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Abstract

Background: Recent studies highlight the role of metabolites in immune diseases,
but it remains unknown how much of this effect is driven by genetic and non-
genetic host factors.

Result: We systematically investigate circulating metabolites in a cohort of 500
healthy subjects (500FG) in whom immune function and activity are deeply
measured and whose genetics are profiled. Our data reveal that several major
metabolic pathways, including the alanine/glutamate pathway and the arachidonic
acid pathway, have a strong impact on cytokine production in response to ex vivo
stimulation. We also examine the genetic regulation of metabolites associated with
immune phenotypes through genome-wide association analysis and identify 29
significant loci, including eight novel independent loci. Of these, one locus
(rs174584-FADS2) associated with arachidonic acid metabolism is causally associated
with Crohn’s disease, suggesting it is a potential therapeutic target.

Conclusion: This study provides a comprehensive map of the integration between
the blood metabolome and immune phenotypes, reveals novel genetic factors that
regulate blood metabolite concentrations, and proposes an integrative approach for
identifying new disease treatment targets.
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Background
A growing body of evidence has revealed that metabolites have important regulatory

roles in immune system function in both health [1, 2] and disease [3–5], from vitamin

D playing a role in infections and autoimmune diseases by promoting monocyte differ-

entiation and antigen presentation [6] to modulation of cytokine responses by lipopro-

tein metabolites [7]. However, despite a well-recognized role for metabolism in the

immune system, few large-scale studies have systematically assessed the relationship be-

tween the immune system, including functional immune measures, and the thousands

of circulating blood metabolites [8, 9]. Studies to date have only assessed a limited

number of metabolites that do not fully cover the diverse range of metabolic pathways

that interact with immune processes. Even fewer studies have assessed the genetic ef-

fects of the metabolites that are associated with immune parameters and functions, or

their potential downstream effect on immune-mediated diseases [2, 10]. A comprehen-

sive map of metabolites and their interplay with immune function and genetic regula-

tion would provide crucial new information to help us understand the inter-individual

variation in human immune function and, consequently, the role metabolites play in

disease (e.g., metabolic disease, autoimmune disease, infections, or cancer), while also

identifying key interactions for mechanistic and functional understanding.

In the present study, we broadly interrogate the circulating blood metabolome and

integrate 10,434 metabolite features with deep immunophenotyping from a population-

based cohort (Human Functional Genomics Project, N = 500) [11–13]. We systematic-

ally associate metabolite features with eight categories of host factors consisting of

baseline immune parameters (including 73 immune cell subpopulation frequencies)

and immune cytokine response (91 cytokine production capacities upon stimulations).

We then perform genome-wide mapping of the metabolite features associated with im-

mune phenotypes to identify their association with immune-mediated diseases, thus

highlighting causal effects and potential therapeutic targets. This work demonstrates

how combining metabolite measurements with genetic data can improve our power to

predict cytokine production in response to stimulations. Finally, we propose a meth-

odological pipeline that integrates genomic, metabolomic, and immune datasets to

identify novel therapeutic targets in disease.

Results
Comprehensive metabolomics profiling and identification of non-genetic covariables

To get a comprehensive measure of the circulating blood metabolome, three different

analytical approaches were used to profile metabolites: (1) a nuclear magnetic reson-

ance (NMR) approach (BM, Brainshake Metabolomics/Nightingale Health platform,

Finland), (2) flow-injection TOF-M (GM, General Metabolomics, Boston), and (3) an

integrated measurement system of NMR, gas chromatography-mass spectrometry (GC-

MS) and liquid chromatography-mass spectrometry (LC-MS) (UM, untargeted metabo-

lomics, USA) [14, 15]. BM targets 231 lipids and lipoproteins (Additional file 1: Table

S1), while both GM (Additional file 2: Table S2) and UM (Additional file 3: Table S3)

measure circulating metabolic features, mainly those involving amino acid, glucose, and

lipid metabolism. In total, there are 231, 1589, and 8614 metabolic features measured

by BM, GM, UM platforms, respectively, in the plasma of the ~ 500 Dutch participants
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of the 500FG cohort [11–13]. Of note, metabolic features from BM and GM have been mapped

to actual metabolites, with 14 shared features (Additional file 4: Table S4), whereas a small num-

ber of the metabolic features from UM have annotations available (the “Discussion” section).

We observed substantial inter-individual variation in metabolite levels, and this vari-

ation was partly driven by host factors. For example, gender significantly influenced

63.4% of BM metabolites, 52.1% of GM metabolites, and 54.1% of UM metabolites

(false discovery rate (FDR) < 0.05). Age had less influence on metabolite concentrations,

with 25.1% of all metabolite features significantly associated with age, and 51.2% of

these increasing with age. In total, gender contributed more variation than age to the

circulating metabolites measured by GM and UM (P < 0.001, Student’s t-test), but this

was not the case for targeted features measured using the BM platform (P = 0.172)

(Additional file 5: Fig. S1a). After correction for age and gender, we also observed that

body mass index (BMI) affects 5.9% of all metabolite features (FDR < 0.05, Spearman

correlation analysis) (Additional file 5: Fig. S1b), with 61.9% of these positively corre-

lated with BMI. For example, as an indicator of obesity, individuals with higher BMI

also had a higher level of total fatty acids (FDR = 0.019). In addition, after correcting

for age and gender, contraceptive usage affected 32.3% of metabolite features (FDR <

0.05, Spearman correlation analysis) (Additional file 5: Fig. S1b), which agrees with the

known effects of contraceptive drugs on metabolism [16, 17]. We thus took the effect

of contraceptive usage into account as one of the co-factors in the follow-up analysis.

Baseline metabolites are associated with immune parameters

To capture the interactions between metabolites and baseline immune parameters, we per-

formed Spearman correlation analysis between metabolic features (GM and BM) and five

categories of data including immunological modulators, immunoglobulins, platelets, cell

counts, and gut microbiome, measured in the 500FG cohort [11–13, 18, 19]. After correct-

ing the effects of age, gender, and contraceptive usage, in total, 1069 GM and 21 BM show

significant correlation with at least one cell type (FDR < 0.05, Fig. 1a, b, Additional file 6:

Table S5). Stronger correlations were observed between GM and T cell subpopulations (in-

cluding T reg and T prol, Fig. 1c). For example, circulating free cholesterol shows a positive

correlation with plasma blasts but a negative correlation with regulatory T cells.

Moreover, there are 730 GM and 4 BM showing significant association with immune

modulators (including AAT and adiponectin, Fig. 1d, e, Additional file 7: Table S6).

Additionally, there are 571 GM and 10 BM significantly associated with platelet traits

(Additional file 8: Table S7). AAT is a serum glycoprotein that is primarily synthesized

in the liver and secreted into the serum and has fatty acid binding activity [20], in line

with our observation on the positive correlation between free cholesterol and AAT.

Lastly, we identified in total 1 GM and 36 BM associated with immunoglobulins (FDR

< 0.05, Additional file 9: Table S8) and 147 GM associated with gut microbiome traits

(FDR < 0.05, Additional file 10: Table S9). In summary, our data paint an overall picture

of the interactions between baseline metabolism and immune system in health.

Metabolic pathways correlate with cytokine production upon stimulation

Cytokine production capacity after stimulation is an important component of host im-

mune defense. Previous studies have shown that genetics, environmental factors, and
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microbiome composition correlate with cytokine production upon human pathogen

stimulation [11–13, 21]. Here we systematically characterized the extent to which base-

line metabolic pathways contributed to inter-individual variation in cytokine response

upon perturbation. After correcting for age, gender, and contraceptive use, we calcu-

lated the Spearman correlation between each metabolite feature and each of the 91

stimulation–cytokine pair (Additional file 11: Table S10). In total, there are 1091 and 3

metabolic features from GM and BM, respectively, showing significant association with

at least one stimulation–cytokine pair (FDR < 0.05, GM: Fig. 2a, Additional file 11:

Table S10). For example, there are seven metabolites: asparagine, alanine, glutamate,

glutamine, oxoglutaramate, fumarate, and pyruvate, involved in alanine, aspartate, and

glutamate metabolism showing significant correlation with stimulation–cytokine pairs.

This result agreed with our previously published results on the individual metabolite

level of glutamine [22] measured by the BM platform and the known regulatory func-

tion of these metabolites on monocyte-derived cytokines [22, 23]. Furthermore, we no-

ticed that six metabolites involved in arachidonic acid metabolism, including

phosphatidylcholine, leukotriene A4, leukotriene B4, 14,15-DHET, prostaglandin E2,

and prostaglandin F2alpha showing significant correlation with stimulation–cytokine

pairs. Arachidonic acid and its derived metabolites are well-known as crucial modula-

tors of immune responses [24–26]. We next investigated how the circulating homeo-

static concentrations influence and regulate immune function among eight key

functional components of arachidonic acid pathway, including arachidonic acid, eicosa-

pentaenoic acid, resolving D2, leukotriene A4, leukotriene B4, neuroprotectin D1, pros-

taglandin E2, and prostaglandin F2a which were measured in our data. As expected, all

of them show suggestive correlation with at least one stimulation–cytokine pairs (un-

corrected p values < 0.05, Spearman correlation coefficients, range −0.27–0.25). More-

over, strong positive correlations among the eight metabolites were observed

Fig. 1 Analysis of baseline immune parameters and molecular profiling showing baseline parameters are
inter-correlated. a, b Heatmap of hierarchical clustering on correlation pattern between metabolites and
immune cell counts (a GM, b BM). Cell colors indicate correlation coefficients from negative (blue) to
positive (red). c Violin and boxplots showing the absolute correlation coefficient between GM and cell
counts. Colors indicate cell subpopulations. d, e Heatmap of hierarchical clustering on correlation pattern
between metabolites and immune modulators (d GM, e BM). Cell colors indicate correlation coefficients
from negative (blue) to positive (red)
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(Spearman correlation coefficients, range 0.17–0.96; Additional file 12: Table S11) that mir-

ror their known roles as reactants and products and associations at functional level [27].

Next, we systematically estimated the collective contribution of baseline metabolites

to the inter-individual variation in different groups of immune response to stimulations.

In general, metabolite features explain up to ~ 30% of the inter-individual variation in

cytokine response upon stimulation (Fig. 2b, Additional file 5: Fig. S2a), with GM me-

tabolites explaining significantly more inter-individual variation in monocyte-derived

cytokines (IL6, IL1β, and TNFα) than T cell–derived cytokines (IL17, IL22, and IFNγ)

(P = 0.04, Student’s t-test, Fig. 2c). This finding can be roughly replicated in metabolite

features measured by the UM platform (P = 0.06, Additional file 5: Fig. S2b). These re-

sults suggest that baseline metabolism is more related to the innate immune response

than to the adaptive immune response.

Genetic factors regulate metabolites associated with immune phenotypes

In total, 80% of the annotated metabolite features (GM and BM) were associated with

at least one immune phenotype (FDR < 0.05). We then explored the genetic determi-

nants of them, by carrying out a genome-wide association analysis on ~ 4 million single

nucleotide polymorphisms (SNPs) obtained by genotyping and imputation (see the

“Methods” section). In order to acquire a more comprehensive landscape of genetic

regulation on metabolism as well as an additional internal validation, we also intro-

duced UM in this association analysis, although it has a limited annotation (the “Dis-

cussion” section). After multiple testing correction using the Bonferroni method (BM:

Fig. 2 Analysis of baseline metabolites and cytokine production upon stimulation showing association and
regulation of metabolites on immune response. a Heatmap of hierarchical clustering on correlation pattern
between metabolites and cytokine production upon stimulation. b Cytokine variance explained by GM. The
X-axis indicates explained variance represented by adjusted R squared. The Y-axis indicates stimulation
types and measurement assays. Bar color shows different stimulations. c Violin and box plots of T cell–
derived cytokine and monocyte-derived cytokine variance explained by GM. The X-axis indicates groups of
cytokines grouped according to cell origins. The Y-axis indicates explained variance represented by adjusted
R squared
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P < 2.16 × 10−10; GM: P < 3.15 × 10−11; UM: P < 5.80 × 10−12), there are 11 genome-wide

significant loci associated with 35 metabolic features from GM and 25 loci associated with

368 metabolic features from UM, respectively (Fig. 3, Additional files 13 and 14: Tables S12,

13). Interestingly, all of these 35 GM show a significant correlation with cytokine production

upon stimulation (FDR < 0.05). Among all of these identified metabolite quantitative trait

loci (mQTLs), eight were shared by GM and UM, showing internal replication, leaving 29

independent loci in total. A pathway analysis of genes mapped to 29 mQTLs shows a sig-

nificant enrichment in metabolic pathways (hypergeometric test, FDR < 0.05; Additional file

5: Fig. S3), such as fatty acid, isoprenoid, and steroid acid pathways. We also noted that 22%

of the genes in mQTL loci have been reported to be drug targets (Additional file 15: Table

S14) [28, 29], suggesting possible pharmaceutical applications in metabolic treatment. In

total, mQTLs (suggestive P < 5 × 10−8) explained 1.3–67.6% of the total variance in metabo-

lites, with a median value of 8.1% based on multivariate linear regression analysis (Add-

itional file 5: Fig. S4). These results are consistent with previous studies [30, 31] and further

highlight that metabolite concentrations are under strong genetic control.

We have previously identified genetic regulation of cytokine production capacity upon

stimulation in 500FG [11]. Metabolomics data measured in the same individuals gives us

a unique opportunity to test if the genetic regulation of metabolites and cytokine produc-

tion is shared or not. All 29 mQTLs showed nominal evidence (uncorrected P < 0.05) of

association with at least one cytokine (Additional file 16: Table S15), and there was no sig-

nificant difference between the effect sizes of these mQTL SNPs when we looked at

monocyte-derived and T cell–derived cytokines (P = 0.20, Student’s t-test). This suggests

that the stronger relationship we observe between baseline metabolism and innate im-

mune response, as compared to adaptive immune response, is independent of genetics.

Novel mQTLs reveal metabolite-associated genes

Among the 29 genome-wide significant mQTLs, eight were novel, while the remaining

21 had been identified in previous studies [10, 30–35] (Additional file 13: Table S12).

Fig. 3 Genetic factors on baseline metabolite features. Manhattan plot of metabolite QTLs. The X-axis
indicates QTL location on chromosomes. The Y-axis indicates -log10 p-values in metabolite QTL profile. Loci
passing the genome-wide significant thresholds (BM: P < 2.16 × 10−10; GM: P < 3.15 × 10−11; UM: P < 5.80 ×
10−12) are colored in red
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For example, the mQTL of one of the unknown metabolite features, (un_407.327) with

m/z = 407.327, is located in an intronic region of VNN1 (Additional file 5: Fig. S5).

VNN1 is a pantetheine hydrolase that catalyzes the hydrolysis of pantetheine to cyste-

amine and pantothenic acid (vitamin B5), which are both potent antioxidants. Pan-

tothenic acid is then reused for coenzyme A biosynthesis [36]. The top SNP of the

VNN1 locus, rs2050154, has an eQTL effect on vanin-1 expression levels in blood (eqtl-

Gen [37], P = 3.2717 × 10−310, GTEx [38], P = 3.6 × 10−47). These results suggest a po-

tential genetic regulatory role on circulating metabolites through modulation of VNN1

expression levels. Interestingly, the VNN1 gene has been found to be involved in

asthma corticosteroid treatment [39] and to be regulated at the protein level by pro-

inflammatory cytokines [40]. Interestingly, un_407.327 was found to be suggestively as-

sociated to IL17, IL1b, and IFNy in response to Bacteroides, S. aureus, and LPS (nom-

inal P < 0.05, Additional file 17: Table S16). This highlights the potential link between

pathways that influence baseline metabolite levels and immune responses upon stimu-

lation, an effect that might ultimately link to immune disease.

mQTLs enriched in non-synonymous variants

We next explored the function of the genetic variants within 29 genome-wide sig-

nificant mQTLs using a permutation-based method (see the “Methods” section),

which revealed that mQTLs are enriched in exonic regions and 3′ UTR (P <

0.001). Among the 62 exonic SNPs in the 29 mQTL regions, 38 were non-

synonymous or stop gain/loss (Additional files 18 and 19: Tables S17, 18), and

these were significantly over-represented (P < 0.001). We then evaluated their bio-

logical consequences using two computational prediction tools, SIFT [41] and Poly-

phen2 [42]. Of the 38 non-synonymous mutations, four were predicted to have a

deleterious effect on protein function (Additional file 20: Table S19). rs35724886

(minor allele frequency (MAF) = 0.18 in European populations (EUR)), for ex-

ample, regulates the abundance of several metabolite features and is one of the

deleterious non-synonymous variants within 29 mQTLs identified for a metabolic

enzyme, Acyl-CoA thioesterase 4 (ACOT4) (Fig. 4a, b). ACOT4 is known to trans-

form medium- or long-chain fatty acids combined with CoA into CoA and free

fatty acid. To explore this further, we carried out a computational prediction ana-

lysis for the protein structure of ACOT4 for both wild and mutant types. As

shown in Fig. 4, the associated Acyl-CoA thioesterase 4 deficiency rs35724886 (p.

Ala187Asp) is located in a β-sheet domain, which likely leads to steric clashes with

neighboring residues (colored orange in the figure) (Fig. 4c). This probably causes

a reduction in function and a subsequent decrease in serum-free fatty acids. An-

other example of a non-synonymous variant with deleterious effect is rs601338

(MAF = 0.43 in EUR), which we observed to be significantly associated with a

non-target metabolite (m/z 363.089) (Fig. 4d, e) and leads to a stop gain of tran-

scription of FUT2. rs601338 influences expression levels of FUT2 in the small in-

testine (P = 1.3 × 10−7) and stomach (P = 7.6 × 10−25) in the GTEx dataset [38].

Altogether, these results suggest that deleterious effects arising from non-

synonymous and stop gain/loss variants in exonic regions could be one of the

mechanisms behind genetic regulation of metabolite levels in the blood.
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The arachidonic acid mQTL locus shows functional and immunological relevance in

disease

We next applied a colocalization analysis [43] between all suggestive mQTLs passing

genome-wide significant threshold 5 × 10−8 and ten autoimmune diseases such as in-

flammatory bowel disease as well as other diseases such as Alzheimer’s disease and type

2 diabetes (Additional file 21: Table S20). Five GM QTLs were found to be colocalized

with at least one disease trait (Additional file 21: Table S20). Among them, a mQTL

suggestively associating with arachidonic acid on Chr 11 (P = 4.15 × 10−10, Fig. 5a) has

been previously associated to Crohn’s disease (P = 1.83 × 10−5) [44]. It has also been as-

sociated to neutrophil count (P = 2.18 × 10−9) and monocyte CD14+ proportions (P =

4.72 × 10−13) in the blood [45], and these two cell subpopulations have been reported

to be involved in the pathogenesis of Crohn’s disease [46].

Colocalization analysis [43] upon arachidonic acid mQTL and the latest Crohn’s dis-

ease genome-wide association study (GWAS) profile [44] strongly supported the hy-

pothesis that arachidonic acid shares a common genetic variant with Crohn’s disease

(posterior probability = 0.94, Fig. 5b). We then applied the Mendelian randomization

[47] (MR) method to test the causal effect of arachidonic acid on Crohn’s disease using

public GWAS summary statistics for both traits [44, 48]. Using eight independent SNPs

(R2 < 0.01) as instruments, the results of four commonly used MR methods—weighted

median estimator [49], inverse-variance weighted [50], and mode-based estimator in

both simple mode and weighted mode [51]—consistently showed that the decrease in

circulating arachidonic acid level had a causal effect on Crohn’s disease (P = 6.56 ×

10−5, 3.11 × 10−6, 4.87 × 10−2, and 6.95 × 10−3, respectively; effect sizes = −0.06, −0.07,

−0.07, and −0.06, respectively; Fig. 5c, Additional file 5: Fig. S6a). There was no evi-

dence of heterogeneity between causal effects derived from these eight SNPs (Cochran’s

Fig. 4 Non-synonymous metabolite QTLs associated with metabolite features in healthy volunteers. a Locus
zoom plot showing a non-synonymous mQTL rs35724886 located on chromosome 14. b Box plot of the
top metabolite feature (m/z 331.264) associated with genotype at rs35724886. c Structural visualization of
ACOT4. Sticks indicate amino acid residues involved. Amino acid change induced by mQTL (red) is
predicted to clash with the neighbor amino acid (orange) with Van der Waals overlap indicated by red
disks. d Locus zoom plot showing a non-synonymous mQTL rs601338 located on chromosome 19. e Box
plot of the top metabolite feature (m/z 363.089) associated with genotype at rs601338
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Q, P = 0.17). Interestingly, the arachidonic acid level has been found to be significantly

lower in the blood of Crohn’s disease patients compared to healthy controls [52, 53],

which supports a causal relationship between blood arachidonic acid level and Crohn’s

disease.

Next, we integrated transcriptome data to explore the regulatory mechanism linking

the SNPs to Crohn’s disease. Previous findings have indicated that genetic variants in

the FADS1/FADS2 locus were associated to fatty acid metabolism, including the arachi-

donic acid pathway [54]. We find that rs174584 shows a regulatory effect on the ex-

pression of FADS2 in blood in the GTEx [38] dataset, with allele A increasing FADS2

Fig. 5 Arachidonic acid has a causal effect on Crohn’s disease through an mQTL locus. a Box plot of
arachidonic acid level with genotype at rs174584. b Locus zoom plots of arachidonic acid QTL profile and
Crohn’s disease GWAS profiles showing colocalization through the rs174584 locus. c Mendelian
randomization results. d Box plot of blood FADS2 expression level with genotype at rs174584. e Box plot
showing arachidonic acid level changes with FADS2 levels in the blood. f Box plot of FADS2 expression level
in Crohn’s disease (CD) biopsies versus control g A graphic summary of the regulation network of
mQTL (rs174584-FADS2)
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expression levels (P = 4.43 × 10−21, Fig. 5d). In addition, FADS2 has been shown to have

a desaturase function in the transformation of arachidonic acid pathway metabolites

[55]. This was confirmed by our RNA-seq and metabolomics data from 89 samples

from the 500FG cohort where individuals were divided into two groups according to

individual FADS2 expression value compared to mean FADS2 expression value. Indi-

viduals with higher expression levels of FADS2 showed significantly lower levels of cir-

culating arachidonic acid (P = 0.007, Student’s t-test; Fig. 5e). This is consistent with

previous work that reported FADS2 to be associated with Crohn’s disease [56] and with

the significantly increased expression of FADS2 (P = 0.009, Student’s t-test; Fig. 5f) that

we observed in endoscopic pinch biopsies of Crohn’s disease patients compared to

healthy donors using a previously published dataset [57].

We then investigated if FADS2 plays a role in regulating immune functions using the

500FG datasets. Notably, the gene expression level of FADS2 shows a positive correl-

ation with TNFα production stimulated by Aspergillus fumigatus conidia and C. albi-

cans (Additional file 5: Fig. S6b), which supports the immunological relevance of

FADS2. To experimentally replicate these correlations, we stimulated peripheral blood

mononuclear cells from three healthy donors with heat-killed Candida (Candida HK)

and measured the TNFα level after 24 h. Compared to the control group, TNFα pro-

duction decreased in the FADS2-inhibited group after 24-h stimulation with Candida

HK, which suggests that FADS2 has a promoting effect on immune response (Add-

itional file 5: Fig. S6c). Moreover, to assess the role of FADS2 for intestinal homeostasis,

we performed repeated attempts to develop intestinal organoids on a FADS2-deficient

background. However, in all these experiments, both homozygous and heterozygous

FADS2 clones failed to develop intestinal organoids. These results suggest that FADS2

is important for intestinal development and/or repair, the mechanisms through which

it could impact intestinal pathology (Additional file 5: Fig. S6d). Taken together, our

data suggest that FADS2 could have a pathogenic role, as TNFα is the most common

treatment target in Crohn’s disease [58].

In summary, our results depict a comprehensive regulatory network, from genomic

variant to disease through regulation of gene expression, metabolite levels, and immune

function, based on multi-omics data from the 500FG cohort, public databases, litera-

ture, and ex vivo experiments (Fig. 5g).

mQTLs are enriched in genetic risk factors for pro-inflammatory traits

In addition to the arachidonic acid QTL that colocalized with Crohn’s disease, the

FUT2 locus led by non-synonymous variant rs601338 also showed colocalization with

three immune-mediated diseases: Celiac disease [59] (Coloc analysis H4: 0.7, H3:

0.004), Crohn’s disease [44] (Coloc analysis H4: 0.98), and type 1 diabetes (Coloc ana-

lysis H4: 0.99) [60]. This suggests that the non-target metabolite m/z 363.0888 has im-

munomodulatory capabilities through FUT2 and thus has potential effects in Celiac,

Crohn’s disease, and type 1 diabetes (Additional file 5: Fig. S7a). To systematically in-

vestigate the overall metabolic association of different diseases, we overlapped our

mQTLs under different thresholds (P < 4.8 × 10−12 (5 × 10−8/(231BM + 1589GM +

8614UM)), 5 × 10−8, 1 × 10−6, and 1 × 10−5) with GWAS catalog SNPs known to influ-

ence disease susceptibility (Additional file 5: Fig. S7b). As expected, mQTLs identified
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in our study are significantly overlapped with other public metabolic profiles using

height as reference (P = 1.52 × 10−132, Fisher’s exact test). We also observed significant

genetic overlap between mQTLs and auto-inflammatory traits (P = 3.54 × 10−31),

blood-related phenotypes (hematocrit and mean platelet volume, P = 9.72 × 10−15),

heart rate (P = 1.19 × 10−44), and type 2 diabetes as represented by fasting glucose-

related traits (P = 1.75 × 10−35). These enrichment results are also consistent at multiple

mQTL thresholds (P < 4.8 × 10−12, 5 × 10−8, 1 × 10−6, and 1 × 10−5; Additional file 5: Fig.

S7b). These genetic regulatory components shared between metabolites and diseases

suggest that metabolism plays a functional role in complex phenotypes in humans.

Metabolite features have predictive power for cytokine production upon stimulation

To assess the extent to which metabolites explain inter-individual variations in cytokine

production (in addition to genetic factors), we calculated the cumulative cytokine vari-

ance explained by all baseline features. While the largest effect still came from genetic

factors, metabolites had an additional contribution (0.048 in average) to the inter-

individual variation in cytokine response (Additional file 5: Fig. S8).

One of our previous studies [21] showed that genetic variants moderately predict

cytokine production upon stimulation. Here we tested if baseline metabolite concentra-

tions can improve predictive power. We first constructed a prediction model for cyto-

kine production using genetic variants identified in a previous study [11] and

metabolite features measured in the 500FG cohort. We then compared our model’s

prediction performance with that of the earlier SNP-only prediction model. To obtain a

robust estimate of prediction performance, we applied a cross-validation strategy by

randomly splitting the data into training and validation sets multiple times. What we

observed was a significant improvement (FDR < 0.05, Student’s t-test) in prediction per-

formance after adding metabolite data to the model, mostly coming from monocyte-

derived cytokine production upon stimulation (IL1β, TNFα, and IL6). This suggests

that baseline metabolites have effects on cytokine production that are independent and

in addition to genetic variation (Fig. 6).

Discussion
In this study, we have generated a comprehensive map of blood metabolites, immune

phenotypes, and their genetic basis that reveals novel genetic factors that regulate blood

metabolite concentrations. This work highlights the importance of baseline metabolites

in immune function and immune diseases.

Taking advantage of the uniqueness of the multi-omics data available for the 500FG

cohort, we systematically investigated the associations between metabolites and other

immune phenotypes. We present several metabolic pathways associated with immune

functions, such as the alanine and arachidonic acid pathways, and report exact associa-

tions. These findings provide both an important resource and experimental evidence

for immunological and metabolic studies. The metabolites and genes we have identified

are potential targets for immune-related disease studies.

Our results also suggest that baseline metabolites have a stronger impact on the

inter-individual variation of monocyte-derived cytokines (TNFα, IL1β, IL6) than on T

cell–derived cytokines (IL17, IL22, INFγ), which implies that baseline metabolism is
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more involved in the innate immune response than in the adaptive response. Innate im-

mune cells are wired to respond to the environment [61], and subsequently activate

adaptive immune cells such as lymphocytes. The classical activation of adaptive im-

mune cells depends on stimulatory signals from antigen-presenting cells (antigens, co-

stimulatory molecules, and cytokines). It is therefore likely that environmental clues,

such as metabolites, are mainly sensed by cells of the innate immune system, and the

release of pro-inflammatory cytokines by innate immune cells is how the regulatory

system subsequently integrates innate and adaptive immune responses. This concept is

supported by our observation that cytokines released from innate immune cells are

more strongly influenced by circulating metabolites.

Thus far, several GWAS studies have focused on metabolite measurements using a

single analytical approach. In contrast, this study presents comprehensive measure-

ments from three different platforms that map > 10,000 metabolic features covering

Fig. 6 Improvements in prediction after adding metabolite information on top of genetics. Violin and box
plots of Spearman correlation coefficients between predicted values and measured values in testing sets

Chu et al. Genome Biology          (2021) 22:198 Page 12 of 22



glucose, lipid, amino acid, and lipoprotein metabolism (among others). We took advan-

tage of the accurate annotation of targeted measurement (BM) in functional interpret-

ation and of the high-throughput and unbiased measurement of untargeted approaches

(GM and UM) in genetic factor identification. Even with the relatively limited sample

size of our cohort, we were able to replicate 21 (out of 29) previously detected mQTLs

and identify eight novel genomic loci (such as the VNN1 locus) with regulatory effects

on circulating metabolite concentration. Our results can be accessed through an online

browser (https://500 fg-hfgp.bbmri.nl) for future studies. We further highlight that dele-

terious effects arising from non-synonymous variants in exonic regions could be one of

the mechanisms behind the genetic regulation of metabolite levels in the blood.

Our findings also uncovered the role of specific metabolites in the etiology of several

immune-related diseases. For example, lower circulating arachidonic acid was found to

be causally linked to Crohn’s disease. In agreement with previous studies in which ara-

chidonic acid and FADS2 were found to be related to Crohn’s disease [52, 53], our data

from a population-based cohort systematically revealed (1) the association between

FADS2 and arachidonic acid, (2) the association between the arachidonic acid pathway

and immune phenotypes, and (3) the association between FADS2 and immune pheno-

types (i.e., TNFα). Furthermore, by integrating our data with other public data, we con-

firmed the association between FADS2 and Crohn’s disease and the association

between arachidonic acid and Crohn’s disease. Since the gut is the more-relevant tissue

compared to blood (where we measured arachidonic acid), we used a gut-specific orga-

noid validation to provide further evidence supporting FADS2 as a key driver of

Crohn’s disease and highlight how integration approaches can be used to infer novel

disease-relevant markers using multi-omics data. Interestingly, 54 genes within the 29

mQTL loci we identified have been reported to be candidates for metabolic drug tar-

gets (e.g., CYP4V2) in relevant immune diseases, and further validation of their poten-

tial as therapeutic targets is warranted.

This study analyzed a very complex set of phenotypes, and we must therefore ac-

knowledge possible confounders and study limitations. Firstly, samples were collected

in a standardized time-frame (morning) to limit possible bias, but were taken in differ-

ent months of the year, which might have introduced unwanted variation caused by

season. However, we observed no clear batch or month effect in the metabolic mea-

surements. Secondly, non-fasting blood samples were drawn in the 500FG cohort,

which meant that diet could have impacted blood metabolism [62, 63]. However, even

with the added variability induced by diet, our analysis still had sufficient power to de-

tect a number of novel genetic associations. Furthermore, this study used the largest

cohort to date to examine interactions between metabolism and immune parameters/

function. We acknowledge that our sample size was limited for the detection of weak

or moderate effects and an experiment with a larger sample size will be needed for fur-

ther interpretation. For some of the suggestive hits with nominal significance, we ex-

plored their potential biological mechanism through integration of a publicly available

database. Lastly, the Bonferroni correction threshold we chose in the mQTL analysis,

which was based on the assumption that metabolic features are independent signals, is

very conservative. This could have limited our power to detect mQTLs. At the same

time, although we acquired more genetic loci by introducing the unannotated UM in

mQTL identification, the functional interpretation of these loci was challenging due to
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the lack of full accurate annotation. Improvements can, of course, be made in the fu-

ture, e.g., accurate annotation of the metabolic features derived from mass spectrom-

etry–based platforms (especially UM) would help in evaluating the precise overlap

between metabolic platforms to better access metabolic pathways.

Conclusions
This study provides insights into how genetic differences impact metabolite levels,

shape immune responses, and impact disease risk, information important for future

biomedical and pharmaceutical targeting. In future studies, longitudinal measurements

are needed to acquire more consistent and accurate circulating metabolite levels. In

addition, single-cell RNA-sequencing technology could be used to study cell type–spe-

cific effects and uncover the interaction between genes and metabolites in immune-

related diseases.

Methods
Study cohort

Analysis was mainly performed in the 500FG cohort (part of the Human Functional

Genomics Project) which consists of 534 healthy individuals (237 males and 296 fe-

males) of Caucasian origin. Their ages range from 18 to 75, with the majority (421 indi-

viduals) being 30 years old or younger. Volunteers with a mixed or other genetic

background were excluded as were volunteers diagnosed with long-term diseases.

Within this cohort, immune cell counts, cytokine production upon stimulations, plate-

lets, globulins, and gut microbiome were measured. More detailed information can be

found in previous publications [11, 12, 18, 21].

Metabolomics measurement

Serum metabolite levels were measured by three different technical platforms (BM,

UM, and GM) in 500 healthy Dutch individuals. BM indicates samples measured on

the Brainshake Metabolomics/Nightingale Health metabolic platform. These samples

were processed following the automated standard protocol provided by Nightingale’s

technology (Finland), and blood metabolites were quantified in absolute concentrations

(e.g., mmol/L) and percentages using nuclear magnetic resonance (NMR) spectroscopy.

On the UM platform (Creative Dynamics Inc, NY, USA), which mainly focuses on lipid

metabolism, metabolites identified as m/z were measured in a large scale using a meas-

urement system that integrates NMR, GC-MS, and LC-MS. Details can be found in the

references [14, 15]. GM was measured and annotated by general metabolomics (Boston,

USA) using flow injection-time-of-flight mass (flow-injection TOF-M) spectrometry.

Principal component analysis (PCA) was done with log10-transformed values. Sample

values > 4 standard deviations from the mean value of PC1 and PC2 were considered as

outliers, leading to the removal of one sample in the UM data.

We checked the normal distribution of metabolite levels in the data from each plat-

form using the Shapiro test. To achieve normality and consistency for QTL mapping,

we log-transformed the metabolite data.
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Genotype data

Genotype data from ~ 500 healthy Dutch individuals was measured using Illumina

humanOmniExpress Exome-8v1.0 SNP chip Calling by Opticall 7.0 [64] with default

settings. Samples with a call rate < 0.99 were removed in further analysis, and HWE =

1× 10−4 and MAF = 0.05 were used for SNP quality control. After removing 17 ethnic

outliers identified by multidimensional scaling, genotype data was imputed taking Gen-

ome of the Netherlands as reference. For further description, see the reference [11].

Immune phenotypes

Other baseline immune parameters, including 73 immune cell subpopulation frequen-

cies, cytokine production response to 19 stimulations (91 different cytokine-stimulus

pairs), modulators, immunoglobulins, and platelets, were measured in 500FG. Details

can be found in the references [11, 18, 21].

Transcriptome data

To measure gene expression data, RNA sequencing was performed on a subset of 89

samples from 500FG using Illumina Hiseq 2000 platform as previously described [11,

18, 21].

Gut microbiome

Stool samples were collected 1 day prior to or on the day of blood collection. DNA of

the gut microbiome was extracted and sequenced using the Illumina HiSeq 2000 plat-

form. Taxonomic profiles were inferred with MetaPhlAn 2.2, and functional profiling

was performed using HUMAnN2. This yielded 219 species and 639 MetaCyc pathways,

as described in the reference [12].

Statistical methods
Data pre-filtering

We intersected genotyped samples with samples from metabolite profile data and end

up with 340 overlapping samples for BM QTL analysis, 397 for GM, and 458 for UM.

Correlation analysis

Spearman correlation analysis was performed between metabolites and other types of

data. Unsupervised hierarchical clustering using the “complete” approach based on “Eu-

clidean” distance of Spearman correlation coefficients is shown as a heatmap created

using the R package pheatmap.

Estimation of explained variance

To estimate the cytokine variance explained by metabolites and other immune parame-

ters, we first filtered the features based on their Spearman correlation p-values, keeping

only features passing specific thresholds (0.001 for metabolites, 0.05 for other features)

for further analysis. Potential confounder effects were then regressed out, and after re-

moving collinearity, features were used in a multivariate linear model to estimate the

proportion of variance explained indicated by total model-adjusted R2. Details of the

method can be found in a previous paper [21].
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mQTL mapping and annotation

mQTL mapping was done with the R Package Matrix-eQTL, taking age, gender,

contraceptive usage, and cell population abundance as covariates in the linear model. A

p-value < 4.8 × 10−12 was considered to be genome-wide significant. SNPs with linkage

disequilibrium > 0.1 were identified as single genomic loci.

To determine the accumulative effect of genetic factors on baseline metabolites, we

applied a multivariate linear model to evaluate the metabolite variance explained by

genetics after regressing out the contributions of age, gender, and contraceptive drug

usage. Of the 1553 metabolites with suggestive mQTLs, 752 were measured in all the

genotyped samples with no missing values. Total model-adjusted R2 was considered as

the proportion of explained variance.

Associated variants were annotated using Annovar [65], webgestalt [66], and FUMA

[67] for chromosome locations, enriched pathways, exonic SNP function prediction,

and independent loci identification. A 10-kb window was used to identify genes physic-

ally located within the loci. Pymol (The PyMOL Molecular Graphics System, version

1.7.6.0, Schrödinger) was used to show protein structure changes by non-synonymous

mQTLs. An online tool, MetaboAnalyst 4.0 [68], was used for metabolite pathway ana-

lysis. Functional/structural enrichment analysis on SNPs was done using a

permutation-based approach. We performed functional/structure annotation on 1000

permuted sets of variants showing no significant association with any metabolite fea-

ture. We randomly selected same-sized SNPs for each permuted set and ended up with

a null distribution for each functional class. We then compared the null distribution

with the functional annotation of the mQTLs.

Colocalization analysis

We performed colocalization analysis [43] to look at the overlapping profile between

mQTLs and disease GWAS using the R package “coloc.” Public GWAS summary statis-

tics performed in the European population were collected as reference.

Mendelian randomization

MR [47] is a statistical method for identifying causality between exposure and outcome

(arachidonic acid level and Crohn’s disease here) using genetic variants as instruments.

We selected 5 × 10−8 as the threshold for arachidonic acid GWAS summary statistics,

and only independent SNPs (r2 < 0.01) were kept for MR analysis using the R package

TwoSampleMR [69]. Four common analytical methods, weighted median, inverse-

variance weighted, simple mode, and weighted mode regression [49–51], were applied

to detect the causal effect.

Establishment of colon organoids

Tissues from a human colon were obtained from the UMC Utrecht with informed con-

sent of the patient. The normal, non-transformed, mucosa was obtained from a patient

with colon adenocarcinoma that was resected. The study was approved by the UMC

Utrecht (Utrecht, the Netherlands) ethical committee and was in accordance with the

Declaration of Helsinki and according to Dutch law. This study is compliant with all
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relevant ethical regulations regarding research involving human participants. Human

intestinal cells were isolated, processed, and cultured as described previously [70].

Generation of FADS2 knockout and genotyping

To generate FADS2 knockout organoids, gRNAs were selected using the Atum website

and cloned in the Cas9-EGFP vector (addgene plasmid #48138) following the protocol

described before [71]. gRNAs used in this study were:

FADS2_guide1_forward CACCGCCAGACTTACGTTCTTGCCG

FADS2_guide1_reverse AAACCGGCAAGAACGTAAGTCTGGC

FADS2_guide2_forward CACCGCTTGTCCACAAATTCGTCAT

FADS2_guide2_reverse AAACATGACGAATTTGTGGACAAGC

Human colon organoids were transfected using these gRNAs cloned into the Cas9-

EGFP vector, utilizing electroporation following a previously established protocol [72].

One week after transfection, cells were sorted for EGFP positivity using a FACS-ARIA

(BD Biosciences). Wnt-surrogate (0.15 nM, U-Protein Expression) and Rho kinase in-

hibitor (10 μM, Calbiochem) were added to the culture medium up to 1 week after sort-

ing to enhance single cell outgrowth. Organoids grown from FADS2gRNA/Cas9-EGFP

transfected cells were genotyped for one of the two loci to establish frameshift muta-

tions. Primers used for genotyping were:

FADS2_guide1_forward AAGGCACTCAGCTCACGAG

FADS2_guide1_reverse TTTCTCAAAGAGGTGCCCCG

FADS2_guide2_forward GGCTGAGGACATGAACCTGT

FADS2_guide2_reverse AATTAGTCAGGCATGGTGGC

GWAS enrichment analysis

GWAS SNPs were collected from the National Human Genome Research Institute

GWAS catalog grouped based on phenotype association [73] including cancer,

immune-mediated diseases, infectious disease, blood-related traits, heart-related traits,

metabolic traits, type 2 diabetes–related traits, and height. We considered the overlap-

ping profile with height as the null hypothesis. A Fisher’s exact test was then used to

perform statistical comparisons.

Cytokine level prediction

Our objectives were to investigate whether metabolites can reveal predictive insights

into cytokine production upon stimulation that is additive to the effects of genetics.

We first correlated metabolites with cytokines and removed metabolite features not

significantly correlated as metabolite predictors. SNPs with an association to a

cytokine–stimulation pair with P < 5 × 10−5 were kept as genetic factors. Details can be

found in a previous paper [21].

Elastic Net

Prediction of cytokine levels was facilitated by training an Elastic Net model. A 10 × 2-

fold cross-validation approach was used, where the data was first split randomly into
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training and test sets to validate the prediction. The training set was then split up once

more for feature selection, and the procedure above was repeated 10 times. Prediction

accuracy was evaluated by calculating Spearman correlations between the measured

cytokine levels and the Elastic Net model predictions of the test sets. A t-test was then

used to identify if there was a significant difference between the performance of the

prediction model using SNPs only and that of the model using SNPs plus metabolites.

Visualization

R package ggplot2 was used to perform most visualizations, including Manhattan plots,

bar charts, box plots, and violin plots. The package pheatmap was used to generate

heatmaps. An online tool, Locus zoom [74], was used to present genes overlapped with

candidate SNPs.
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