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Abstract

Visual validation is an important step to minimize false-positive predictions from
structural variant (SV) detection. We present Samplot, a tool for creating images that
display the read depth and sequence alignments necessary to adjudicate purported
SVs across samples and sequencing technologies. These images can be rapidly
reviewed to curate large SV call sets. Samplot is applicable to many biological
problems such as SV prioritization in disease studies, analysis of inherited variation, or
de novo SV review. Samplot includes a machine learning package that dramatically
decreases the number of false positives without human review. Samplot is available
at https://github.com/ryanlayer/samplot.

Background
Structural variants, which include mobile elements, deletions, duplications, inversions,

and translocations larger than 50bp, can have serious consequences for human health

and development [1–3] and are a primary source of genetic diversity [4, 5]. Unfortu-

nately, state-of-the-art SV discovery tools still report large numbers of false positives

[6–9]. While filtering and annotation tools can help [10, 11], tuning these filters to re-

move only false positives is still quite difficult. As the human eye excels at pattern rec-

ognition, visual inspection of sequence alignments in a variant region can quickly

identify erroneous calls, making manual curation a powerful part of the validation

process [6, 12, 13]. For example, a recent study of SVs in 465 Salmon samples [6]

found that 91% of SVs reported using Illumina paired-end sequencing data were false

positives. However, the false-positive rate plummeted to 7% (according to long-read se-

quence validation) subsequent to visual inspection [12]. This study highlights the es-

sential step of removing false positives from SV calls and the effectiveness of visual

review to identify the real variants.

Tools such as the Integrative Genomics Viewer (IGV) [14], bamsnap [15], and svviz

[13] enable visual review of SVs, but they can be cumbersome or complicated, slowing

down the review process and often limiting the number of SVs that can be considered.

IGV is optimized for single-nucleotide variant visualization, making it easy to zoom
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into particular loci to identify base mismatches in read pileups. While IGV can be con-

figured for SV viewing (i.e., viewing reads as pairs, sorting by insert size), visualizing

large variants is difficult. The software often loads slowly for large variants which re-

quire plotting large numbers of reads. To address slow loading, IGV defaults to sam-

pling a subset of reads and stops displaying alignment data when viewing broad

regions, both of which further complicate SV interpretation. IGV has a batch image

generation mode for curating many SV calls, but it lacks the full suite of options neces-

sary for SV image optimization. Bamsnap provides a similar visualization optimized for

small regions, although review can be faster as static images are created rather than a

dynamic viewer as in IGV.

Svviz provides an innovative view of the sequencing data. Alignments are divided into

two plots. One plot shows reads that align to the reference allele and the second shows

reads that align to the alternate allele created by the SV. Although the clear separation

of evidence by reference and alternate alleles is an improvement, svviz plots can be

large, complex, and time-consuming to review. Svviz plots also depend on the pur-

ported SV breakpoints. Since reads are realigned to a specific alternate allele, even rela-

tively small amounts of imprecision in the SV breakpoints, a common problem, will

affect the visualization, making it impossible to differentiate between an absent SV and

a slightly incorrect call.

Samplot provides a set of tools designed specifically for SV curation. Samplot’s plot-

ting function creates images designed for rapid and simple, but comprehensive, visual

review of sequencing evidence for the occurrence of an SV. The Samplot VCF function-

ality generates plots for large numbers of SVs contained in a VCF file and provides

powerful and easy-to-use filters to refine which SVs to plot, enhancing and streamlin-

ing the review process. Finally, the Samplot-ML tool automates much of the review

process with high accuracy, minimizing required human hours for curation.

Results
Samplot provides a quick and straightforward platform for rapidly identifying false pos-

itives and enhancing the analysis of true-positive SV calls. Samplot images are a concise

SV visualization that highlights the most relevant evidence in the variable region and

hides less informative reads. This view provides easily curated images for rapid SV re-

view. Samplot supports all major sequencing technologies and excels at the comparison

between samples and technologies. Users generally require fewer than 5 seconds to in-

terpret a Samplot image [12], making Samplot an efficient option for reviewing thou-

sands of SVs. The simple images contrast with existing tools such as IGV, bamsnap,

and svviz which allow more in-depth, but more complex and time-consuming, SV-

region plotting (see Fig. 1, Additional file 1: Figures S1-S5).

Samplot is also designed for easy application to various types of SV study, such as

comparing the same region across different samples (Additional file 1: Figure S6) and

sequencing technologies (Additional file 1: Figure S7) for family, case-control, or

tumor-normal studies. Annotations such as genes, repetitive regions, or other func-

tional elements can be added to help add context to SV calls (Fig. 1).

Samplot supports short-read sequencing from Illumina, long-read sequencing from

Pacific Biosciences or Oxford Nanopore Technologies, and linked-read sequencing

from 10X Genomics. Samplot works well for most SV types with each of these
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sequencing technologies and can also plot images without specifying a variant type, en-

abling review of complex or ambiguous SV types, or non-SV regions.

Producing images that appropriately summarize the evidence supporting an SV with-

out overwhelming the viewer is an intricate task. Samplot includes the three most es-

sential categories of SV evidence: split reads, discordant pairs, and coverage anomalies.

To reduce confusion, we distinguish between sequences and alignments. A sequence

(also called a read) is a series of nucleotides produced by a short- or long-read sequen-

cing platform. An alignment describes how a sequence (or read) maps to the reference

genome. Sequences that originate from a region of a sample’s genome that does not in-

clude an SV will have a single complete continuous alignment. When a sequence in-

cludes an SV, it will produce multiple alignments or unaligned segments. The

configuration of these alignments indicates the SV type. Deletions create gaps between

alignments, and duplications create overlapping alignments; inversions produce align-

ments that switch between strands, etc. An SV in the unsequenced region between the

paired-end sequencing reads will have a discordant alignment whose configuration

similarly indicates the SV type.

Samplot identifies, color-codes, and elevates split or discordant alignments so that

users can clearly and quickly distinguish between normal reads and reads supporting

different SV types (Fig. 2, Additional file 1: Figure S8, Additional file 1: Supplemental

Note 1). These plots often include scatterings of misaligned reads that can fool auto-

mated tools. A visual review can generally quickly determine whether or not groups of

reads support an SV, allowing rapid high-confidence variant review.

Fig. 1 Samplot creates multi-technology images specialized for SV call review. A putative deletion call is
shown, with the call and confidence intervals at the top of the image (represented by a dark bar and
smaller lines). Two sequence alignment tracks follow, containing Illumina paired-end sequencing and Pacific
Biosciences (PacBio) long-read sequencing data, each alignment file plotted as a separate track in the
image. PacBio data is further divided by haplotype (HP) into subplots. Reads are indicated by horizontal
lines and color-coded for alignment type (concordant/discordant insert size, pair order, split alignment, or
long read). The coverage for the region is shown with the gray-filled background, which is split into map
quality above or below a user-defined threshold (in dark or light gray respectively). An annotation from the
Tandem Repeats Finder [16] indicates where genomic repeats occur. A gene annotation track shows the
position of introns (thin blue line) and exons (thick blue line) near the variant; a small blue arrow on the
right denotes the direction of transcription for the gene
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Coverage depth is also an essential piece of data for evaluating the SVs that affect

genomic copy number (copy number variants or CNVs) and can, in some cases, pro-

vide the best signal of a CNV. Samplot includes a background track with up to base-

pair resolution of the fluctuations in coverage depth across the plot region. Samplot fol-

lows a minimal decision-making strategy and makes no computational attempt to as-

sign reads or coverage deviations to putative variant coordinates; this task is left instead

to the user via visual curation.

Samplot is implemented in the Python language and utilizes the pysam [17] module

to extract read information from alignment (BAM or CRAM) files, then plots reads for

review in static images. Speed is a key goal of Samplot, in keeping with the overall focus

on simple and rapid SV review, so plots are created using the Matplotlib library, which

has been optimized for rapid creation of high-quality images.

Filtering and viewing SV call sets with Samplot VCF

When working with large SV call sets, especially multi-sample VCF files, users often

need to review evidence for SVs in multiple samples together. Samplot provides a VCF-

specific option to interrogate such call sets using cohort genotypes, an optional pedi-

gree file in family-based cohorts, and additional annotation fields for filtering and plot-

ting multiple SVs across multiple samples. This enables users to focus on rare

Fig. 2 Samplot images of duplication, inversion, and translocation variants. a A duplication variant plotted
by Samplot with Illumina short-read sequencing evidence. Reads plotted in red have large insert sizes and
inverted pair order (reverse strand followed by forward strand instead of forward followed by reverse),
indicating potential support for a duplication. b An inversion variant, with Illumina sequencing evidence.
Reads plotted in blue have large insert sizes and same-direction pair alignments (both reads on forward
strand, or both on reverse strand). c A translocation variant, with Illumina sequencing. Discordant pairs align
to each breakpoint. The blue color of the reads and extremely large insert sizes of these grouped
discordant pairs indicate a large inverted translocation
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variation, variants in certain genome regions, or other criteria related to a research goal.

A simple query language that is inspired by slivar [18] allows users to customize filters

based on variant annotations in the VCF file. From the chosen variants, a web page is

dynamically created with a table of variant information, additional filtering options, and

quick access to Samplot images for visual review (Fig. 3).

Samplot VCF can be readily adapted to experimental needs common in SV studies.

For example, a team attempting to identify a causal SV in a familial rare disease study

might include a small number of control samples as well as the affected family and use

built-in filtering options to plot only variants which appear uniquely in the offspring,

with controls included in the resulting images for comparison. Samplot VCF is equally

well-suited for other problems such as cohort-based analysis of common SVs or

tumor-normal comparison (potentially with multiple samples in each category).

Automated SV curation with Samplot-ML

Convolutional neural networks (CNNs) are an effective tool for image classification

tasks. Since Samplot generates images that allow the human eye to adjudicate SVs, it

motivated us to test whether a CNN could discern the same patterns. To that end, we

developed Samplot-ML, a CNN built on top of Samplot to classify putative deletions,

the most common SV type, automatically. The workflow for Samplot-ML is simple:

given a whole-genome sequenced sample (BAM or CRAM [19]) as well as a set of puta-

tive deletions (VCF [20]), Samplot-ML re-genotypes each putative deletion using the

Samplot-generated image. The result is a call set where most false positives are flagged.

Using Samplot-ML, we demonstrate a 51.4% reduction in false positives while keep-

ing 96.8% of true positives on average across short-read samples from the Human Gen-

ome Structural Variation Consortium (HGSVC) [21]. We also trained a long-read

model with the same architecture and reduced false positives by 27.8%. Our model is

highly general and can classify SVs in sequences generated by libraries that differ in

depth, read length, and insert size from the training set. The Samplot-ML classification

Fig. 3 Samplot creates images for a quick review of SV VCF files. Samplot’s “samplot vcf” command will plot
all SVs in a VCF file or filter to a subset via user-defined statements. “Samplot vcf” creates an index page
and sends commands to “samplot plot,” which generates images for each variant that passes the filters. The
index.html page displays a table of variant info. Clicking on a row loads a Samplot image, allowing
additional filtering or variant prioritization
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process is completely automated and runs at about 100 SVs per second using a GPU

and 10 SVs per second using only a CPU. Most SV call sets from methods such as

LUMPY [22] and MANTA [23] running on a single genome that yield between 7000

and 10,000 SVs will finish in about 1 min. The result is an annotated VCF with the

classification probabilities encoded in the FORMAT field.

While Samplot-ML could support any SV type, the current model only includes dele-

tions. There are too few called duplications, insertions, inversions, and translocations in

the available data to train a high-quality model. For example, the 1000 Genomes Pro-

ject phase 3 SV call set [4] included 40,922 deletions, 6006 duplications, 162 insertions,

786 inversions, and no translocations.

To evaluate the short-read model, we considered the samples from the HGSVC with

long-read-validated SVs. First, we called SVs in HG00514, HG00733, and NA19240

using LUMPY/SVTYPER [10] (via smoove [24]) and MANTA. Next, we filtered those

SVs using the heuristic-based method duphold [11], a graph-based SV genotyper Para-

graph [25], a support vector machine classifier SV2 [26], and our CNN. In each case,

we measured the number of true positives and the number of false positives with re-

spect to the long-read validated deletions using Truvari [27] (Fig. 4a–c, Additional file

2: Table S1). In all cases, both duphold and Samplot-ML removed hundreds of false

positives while retaining nearly every true positive. Paragraph and SV2 remove most of

the false positives but retain far fewer true positives. Paragraph, similar to other graph-

based methods, is also highly sensitive to breakpoint precision (Additional file 1: Figure

S9), which explains the differences in its performance between LUMPY and MANTA

calls. On average, duphold reduces the number of false positives by 32.6% and reduces

true positives by 1.1% (Additional file 1: Figures S10-S11). Samplot-ML reduces false

positives by 53.4% and true positives by 2.4%. Paragraph and SV2 reduce false positives

and true positives 62.5% and 29.9%, and by 84.2% and 63.4%, respectively. A more re-

fined analysis that evaluates the performance by genotype could measure the extent to

which the model learns one-copy and two-copy loss states, but this truth set did not in-

clude genotypes. The Genome in a Bottle (GIAB) truth set [28] discussed next had ge-

notypes, and one- and two-copy loss results are decomposed below.

The long-read model uses the same architecture and process as the short-read model,

except it is trained on genomes sequenced using PacBio Single Molecule, Real-Time

Fig. 4 SV filtering performance of duphold (DHFFC) and Samplot-ML. a–c Short-read SV call sets generated
by LUMPY/SVTYPER and MANTA were then filtered by Samplot-ML, duphold (DHFFC), Paragraph, and SV2
and were then compared to the long-read-validated truth set. d Long-read SVs were called with Sniffles,
filtered by Samplot-ML, then compared to the GIAB truth set
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(SMRT) Sequencing. Since training used the HGSVC samples, the evaluation is based

on the GIAB truth set [28] which includes multiple validations, including visual review,

for long-read sample HG002. We called SVs using Sniffles [29], filtered those SVs using

the CNN, and measured the number of true positives and false positives with Truvari

(Fig. 4d, Additional file 2: Table S1). Samplot-ML reduces false positives by 27.8% and

true positives by only 1.4%.

Generality can be an issue with machine learning models. A distinct advantage of

training and classifying with Samplot is that its images are relatively consistent

across different sequencing properties and the models still perform well when

using different sequencing libraries. For example, our short-read model was trained

on paired-end sequences 20X with 150-bp reads and a 400-bp insert size and the

samples in the evaluations above (Fig. 4a–c) had shorter reads (126-bp reads) and

a large insert size (500bp) and were sequenced at greater depth (68X). Additionally,

we considered two libraries from the same Genome in a Bottle sample (HG002),

where one was sequenced at 20X coverage with 150-bp reads and 550-bp insert

size and the other was sequenced at 60X coverage with 250-bp reads and a 400-bp

insert size (Fig. 5a). The model performed equally well across all libraries, clearly

demonstrating that new models are not required for each library. Additionally, be-

tween LUMPY and Manta, Samplot-ML correctly genotyped 91.28% of hemizygous

deletions (1-copy losses) and 97.26% of homozygous deletions (2-copy losses) for

the 20X run (Fig. 4a). For the 60X run (Fig. 4b), Samplot-ML correctly genotyped

94.57% of hemizygous deletions and 97.26% of the homozygous deletions. These

results clearly show that the model has learned both copy loss states.

Samplot-ML is intended for the evaluation of germline deletion calls, but may

also be useful in some somatic variant call sets. Calling SVs in tumor samples can

be a challenge when subclones and normal tissue contamination produce variants

with a wide range of allele balances (the ratio of reads from the variant allele to

the total number of reads). The result is fewer discordant alignments and a less

distinct change in coverage, which has a direct effect on the Samplot images (Add-

itional file 1: Figure S12). To test how well our model performs in these instances,

we mixed sequences from two homozygous diploid cell lines (CHM1 and CHM13)

at different rates (Fig. 5b) then reclassified SVs from a truth set [8] using duphold,

SV2, and Samplot-ML. Paragraph was omitted from this experiment due to unre-

solved runtime errors. For each combination, we compared how many true-positive

SVs each method recovered from the minor allele. While the recovery rates be-

tween the Samplot-ML and duphold were similar, ranging from over 70% when the

samples were equally mixed (0.5 allele balance) to less than 40% when the SV

minor allele was at 0.1 (Additional file 3: Table S2), Samplot-ML provided an im-

provement over duphold especially as the minor allele became more rare, peaking

at a 12.9% improvement when CHM1 was the minor allele at 20%. SV2’s low sen-

sitivity resulted in poor performance as the minor allele balance decreased. Low-

frequency SVs are clearly difficult to detect and filter, and in many cases such as

mis-identified intrachromosomal translocations called as deletions may prove overly

complex for automated SV evaluation tools, but Samplot-ML’s classifier is robust

to evidence depth fluctuations, further proof of the generality of the model.
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Discussion
Samplot provides a fast and easy-to-use command-line and web interface to visualize

sequence data for most structural variant classes. Pre-screening large SV call sets with

Samplot allows researchers and clinicians to remove SVs that are likely to be false posi-

tives and focus orthogonal molecular validation assays on smaller groups of variants

with far more true positives. Rapid review could improve SV detection sensitivity in, for

example, low coverage sequencing experiments and genomic regions that are thought

to be enriched for false positives and excluded in most SV analysis. In addition, as gen-

ome sequencing technology advances often drive genomic discoveries, Samplot can eas-

ily support new sequence types in the future.

We have also trained a convolutional neural network to assist in SV curation. Key to

the performance of our model was identifying and training on realistic negative exam-

ples (false-positive SV calls). In genome feature detection broadly, and SV detection

specifically, negatives far outnumber positives. To achieve maximum classification per-

formance, collecting negative training examples must be given as much consideration

as any other aspect of the machine learning architecture. Just as it is highly unlikely

that any genomic detection algorithm would return a random genomic region as a pu-

tative event, we cannot expect that randomly sampled areas of the genome that do not

overlap true positives will be good negative examples. Special care must be taken to

sample from regions enriched with edge cases that pass detection filters but do not

contain true positives. By incorporating putative false-positive areas of the genome, we

were able to improve the performance of Samplot-ML immensely because these regions

strongly resembled the types of false positives that were being made by SV callers.

Our model performs well across sequencing libraries and SV calling algorithms, but

currently only supports deletions. As more SV data becomes available, we will extend

our model to consider other SV classes and will improve the performance in evaluating

SV evidence from long-read sequencing technologies. By enabling scalable and straight-

forward SV review, Samplot can extend robust SV discovery and interpretation to a

wide range of applications, from validating individual pathogenic variants to curating

SVs from population-scale sequencing experiments.

Fig. 5 Model performance in data sets that differ from the training set. a The number of true-positive and
false-positive SVs from different SV calling and filtering methods considering the same sample (HG002),
sequenced using two libraries with different coverages, read lengths, and insert sizes. b, c The percent
increase in true-positive SVs that Samplot-ML recovers versus duphold (b) and SV2 (c) for SVs in simulated
mixtures of samples (CHM13 and CHM1 cell lines) at different rates

Belyeu et al. Genome Biology          (2021) 22:161 Page 8 of 13



Extremely high false-positive SV call rates make rapid curation of call sets a problem

of paramount importance for numerous research questions. Samplot and the Samplot-

ML classifier together provide powerful, yet simple-to-use tools to curate large SV call

sets for high-confidence identification of real SVs. These tools will be widely useful for

users seeking to better understand the structure of the human genome and will be es-

pecially important as the scientific community sharpens its focus on the impacts of SVs

on health, personalized medicine, and diversity.

Methods
Samplot-ML model and image generation

Samplot-ML is a resnet [30]-like model that takes Samplot images of putative deletion

SVs as input and predicts a genotype (homozygous reference, heterozygous, or homo-

zygous alternate). Samplot-ML was built using Tensorflow [31] and is available at

https://github.com/mchowdh200/samplot-ml. For additional model details, see Add-

itional file 1: Figure S10. Train and test images were generated using the command:

samplot plot -c $chrom -s $start -e $end --min_mqual 10 -t DEL -b
$bam -o $out file -r $fasta
Additionally, for SVs with length > 5000 bases, we added --zoom 1000 which only

shows 1000 bp centered around each breakpoint. After an image is generated, we crop

out the plot text and axes using imagemagik [32]. Finally, before input into a Samplot-

ML model, the vertical and horizontal dimensions are reduced by a factor of eight. In-

structions for how to run Samplot-ML can be found in Additional file 1: Supplemental

Note 2.

Training data

Short-read model

The short-read version of Samplot-ML was trained on data from the 1000 Genomes

Project (1kg) [4], including the phase 3 SV call set and the newer high coverage align-

ments (see Additional files 4-5: Tables S3-S4 for data URLs). We excluded individuals

present in or directly related to individuals in our test sets (NA12878, NA12891,

NA12892, HG00512, HG00513, HG00731, HG00732, NA19238, NA19239). While dir-

ect relatives of our test set were removed from our training set, other distantly related

individuals remain. Given their shared ancestral histories, some SVs in the test set also

appeared in the training set. Out of 8674 DEL SVs across HG00514, HG00733, and

NA19240 call sets, 78 (< 1%) appeared in the 1000 genomes call set after excluding dir-

ect relatives.

True-positive regions Heterozygous and homozygous deletions were sampled from

the GRCh38 liftover of the phase 3 integrated SV map. Although this set contains

high-confidence SV calls, there were still a few regions that did not exhibit drops in

coverage (i.e., false-positive calls). To minimize the possibility of sampling a false posi-

tive, we filtered this set using Duphold’s DHFFC metric which measures the fold

change in coverage between the called and flanking regions. To filter, we removed re-

gions with a DHFFC > 0.7. After filtering, we sampled 150,000 heterozygous deletions

and 50,000 homozygous deletions.
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True-negative regions Care must be taken to sample “true negatives” properly. Before

choosing a negative set, we must consider the use case of our model. In practice, our

model will remove false positives from the output set of an SV caller or genotyper. That

means that our model will encounter two different classes of regions: those containing

real SVs and edge cases that confuse the SV caller’s filters. While we could have sam-

pled regions from homozygous reference samples in the 1kg calls (i.e., samples without

deletions) to get “true negatives,” these regions would have had very few discordant

alignments and level depths of coverage. Crucially, they would look nothing like the re-

gions that we would want our model to filter.

We took a more principled approach to pick true negatives. Many SV callers have the

option to provide a set of “exclude regions,” which prevents the caller from considering

potential problematic regions of the genome [33]. Since these are enriched for false posi-

tives, we used these regions’ calls as our true negatives. To get variants in these regions,

we recalled SVs on the 1kg high coverage alignments using LUMPY [22] with SVTyper

[10]. We then selected areas in the resultant calls that intersected problematic regions. To

ensure that no true positives were selected, we filtered out regions with a DHFFC ≤ 0.7.

Finally, to construct our set of true negatives, we took roughly 35,000 “exclude regions”

and 15,000 homozygous reference regions from the 1kg SV call set.

Long-read model

For the long-read model training data, we used PacBio samples from the HGSVC that

were present in the 1kg phase 3 SV call set (HG00513, HG00731, HG00732, NA19238,

NA19239, see Additional files 4-5: Tables S3-S4 for data URLs). This reduced set of

samples yielded 5404 true-positive regions. Just as with the short-read model, we sam-

pled a mix of “exclude regions” and normal homozygous reference regions. Using the

same set of regions called by LUMPY and SVTyper in the short-read alignments, we

sampled 452 exclude regions and 4354 homozygous reference regions.

Training procedure

From our training set, we held out regions from chromosomes 1, 2, and 3 to use as a

validation set during training. To train our model, we used stochastic gradient descent

with warm restarts (SGDR [34]). The initial learning rate was 0.2 and decayed with a

cosine annealing schedule. The initial restart period was set to two epochs and doubled

after each restart. We trained for 50 epochs and kept the model with the best validation

loss after training was completed.

Model testing

Short-read model

To evaluate the efficacy of the short-read model, we called deletions using both

LUMPY/SVTyper and manta on each of our test samples. We then filtered both

LUMPY and Manta call sets with Duphold (rejecting calls with DHFFC ≤ 0.7) and

Samplot-ML. To compare the filtered call sets with their respective gold standard VCFs

(Additional file 5: Table S4), we used Truvari [27], which compares regions in VCFs

based on percent overlap as well as breakpoint accuracy. We used the following truvari

command:
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truvari -b $truth_set -c $filtered call set -o $out_dir --sizemax 1000000 --sizemin 300

--sizefilt 270 --pctovl 0.6 --refdist 20

Long-read model

To evaluate the long-read model, we called deletions using Sniffles [29] on the PacBio

HG002 alignments (Additional file 4: Table S3) and filtered the result using Samplot-

ML.

Variable allele balance simulation

We used sequencing data from human Hydatidiform mole samples CHM1 and CHM13

(see Additional file 5: Table S4). Alignments (bams) were generated with BWA-MEM [35]

and duplicates were removed with Samblaster [36]. We then randomly subsampled both

alignments at a rate of 10% to 90% with 10% increments and merged CHM1 and CHM13

subsampled alignments such that each mixture added up to 100%. We sampled regions

(Additional file 5: Table S4) for evaluation that contained homozygous deletions in one

sample but not the other. Regions below 10x coverage after filtering reads with less than

10 mapping quality in the non-variant sample were omitted.

Paragraph shifted breakpoint experiment

To evaluate Paragraph’s sensitivity to SV breakpoint precision, we used the HG002 60

× 2 × 150 manta call set VCF and generated VCFs with ±5-bp shift in the start position

of each region and ran Paragraph for each resulting VCF and evaluated the F1 score

using Truvari in the same manner as with the original Samplot-ML model evaluations.
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