
demonstrated with the RKHS application to the Bread Wheat data. However, allowing
non-linear relationships among traits is currently beyond the capacity of our software
and modeling approach. Extending our mixed effect model on the low-dimensional latent
factor space to a non-linear modeling structure like a neural network may be an exciting
area for future research. Also, some sets of traits may not have low-rank correlation struc-
tures that are well-approximated by a factor model. For example, certain auto-regressive
dependence structures are low-rank but cannot efficiently be decomposed into a discrete
set of factors.
Nevertheless, we believe that in its current form, MegaLMM will be useful to a wide

range of researchers in quantitative genetics and plant breeding.

Potential extensions

Beyond the examples we show in this work, the scalability and statistical power of
MegaLMM can open up new avenues for innovation in genomic prediction applications
across the fields of quantitative genetics–both in breeding programs as we have described
here and, potentially, in human genetics. Genomic prediction is also used for the calcula-
tion of polygenic risk scores for complex human traits and diseases [50]. MegaLMM may
help leverage past case histories, survey responses, molecular tests, and the genetic archi-
tecture of other correlated traits to provide a more comprehensive multi-trait polygenic
risk score (e.g. [51]).
We have focused here on simple scalar phenotypes: the expression of a single gene,

the total grain yield, and individual measures of agronomic performance. However, many
important traits in plants, animals, and humans cannot easily be reduced to a scalar value.
Examples include time-series traits such as growth curves [52], metabolic traits such as
the relative concentrations of different families of metabolites [53], and morphological
traits such as shape or color [54]. Each of these traits can be decomposed into vectors
of interrelated components, but treating these components as independent prediction
targets using existing univariate LMM or low-dimensional MvLMM genomic prediction
tools is inefficient because of their statistical dependence. MegaLMM can be adapted to
make joint predictions on vectors of hundreds or thousands of correlated trait compo-
nents, which could be fed into high-dimensional selection indices for efficient selection
of these important plant characteristics. In human genetics, MegaLMMmay provide a way
to derive multi-ethnic polygenic risk scores [55] by treating outcomes within each ethnic,
geographic, or other stratified population group as correlated traits, similar to the analysis
of the multi-environment trials above.
MegaLMM should be straightforward to extend to more flexible genetic models includ-

ing the Bayesian Alphabet family of mixture priors on marker effect sizes. These effects
can be incorporated into the parametersB2R andB2F by adapting the prior structure. This
will be further explored in future manuscripts.
Lastly, we have only focused on GaussianMvLMMs, in which observations are assumed

to marginally follow a Gaussian distribution. However, many other types of data require
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more flexible models. It should be possible to extend MegaLMM to the broader family
of generalized LMMs. These approaches model the relationships among predictor vari-
ables in a latent space, which is then related to the observed data through a link function
and an exponential family error distribution. More generally, link-functions could be any
non-linear function of multiple parameters such as a polynomial or spline basis, or a
mechanistic model. In this case, we would model the correlations among model parame-
ters on this link-scale and then use the link-function to relate the latent scale variables to
the observed data. Extending MegaLMM to accommodate such generalized LMM struc-
tures would require new sampling steps in our MCMC algorithm (see Methods), but we
do not see any conceptual challenges with this approach.

Conclusions

MegaLMM is a flexible and powerful framework for the analysis of very high-dimensional
datasets in genetics. Multivariate linear mixed models are widely used for analyzing cor-
related traits, but have been limited to a maximum of a dozen or so traits at a time by
the curse of dimensionality. We developed a novel re-parameterization of the MvLMM
that allows powerful statistical regularization and efficient computation with thousands
of traits. When applied to real plant breeding objectives, MegaLMM efficiently leverages
information across traits to improve genetic value predictions. Our open-source software
package will enable users to apply and extend this method in many directions, opening
up new areas of research and development in breeding programs.

Methods
Multivariate linear mixedmodels

Multivariate linear mixed models (MvLMMs) are widely used to model multiple sources
of covariance among related observations. Let the n × t matrix Y represent observations
on t traits for n observational units (i.e., individual plants, plots, or replicates). A general
MvLMM takes on the following form

Y = XB + ZU + E, (1)

where X is a n × b matrix of “fixed” effect covariates with effect sizes matrix B, U is an
r × t matrix of random effects for each of the t traits, with corresponding random effect
design matrix Z, and E is a n × t matrix of residuals for each of the t traits.
MegaLMM uses this formulation to accommodate a large number of designs through

different specifications of X and Z, and different priors on B, U and E. The distinc-
tion between “fixed” and “random” effects in Bayesian mixed models is not well-defined
because every parameter requires a prior. However, we use the following distinction here:
“fixed” effects are covariates assigned flat (i.e., infinite variance) priors or priors with inde-
pendent variances on each coefficient; “random” effects, in contrast, are grouped in sets
that can be thought of as (possibly correlated) samples from a common population dis-
tribution. Generally, “fixed” effects are used to model experimental design terms such as
blocks, time, sex, etc, genetic principal components, or specific genetic markers; while
“random” effects are used to model genetic values, spatial variation, or related effects.
An important feature of MegaLMM is that multiple random effect terms can be included

in the model. We specify this as
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ZU =
M∑

m=1
ZmUm =[Z1, . . . ,ZM]

[
Uᵀ
1 , . . . ,U

ᵀ
M

]ᵀ ,

where each Zm is an n × rm design matrix for a set of related parameters with corre-
sponding coefficient matrix Um. For example, U1 may model additive genetic values for
each individual, while U2 may model spatial environmental effects for each individual.
The distribution of each random effect coefficient matrix is Um ∼ N (0,Km,Gm), where
N (M,�,�) is the matrix normal distribution with mean matrix M, among-row covari-
ance Km and among-column (i.e., among-trait) covariance Gm. We assume that both Zm
and Km are known, while Gm is unknown and must be learned from the data. Note that
Km must be positive semi-definite, while Gm is positive-definite. The covariance among
different coefficient matrices is assumed to be zero.
To complete the specification of the MvLMM, we assign the residual matrix the distri-

bution E ∼ N (0, In,R) where In is the n × n identity matrix and R is an unknown t × t
positive-definite covariance matrix.

Computational challenges with large multi-trait mixed models

Fitting Eq. (1) is challenging because the columns of U and E are correlated. This
means that data from individual traits (columns of Y) cannot be treated independently.
Maximum-likelihood approaches for fitting MvLMMs (e.g., MTG2) compute the full (or
restricted) likelihood ofY, which involves calculating the inverse of an nt×ntmatrixmany
times during model optimization. This is computationally prohibitive when n and/or t
are large (Fig. 2A). Gibbs samplers (e.g., MCMCglmm) avoid forming and computing the
inverse of this extremely large matrix, but still require inverting each of the Gm and R
matrices repeatedly, which is still prohibitive when t is large. Furthermore, the number
of parameters in each Gm and R grow with the square of t and quickly get larger than
the total number of observations (nt) when t is large. This means that Gm and R are not
identifiable in many datasets and estimates require strong regularization.

Mixed effect factor model

If bothGm andRwere diagonal matrices, the t traits would be uncorrelated. Fitting Eq. (1)
then could be done in parallel across traits, greatly reducing the computational burden.
While we cannot directly de-correlate traits, if we can identify the sources of variation
that cause trait correlations, the residuals of each trait on these causal factors will be
un-correlated. We circumvent this issue by re-parameterizing Eq. (1) as a factor model,
where we introduce a set of un-observed (or latent) factors that account for all sources
of correlation among the traits. Conditional on the values of these factors, the model
reduces to a set of independent linear mixed models. Our re-parameterized multi-trait
mixed effect factor model is

Y = F� + X1B1 + X2B2R + ZUR + ER

F = X2B2F + ZUF + EF
(2)

where F is an n × K matrix of latent factors, � is a K × t factor loadings matrix, X =
[X1,X2] is a partition of the n× b fixed effect covariate matrix between the b1 covariates
with improper priors and the b2 = b − b1 covariates with proper priors, and UR and UF
coefficients matrices are specified as:
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UR = [
Uᵀ
R1, . . . ,U

ᵀ
RM

]ᵀ

UF = [
Uᵀ
F1, . . . ,U

ᵀ
FM

]ᵀ .

The distributions of the random effects are specified as:

URm ∼ N (0,Km,�Rm), UFm ∼ N (0,Km,�Fm)

ER ∼ N (0, In,�RE), EF ∼ N (0, In,�FE)

where �Rm, �Fm, �RE , and �FE are all diagonal matrices. Diagonal elements of �Fm and
�FE are non-negative, while diagonal elements of �Rm and �RE are strictly positive.
Conditional on F and �, the variation in each of the t columns of Y are uncorrelated

and can be fitted to the remaining terms independently. Similarly, the K columns of F are
also uncorrelated and can be modeled independently as well. Therefore, we can fit Eq. (2)
without requiring calculating the inverses of any t×tmatrices, and many calculations can
be done in parallel across different CPU cores.
As long as K is sufficiently large, Eq. (2) is simply a re-parameterization of Eq. (1). To

see how Eq. (2) can represent the terms of Eq. (1), let:

B = [
Bᵀ
1 , (B2R + B2F�)ᵀ

]ᵀ

U = UR + UF�

E = ER + EF�

Based on the properties of matrix normal random variables, we can integrate over UR,
UF , ER and EF to calculate the distributions of each Um and E as:

Um ∼ N
(
0,Km,�Rm + �ᵀ�Fm�

)

E ∼ N (0, In,�RE + �ᵀ�FE�)

Therefore, eachGm is re-parameterized as �Rm +�ᵀ�Fm� and R is re-parameterized as
�RE + �ᵀ�FE�, such that all off-diagonal elements of each matrix are controlled by �.
Although these equations appear to imply that our mixed effect factor model constrains

B, U and E (and thus each Gm and R) to be correlated due to the shared dependence
on �, this is not necessarily the case. When any diagonal element of any �Fx matrix is
set to zero, the corresponding row of � does not contribute to that term. If at least t
linearly independent rows of� contribute to eachmatrix, then any set of positive-definite
matrices can be represented as above. Therefore, we can represent any set of positive-
definite matrices Gm and R with our model as long as K >= t(M + 1).
Of course, the reason that we parameterize our model in this way is that we do expect

some correlation among the genetic and residual covariance matrices. From a statistical
perspective, when it is reasonable (given the data) to use the same row of � for multiple
covariance matrices, we can save parameters in the model. From a biological perspective,
shared factors provide a biologically realistic explanation for correlations among traits. If
we consider the columns of F to be K traits that simply have not been observed, then it is
reasonable to propose that each of these traits is regulated by the same sources of genetic
and environmental variation as any of the observed traits.
In Eq. (2), the K latent traits (F) are the key drivers of all phenotypic co-variation

among the t observed traits (Y). These latent traits may not account for all variation in
the observed traits. But, by definition, this residual variation (e.g., measurement errors
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in each trait) is unique to each trait and uncorrelated with the residual variation in other
traits.

Prior parameterization

The intuitive structure of the mixed effect factor model (Eq. (2) and Fig. 1) makes prior
specification and elicitation easier than for Eq. (1) because we do not need to define prior
distributions for very large covariance matrices directly. Instead, priors on the random
effect variance components and fixed effect regression coefficients are separable and can
be described independently, while priors on trait correlations are specified indirectly as
priors on the factor loading matrix �.
In MegaLMM, we have chosen functional forms for each prior parameter that balance

between interpretability (for accurate prior elicitation), and compatibility with efficient
computational approaches. For the variance components, we use the non-parametric
discrete prior on variance proportions we previously introduced in GridLMM [22] that
approximates nearly any joint distribution for multiple random effects. For the factor
loadings matrix and matrices of regression coefficients, we use a two-dimensional global-
local prior based on the horseshoe prior [56], parameterized in terms of the effective
number of non-zero coefficients. For the factor loadings matrix specifically, our prior
achieves both regularization and interpretability of the factor traits without having to
carefully specify K itself. Full details of each prior distribution are provided in Addi-
tional file 1: Table S1 lists the default hyperparameters for each prior used in the analyses
reported here and provided as defaults in the MegaLMM R package.

Computational details and posterior inference

We use a carefully constructed MCMC algorithm to draw samples from the posterior
distribution of each model parameter. We gain efficiency in both per-iteration computa-
tional time and in effective samples per iteration through careful uses of diagonalization,
sparse matrix algebra, parallelization, and integration (or partial collapsing). In particu-
lar, our algorithm synthesizes and extends several recent innovations in computational
approaches to linear mixed models [17, 20, 22, 57]. Full details of the computational
algorithm are provided in Additional file 1: Supplemental Methods.

Data Analyses

We demonstrate MegaLMM using three example datasets.

Scaling performance with gene expression data

To compare the scalability of MegaLMM to other multi-trait mixed model programs, we
used a large gene expression dataset of 24,175 genes across 728 Arabidopsis thaliana
accessions. We downloaded the data from NCBI GEO [58] [59] and removed genes with
average counts < 10. We then normalized and variance stabilized the counts using the
varianceStabilizingTransformation function from DESeq2 [60]. We down-
loaded a corresponding genomic relationship matrix K from the 1001 genomes project
[61] and subsetted to the 665 individuals present in both datasets.
We generated datasets of varying sizes from t = 2 to t = 24, 175 genes by randomly

sampling. We selected one gene as the “focal” trait in each dataset, masked 50% of its val-
ues, fit the model in Eq. (1) using four different representative MvLMM programs to the
remaining data, and used the results to predict the genetic values of each masked indivi-
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dual for this “focal” gene. Prediction accuracies were estimated as ρg = corg(û, y)
√
h2(û),

where corg is the estimated genetic correlation evaluated in the testing lines only, and
h2(û) is the heritability of the predictor û estimated using a univariate LMM [6, 42]. The
simpler Pearson’s correlation estimate of prediction accuracy is not valid in these data
because all genes were measured together in the same sample, and therefore some corre-
lation among genes is caused by non-genetic factors [24]. The four MvLMM prediciton
methods were:

1. MTG2 [23]: a restricted maximum-likelihood method written in fortran. We
pre-calculated the eigenvalue decomposition for K, thus this additional time is not
included in the results. MTG2 does not work well with a high percentage of missing
data, so genetic value predictions were made with the two-step approach from [24]
which involves estimating model parameters only from the individuals with
complete observations, and then incorporating secondary trait values of the new
individuals in the second step.

2. MCMCglmm [62]: a Bayesian MCMC algorithm largely written in C++. We used
“default” priors for R and G with diagonal means and ν = p, and ran a single
MCMC chain for 7000 iterations, discarding the first 5000 samples as burnin. To
speed up calculations (and make the timing results more comparable with the
MegaLMM algorithm), we rotated the input data by pre-multiplying by the
eigenvectors of K so that the input relationship matrix was diagonal. Since this
matrix rotation is only possible with complete data, we again used the two-step
multi-trait prediction approach [24].

3. phenix [18]: a variational Bayes algorithm written in R that uses a low-rank
representation of G but a full-rank prior for R. We set the maximum number of
factors to p/4 and used the eigendecomposition of K as the input. Again, we
excluded this calculation from the time estimates.

4. MegaLMM: we ran MegaLMM using “default priors” with K = min(n/4, p/2) and
collected 6000 MCMC samples, discarding the first 5000 as burnin. We excluded
the preparatory calculations, only including the MCMC iterations in the time
calculations. For small datasets, these calculations were significant, but were a
miniscule part of the analyses of larger datasets.

Each method was run 20 times on different randomly sampled datasets. For the two
MCMC methods, we estimated the effective sample size of each element of U using the
ess_bulk function of the rstan package [63], and used this to estimate the time nec-
essary for the effective sample size to be at least 1000 for 90% of the uij. We ran MTG2

and MCMCglmm for datasets up to t = 64 because computational times were prohibitively
long for larger datasets. We linearly extrapolated the (log) computational times for these
methods out to t = 512 for comparisons. phenix fails when t ≥ n, so this method is
limited to t < 665 in this dataset.
To assess the accuracy of each method for estimating genetic and non-genetic covari-

ances, we generated new datasets with 128 genes by calculating empirical correlation
matrices for G and R from two separate samples of 128 genes from the full expression
dataset, and then generating genetic and residual values for 128 traits from multivariate
normal distributions based on these correlation matrices. For each trait, we converted
the correlation matrices into covariance matrices by sampling an independent heritabi-
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lity value for each trait between 0.1 and 0.8. We then estimated the genetic and residual
covariance matrices for subsets of these simulated datasets using each of the four above
methods. In this example, we found that setting K larger (2p) gave better results, probably
because the G and Rmatrices were largely uncorrelated and so independent factors were
needed tomodel the two sets of covariances. Accuracy was reported as the Pearson corre-
lation between the estimated covariance parameters and the true covariance parameters
(excluding the variance parameters on the diagonal).

Wheat yield prediction using hyperspectral data

We used data from a bread wheat breeding trial to demonstrate how MegaLMM can
leverage “secondary” traits from high-throughput phenotyping technologies to better
predict genetic values of a single target trait. We downloaded grain yield and hyperspec-
tral reflectance data from the bread wheat trials at the Campo Experimental Norman E.
Borlaug in Ciudad Obregón, México reported in [25] [64]. We selected the 2014-2015
Optimal Flat site-year for our main analysis because it had among the greatest number of
hyperspectral reflectance data points, and [25] reported relatively low predictive accuracy
for grain yield in this site-year. Best linear unbiased estimates (BLUEs) and best linear
unbiased predictors (BLUPs) of the line means for grain yield (GY) and 62 hyperspec-
tral bands collected at each of 10 time-points during the growing season, and genotype
data from 8519 markers were provided for 1,092 lines in this trial. All other trials were
analyzed in the analysis presented in Additional file 1: Figure S5.
We compared eight methods for predicting the GY trait based on the genetic marker

and hyperspectral data. The first five were “standard” methods using state-of-the-art
models for genomic prediction. The final three were newmodels implemented within the
MegaLMM framework.

1. GBLUP: implemented using the R package rrBLUP [65], with the genomic
relationship matrix K calculated with the A.mat function of rrBLUP as in [66].

2. Bayesian Lasso (BL): implemented using the R package BGLR [67]. We first
removed markers with > 50%missing data, and imputed the remaining missing
genotypes with the population mean allele frequency. We used the default prior
parameters for the Bayesian Lasso in BGLR, and collected 9,000 posterior
samples with a thinning rate of 5 after a 5,000 iteration burnin.

3. RKHS: implemented using rrBLUP. We used the same thinned and imputed
genotype dataset as for the BLmethod to calculate a genomic distance matrix (D).
We also used the default theta.seq parameter to automatically choose the scale
parameter of the Gaussian kernel.

4. HBLUP: implemented using the R package lme4qtl. This replicates the analysis
reported by [25], which uses the GBLUPmethod but replaces the genomic
relationship matrix described above withH, a hyperspectral reflectance
relationship matrix calculated asH = SSᵀ/620, where S is a matrix of centered
and standardized BLUEs of hyperspectral bands from each timepoint.

5. GBLUP+H: implemented in the R package lme4qtl [68]. This is a two-kernel
method, where we use two relationship matrices: K andH. This method is
analogous to the methods proposed by [25] for leveraging the hyperspectral data in
prediction; however, those authors only used two-kernel methods for G×E
prediction across site-years. Since lme4qtl does not predict random effects for
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un-measured observations, we formed predictions as: KnoK−1
oo ûko + HnoH−1

oo ûho
where Kno is the nn × no quadrant of K specifying the genomic relationships
among the nn “new” un-observed lines, Koo is the no × no quadrant of K specifying
the genomic relationships among the “old” observed lines, ûko is the vector of
BLUPs for the genomic random effect, andHno,Hoo and ûho are similar quantities
for the hyperspectral random effect.

6. MegaLMM-GBLUP: we modeled the combined trait data Y =[ y, S] with the model
specified in Eq. (2) using a single random effect with relationship matrix K as
above, no fixed effects besides an intercept (X was a column of ones and X2 had
zero columns). We ran MegaLMM with K = 100 factors, “default” priors (see
Additional file 1: Table S1), and two partitions of the trait data (the first containing
grain yield with the masked training set as described below, and the second
containing all 620 hyperspectral bands with complete data). We collected 500
posterior samples of the quantity: u1 = uR1 + (UFλ1) at a thinning rate of 2,
discarding the first 1,000 iterations as burn-in.

7. MegaLMM-RKHS: we implemented multi-trait RKHS regression model using the
“kernel-averaging” method proposed by [28]. We standardizedD based on its mean
(squared) value, and placed a uniform prior on the set of scaling factors
h = {1/5, 1, 5}, which we implemented by calculating three corresponding
relationship matrices K1, . . . ,K3 and by specifying three random effects in Eq. (2).
We again used “default” priors, K = 100 factors, and treated only the global
intercept per-trait as fixed effects. We collected 500 posterior samples of the
quantity: Zu1 = ZuR1 + Z(UFλ1) at a thinning rate of 2, discarding the first 1000
iterations as burn-in.

8. MegaLMM-GBLUP-CV1: we repeated the MegaLMM-GBLUPmethod above, but
this time without partitioning the trait data. Instead, we masked both the grain
yield and the 620 hyperspectral band data from the testing set so all lines in the
training data had complete data. Predictions of the genetic values were calculated
identically to above.

We used cross-validation to evaluate the prediction accuracy of each method. We ran-
domly selected 50% of the lines for model training, 50% for testing, and masked the GY
observations for the testing lines. We fit each model to the partially-masked dataset and
collected the predictions of GY for the testing lines. We estimated prediction accuracy as
ρg = corg(û, y)

√
h2(û) because the hyperspectral reflectance data were collected on the

same plots as the GY data and therefore non-genetic (i.e., microenvironmental) factors
that affect both reflectance and yield may induce non-genetic correlations among traits
[24]. BLUPs were used as the predictand except in the 2016-17 year when the BLUPs were
poorly corelated with the BLUEs suggesing data quality issues. We used a 50-50 training-
testing split of the data to ensure that corg could be estimated accurately in the testing
partition. This cross-validation algorithm was repeated 20 times with different random
partitions.

Maize trait imputation inmulti-environment trails

We used data on maize hybrids from the Genomes-To-Fields Initiative experiments to
demonstrate how MegaLMM can leverage genetic correlations across locations in multi-
environment trials. We downloaded the agronomic data from the 2014-2017 field seasons
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from the CyVerse data repository [69] and corresponding genomic data. We used TAS-
SEL5 [70] to build a kinship matrix for each hybrid genotype using the CenteredIBS

routine.
A total of 2012 non-check hybrids with phenotype and genotype data from 108 trials

(i.e., site-years) were available. We selected four representative agronomic traits: plant
height (cm), grain yield (bushels/acre), days-to-silking (days), and the anthesis-silking
interval (ASI, days). For each trait in each site-year, we calculated BLUPs for all observed
genotypes using the R package lme4 [71] with Rep and Block:Rep as fixed effects to
account for the experimental design in each field, and formed them into 2012×108 BLUP
matrices for each trait. We then dropped site-years where the BLUP variance was zero,
or which had fewer than 50 tested lines. On average ≈ 12% of hybrid-site-year combina-
tions were observed across each of the four BLUP matrices. We then used four methods
to predict the BLUPs of hybrids that were not grown in each trial:

1. GBLUP (univariate): missing values were imputed separately for each
site:year using the mixed.solve function of the rrBLUP package.

2. GBLUP (env BLUPs): genetic values for each hybrid were assumed to be
constant across all site-years. We estimated these in two steps. In the first step, we
estimated hybrid main effects treating lines as independent random effects using
lme4, with site:year included as a fixed effect. In the second step, we estimated
genetic values using the mixed.solve function of the rrBLUP package.

3. phenix: we used phenix to impute missing observations in Y using K as a
relationship matrix.

4. MegaLMM: we fit the model specified in Eq. (2) to the full matrix Y, with K = 50
factors and “default”. Here, we partitioned Y into 4 sets based on year to minimize
the number of missing observations to condition on during the MCMC. We
collected 1000 posterior samples of imputed values Ỹ = X1B1 + F� + ZUR with a
thinning rate of 2, after discarding the first 5000 iterations as burnin.

We estimated prediction accuracy of eachmethod using cross-validation. For each of 20
replicate cross-validation runs per model, we randomly masked 20% of the non-missing
BLUPs, and then calculated the Pearson’s correlation between these “observed” values and
the imputed values of each method. Pearson’s correlation is appropriate as an estimate of
genomic prediction accuracy in this case because different plants were used in each trial,
so there is no non-genetic source of correlation among site-years that may bias accuracy
estimates.
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