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Abstract

Researchers must be able to generate experimentally testable hypotheses from
sequencing-based observational microbiome experiments to discover the
mechanisms underlying the influence of gut microbes on human health. We
describe geneshot, a novel bioinformatics tool for identifying testable hypotheses
based on gene-level metagenomic analysis of WGS microbiome data. By applying
geneshot to two independent previously published cohorts, we identify microbial
genomic islands consistently associated with response to immune checkpoint
inhibitor (ICI)-based cancer treatment in culturable type strains. The identified
genomic islands are within operons involved in type II secretion, TonB-dependent
transport, and bacteriophage growth.

Introduction
Observational studies on the human gut microbiome using next-generation sequencing

(whether 16S rRNA amplicons or whole genomic sequencing) have firmly established

that the human gut microbiome affects health, disease, and response to treatments.

The current analysis methods for whole-genome shotgun (or “WGS”) microbiome data

have struggled to identify the underlying causal mechanisms, which are the critical

next step to translate microbiome science into novel therapies. Identifying candidate

mechanisms from observational studies is challenging because of the immense diversity

of bacteria [1], the limitations of reference genome databases [2], widespread horizon-

tal gene transfer [3], and the difficulty of accurately predicting the biological function

of microbial genes [4].

One proposed solution is gene-level metagenomics: analysis with respect to abun-

dance and presence of microbial protein-coding genes [5], but this approach has been

limited by the high dimensionality of the data generated by this tactic. There are mil-

lions of detectable microbial protein-coding genes in an experiment, leading to chal-

lenges both with computation burden and statistical analysis. Our solution to the high

dimensionality of microbial protein-coding genes is to identify the groups of genes
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with correlated levels of relative abundance across specimens (co-abundant gene groups

(CAGs)) [6]. CAGs may correspond to the core genomes of species, combinations of

co-abundant species, or accessory genomic elements such as transposons, bacterio-

phage, or so-called genome “islands” which vary across strains [7].

We have incorporated the tactic of identifying and combining protein-coding micro-

bial genes into CAGs into a computational analysis pipeline for gene-level metage-

nomic analysis called geneshot. geneshot is an end-to-end analysis workflow for

microbiome experiments using CAGs as the fundamental unit of analysis. In brief,

WGS data from each specimen is preprocessed to remove human reads and assembled

de novo; predicted protein-coding genes are then deduplicated to make a reference

gene catalog; the abundance of each gene in each specimen is estimated by the assign-

ment of raw reads against that gene catalog after rigorous handling of multiply-

mapping reads [8]; genes are grouped into CAGs based on their co-abundance ob-

served across the samples; we attempt to identify the possible taxonomic origins (by

alignment against RefSeq) and functionally (using eggNOG mapper) of each gene; the

association of each CAG with experimental or clinical covariates is estimated (Fig. 1a).

We consider if the CAGs associated with an outcome have member genes commonly

represented by specific taxa. We used these identified taxa to identify operons associ-

ated with the outcome of interest, by aligning the member genes of associated CAGs to

the reference genomes for that taxon.

In this study, we employ geneshot to reanalyze data from metagenomic studies in

people who have received immune checkpoint inhibitors for cancer. Immune check-

point inhibitors (ICIs) are a class of immunotherapies that can induce robust and long-

lasting protection from cancer [9–11]. However, across cancer indications, the majority

of patients have no objective response to ICI treatment [9–11]. Identifying the mecha-

nisms that regulate response to ICIs is an area of intense research, and multiple studies

Fig. 1 Schematic diagram of the geneshot tool for gene-level metagenomic analysis of microbiome
experiments. a Description of the data flow through geneshot, with the coordinated execution of multiple
constituent bioinformatic processes in order to analyze the experimental data on the basis of protein-
coding genes encoded by microbes present in each physical specimen. De novo assembly is performed
independently for each biological specimen, and the resulting protein-coding sequences are aggregated
across all assemblies prior to deduplication. Alignment of WGS reads to the deduplicated gene catalog is
performed independently for each specimen, and the resulting abundance data is aggregated across all
specimens in order to compute pairwise gene co-abundance values. b Summary of the geneshot analysis to
identify microbes associated with ICI response from published WGS datasets, indicating the number of
biological features identified at each step
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have demonstrated that the gut microbiome can regulate the anti-tumor response in-

duced by ICI in distant tissues, such as the lung and skin [12–14]. Further, transfer of

the gut microbiome from patients to gnotobiotic mice transfers ICI responsiveness to

the new host [12, 13, 15]. Taxonomic analysis of these datasets to identify the microbes

responsible for transferring ICI responsiveness has yielded inconsistent results across

cohorts. It is possible that the microbes driving the ICI response phenotype may truly

vary across these studies (e.g., due to biogeographical variation in human microbiome

composition or the methodologies used to classify responder status), but the identifica-

tion of common microbial genomic features associated with ICI response across mul-

tiple cohorts using gene-level analysis will accelerate understanding the mechanistic

basis of the transfer of ICI responsiveness by the microbiome.

Results
We used geneshot to analyze the published datasets from microbiome studies investi-

gating the stool microbiome of participants receiving ICI therapy for metastatic melan-

oma treatment [12–14]. Our goal was to identify microbial gene groups (CAGs) which

differed in relative abundance in ICI responders compared to non-responders (termed

“progressors”), while allowing for differences in the baseline relative abundance of each

CAG in the two cohorts. Each stool microbiome sample yielded 75,488–536,005 (me-

dian 280,065) microbial genes by de novo assembly which were deduplicated to form a

gene catalog of 7,209,758 unique protein-coding sequences (Fig. 1b, Additional file 1:

Figure S1A). The majority of raw WGS reads (median 86.1%) were uniquely assigned

to that gene catalog by translated nucleotide alignment, and 380,202–2,071,835 (me-

dian 1,174,474) genes were detected in each sample (Additional file 1: Figure S1B-C).

Co-abundance clustering of the genes yielded 1,232,769 distinct CAGs; member genes

within the most abundant CAGs were commonly represented in the reference genomes

of common gut residents (Additional file 1: Figure S1D-E, S2). With an FDR threshold

of 0.01, 3019 CAGs (4509 genes in total) were found to be significantly associated with

ICI response, with 2634 CAGs associated with progression and 385 CAGs associated

with response (Additional file 1: Figure S3). These associated CAGs had member genes

commonly present in Odoribacter splanchnicus and Gemmiger formicilis (which were

found to be more abundant in responders), as well as Coprococcus comes (which was

more abundant in progressors) (Additional file 1: Figures S4, S5).

To provide genomic and functional context for these ICI-associated CAGs, we next

aligned the dataset to 1886 reference genomes from the taxonomic families shown in

Additional file 1: Figure S4C. Rather than being spread throughout the genome, the

genes comprising the CAGs were found in contiguous genomic regions (“islands”) ran-

ging from 10 to 35kb in size. ICI-associated CAGs aligning to Odoribacter splanchnicus

DSM 220712 corresponded to strain-specific genomic islands encoding type II secre-

tion and TonB-dependent transport, which were found at higher abundance in the gut

of individuals who responded to ICI therapy across both cohorts (Fig. 2). Genomic

islands in Clostridium sp. HMb25 and Faecalibacterium prausnitzii were annotated as

integrated prophages, with an additional genomic island in F. prausnitzii annotated

with a CRISPR defense system, supporting a role of bacteriophage growth in the ICI-

microbiome interaction (Additional file 1: Figure S6). Thus, geneshot was able to iden-

tify not only potentially relevant taxa, but also strain-specific genomic islands.
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Furthermore, geneshot identified specific possible mechanisms (type II secretion, TonB-

dependent transport, and phage) that are suitable for targeted hypothesis testing (e.g.,

in model systems).

Discussion
In contrast to other end-to-end pipelines, the unit of analysis that underlies geneshot is de

novo assembled protein-coding gene sequences, which are dimension-reduced via co-

abundance clustering. One advantage of this gene-level approach to metagenomic analysis

is a reduced reliance on reference databases (which are often incomplete) or inaccurate

ontological hierarchies (e.g., the incompatibility of taxonomy with homoplasmy or hori-

zontally transferred genetic elements). Moreover, by implementing an improved method

for CAG construction, geneshot is able to analyze the gene-level abundances without be-

ing restricted to organismal groupings (such as MAGs or “metagenomic species”).

geneshot’s integration of reference and taxonomic databases is oriented around deriv-

ing maximum benefit from the sparsely sequenced and annotated uncultivated organ-

isms within the gut. After identifying CAGs associated with an outcome, we then

consider where the member genes of the associated CAGs have been observed in

Fig. 2 Genomic coordinates of ICI response-associated CAGs for Odoribacter splanchnicus DSM 220712. The
relative abundance of each CAG (a, b, c, i) is shown across specimens, grouping specimens by cohort (x-
position) and ICI response outcome (color). The genomic coordinates of individual CAGs (d, e, f) are shown
with orange arrows for the region of alignment for each gene and blue arrows with text indicating the
NCBI annotations in that region. The occurrence of CAGs across multiple reference genomes (g) as well as
stool microbiome specimens from this dataset (h) differentiates the core genomic elements (underlined in
blue) from the accessory (or strain-specific) genetic elements (underlined in orange)
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reference genomes. The actual organism representing these genes in a given specimen

need not have a reference genome, just a somewhat related genomic island. Thus, gene-

shot maximizes what can be inferred from reference databases without being dependent

upon the same references for the identification of relevant genomic islands.

Finally, by wrapping together the set of tasks required for comprehensive gene-level

metagenomic analysis using the Nextflow workflow management system [16], we pro-

vide a convenient mechanism for microbiome analysis which can be implemented

across a variety of high-performance computing infrastructures with minimal configur-

ation required for each user. We hope that geneshot can be used widely to enhance the

quality of microbiome research, while also providing insights which may contribute to

the development of microbiome-based therapeutics for cancer and other human

diseases.

Methods
Bioinformatic approach of geneshot for gene-level metagenomics

The process of performing gene-level metagenomic analysis is implemented by geneshot

using a series of bioinformatic processes which are all coordinated into an overarching

workflow using the free and open-source Nextflow [16] workflow management system.

By providing options as “flags” to the workflow, users can modify the details of how the

analysis is executed, and a record of the parameters used to execute the workflow can

be saved (along with a summary of the computational resources which were used) with

the reporting functionality provided by Nextflow. The complete set of code which con-

stitutes geneshot can be found in the GitHub repository https://github.com/Golob-

Minot/geneshot under the open-source MIT License, with documentation provided in

the associated wiki.

The overview of the analytical tasks performed by geneshot is as follows (see the “Bio-

informatic component tools and dependencies” section for a complete reference of the

component tools referenced here):

1. Input WGS reads are preprocessed with adapter trimming using barcodecop and

cutadapt, and host reads are removed by subtractive alignment using BWA. All of

the following steps use the FASTQ files which are output by this preprocessing

step.

2. WGS reads from each specimen are de novo assembled individually using

MegaHit, and coding regions are predicted using Prodigal.

3. The conceptual translations of every predicted coding region are deduplicated

across all specimens using a combination of linclust and DIAMOND, each of

which applies a fixed threshold of amino acid similarity (default 90%) and

alignment coverage (default 50%) to retain only the centroids from each cluster of

coding sequences.

4. The preprocessed WGS reads from step 1 are then aligned against the gene catalog

from step 3 in order to estimate the relative abundance of the organisms in each

specimen which encode each gene. The alignment is carried out with DIAMOND

(in blastx mode). Those alignments are then processed by FAMLI in order to

resolve any reads which align equally well to multiple references by picking a single
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reference using an expectation-maximization approach that uses a target metric of

evenness of sequencing coverage across each reference as the target metric [8].

5. The relative abundance of each gene from the catalog across each specimen is

computed as the depth of sequencing across each gene (the number of bases from

WGS reads aligned to each gene divided by the length of the gene) divided by the

sum of sequencing depth across all genes for that specimen. This provides a

relative abundance estimate for the genomes encoding each gene in the source

specimen that is adjusted for gene length.

6. Using the relative abundance of each gene across each specimen, genes are

clustered using average linkage clustering and the cosine distance metric, applying

a fixed distance metric to join genes into co-abundant gene groups (CAGs). Each

gene from the catalog which is detected in at least one sample belongs to one and

only one CAG. Two complementary approaches are used to provide a computa-

tionally tractable approach to this process: (a) genes are clustered in sub-groups

(shards) which are iteratively combined over five sequential rounds and (b) an ap-

proximate nearest neighbor algorithm is used to rapidly index and retrieve co-

abundant gene “neighborhoods” to limit the search space for expensive computa-

tion of pairwise distance matrices as described previously [6]. To mitigate any risk

of the use of shards in (a) which could find sub-optimal clusters in early rounds,

the stringency of the cosine distance threshold used to identify clusters is increased

by a factor of 2 in all pre-clustering steps. Only in the final round of clustering is

the user-specified cosine distance threshold applied, which results in the formation

of CAGs which are the superset of the stringent groups formed in earlier rounds.

7. Independently from steps 4–6, the gene catalog may be optionally annotated by

taxonomic classification using DIAMOND (which assigns the lowest common

ancestor of top hits in blastp mode), as well as functional annotation using

eggNOG-mapper. These annotation steps are optional and are only executed if the

user provides the reference databases required by either tool.

8. If the user provides a formula for statistical analysis using the variables defined in the

manifest (the input file which is also used to label each pair of WGS FASTQ files

with the appropriate specimen name), then the number of reads mapped to each

CAG will be modeled using a beta-binomial model with that formula describing the

logit of the expected relative abundance of the CAG. The model is fit using corncob

[17]. If taxonomic annotation was performed in step 7, taxon abundance coefficients

are determined by aggregating the corncob results over all CAGs for which any con-

stituent gene is taxonomically annotated as that taxon. The taxon-level estimated co-

efficients are then modeled using the errors-in-response model betta [18] with no

additional covariates (i.e., an intercept-only model is fit), and the hypothesis that the

intercept is zero is tested. This approach allows an overall assessment of the effect of

the covariate on the abundance of each taxon in a CAG-based analysis. Similarly, if

the functional annotation was performed in step 7, the same approach using betta

and corncob is applied to all CAGs sharing the same functional annotation, which al-

lows an overall assessment of the effect of the covariate on the abundance of each

function. Taxon abundance coefficients are used in this analysis to prioritize reference

genomes for more detailed analysis by exhaustive alignment of the genes from each

CAG against individual reference genomes.
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9. In the final step, all of the outputs from each step are aggregated into HDF5

format, which organizes multiple tables into a single file using an internal

organization structure to identify each of the elements of the results. The updated

description of all data output by geneshot can be found in the associated

documentation (https://github.com/Golob-Minot/geneshot/wiki/Output-Files).

Preparing inputs for geneshot

In order to run geneshot, users must prepare (1) a manifest in CSV format with col-

umns for “specimen,” “R1,” “R2,” and any other additional metadata needed for statis-

tical analysis and (2) the set of FASTQ files (gzip-compressed) listed in the manifest,

with forward and reverse reads listed separately in the “R1” and “R2” columns, respect-

ively. In this format, a single specimen may be made up of multiple FASTQ file pairs

by listing those files across multiple rows.

Setting up Nextflow

In order to run geneshot on the available computational resources, start by installing

the workflow management tool Nextflow and configuring it. The complete documenta-

tion for Nextflow can be found at https://www.nextflow.io/docs/latest/getstarted.html.

The process of configuring Nextflow is accomplished by saving a “nextflow.config” file

in the user’s home directory which describes the compute resources which should be

used (local execution, SLURM, PBS, AWS, etc.), and which will be referenced when

running geneshot.

Running geneshot

The complete set of instructions for running geneshot can be found on the wiki associ-

ated with the tool at https://github.com/Golob-Minot/geneshot/wiki. In order to run

geneshot, the user starts with the command “nextflow run Golob-Minot/geneshot” and

appends any of the flags shown in Additional file 2: Table S1 (e.g., --manifest manifest_

file.csv).

Reference databases

Annotation of the gene catalog generated by geneshot is performed using reference da-

tabases for DIAMOND and eggNOG-mapper. The databases used for this analysis were

generated based on the documentation in the associated tools and are available on

AWS S3 at the following locations:

� Taxonomic annotation is based on a DIAMOND index of NCBI’s RefSeq genome

database generated on January 15, 2020: s3://fh-ctr-public-reference-data/

tool_specific_data/geneshot/2020-01-15-geneshot/DB.refseq.tax.dmnd

� Functional annotation is based on eggNOG-mapper v5.0 database downloaded on

July 17, 2020: s3://fh-ctr-public-reference-data/tool_specific_data/geneshot/2020-

06-17-eggNOG-v5.0/eggnog_proteins.dmnd and s3://fh-ctr-public-reference-data/

tool_specific_data/geneshot/2020-06-17-eggNOG-v5.0/eggnog.db
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Bioinformatic component tools and dependencies

All of the component tools used by geneshot are available publicly as Docker images

which are automatically generated from publicly available Dockerfile source code. The

images used by the current version of geneshot are listed in Additional file 3: Table S2.

Genome alignments

The process of aligning genes from the geneshot output against a set of reference ge-

nomes was executed the Annotation of Microbial Genomes by Microbiome Association

(AMGMA) tool. This tool aligns genes from the geneshot gene catalog against a user-

specified set of microbial genomes and then calculates the summary metrics for each

genome including the proportion of the genome which is aligned by genes which are

associated with a given parameter. The genome alignment figures in this manuscript

show the position of the genome alignment for the set of genes contained in the CAG

of interest, as well as the location and annotation of genes recorded in GFF format

within the NCBI RefSeq database. Alignment is performed using DIAMOND (using

the dependencies shown in Table S2) with the complete set of Python code used to ag-

gregate alignment results available at https://github.com/FredHutch/AMGMA/. An ex-

ample of alignment to de novo assembled contigs, performed with the same set of

steps, is shown in Additional file 1: Figure S7.

Datasets used for analysis

The data analyzed in this manuscript consists of the publicly available FASTQ records

and associated metadata available for the BioProjects PRJEB22893 [12] (n=25),

PRJNA397906 [14] (n=44), and PRJNA399742 [13] (n=172). The public metadata for

PRJEB22893 [12] did not include any annotation of ICI response phenotype, and so

was omitted from the statistical model used to analyze CAG abundances. However, the

CAG abundance data for that set of samples is present in the raw results from the gene-

shot results published alongside this paper.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02355-6.

Additional file 1: Figure S1. Summary of gene-level metagenomic analysis results generated by geneshot. The re-
sults for each specimen across all cohorts is shown in comparison to the number of sequence reads for each speci-
men (x-position) including the number of genes detected by de novo assembly of each individual specimen (A),
the proportion of reads from each specimen which align uniquely to the de novo gene catalog (B), and the num-
ber of genes from the gene catalog detected by alignment (C). The distribution of genes across CAGs of different
sizes is shown in (D), with the horizontal axis showing the CAG size range and the vertical axis showing the num-
ber of genes belonging to CAGs within that size range. (E) shows the relative abundance (log10) of the CAGs with
the highest relative abundance (rows, annotated by majority taxonomic annotation) across all specimens (columns,
annotated by BioProject and ICI response label), with hierarchical clustering by relative abundance across rows and
columns. Figure S2. Visual depiction of CAG-level abundance calculation. Each CAG consists of a group of genes,
each of which is detected in each specimen by alignment of WGS reads. The abundance of genes from each CAG
are shown in (A) and (C) in units of the absolute number of reads aligned uniquely from each specimen. The
‘depth’ of sequencing of each gene is a commonly-used length-normalized measure in which the total number of
bases from all aligned reads is divided by the length of each gene. Genes are grouped into CAGs based on average
linkage clustering using the cosine distance metric computed from the vector of sequencing depth values across
all specimens. The abundance of each CAG is computed as the sum of sequencing depth for all genes in the CAG,
divided by the sum of sequencing depth of all genes detected. That proportional abundance metric is shown for
each CAG in (B) and (D). Specimens are arranged in alphabetical order on the horizontal axis, with abundance mea-
sures for each specimen on the vertical axis. Figure S3. Volcano plot showing the distribution of association esti-
mates for CAGs with ICI response. Each point represents a single CAG, showing all CAGs which contain at least five
constituent genes. The horizontal axis shows the estimated coefficient of association with ICI response (positive
values indicate a higher relative abundance in ICI responders in comparison to progressors). The vertical axis shows
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the p-value for that coefficient of association for each CAG after adjustment for multiple hypothesis testing with
the FDR-BH procedure. Figure S4. Taxonomic annotation of CAGs associated with ICI response. The taxonomic an-
notation of genes found in the 50 CAGs (columns) which were most consistently associated with ICI response (after
applying a minimum size threshold of 30 genes), are shown in (A) with shading indicating the proportion of genes
assigned to the indicated taxon (rows). The Wald statistic summarizing the association with ICI response is shown
for taxa in (B) and for individual CAGs in (D). A taxonomic tree annotating those organisms is shown in (C), and
CAG size is shown in (G). Figure S5. Visual depiction of the aggregation of CAG-level ICI-response association met-
rics by taxon. For each organism, the lower panel shows the estimated coefficient and -log10 p-value for the asso-
ciation of each CAG with ICI response. Every CAG either contains at least one gene which was taxonomically
annotated to the indicated organism (orange), or there were no genes in that CAG with that taxonomic annotation
(blue). The aggregate taxon-level ICI-response association for each organism is shown in the upper panel from
each subplot, with the estimated coefficient +/- standard deviation indicated in the subplot title. The vertical grey
line in each subplot marks the taxon-level estimated coefficient value. Figure S6. A putative bacteriophage of Fae-
calibacterium prausnitzii is associated with ICI non-response, in contrast to an associated bacteriophage defense is-
land that is associated with ICI response. The genomic coordinates of ICI response-associated CAGs are shown for
two strains of F. prausnitzii (as in Fig. 2) (A-B). In addition, the relative abundance of these two CAGs is compared
directly (C-F), and the ratio of relative abundances is shown as a function of ICI response across both cohorts (G).
Figure S7. Example of CAG alignment to de novo assembly. The alignment coordinates for the alignment of a sin-
gle CAG against the contigs generated by de novo assembly from this dataset is shown alongside the eggNOG
functional annotations for the underlying genes. All alignments covered the entirety of the gene catalog sequence
at >99% amino acid identity. The 14kb physical region shown in this plot encompasses all such high quality align-
ments for this CAG in this specimen.

Additional file 2: Table S1. In order to run geneshot, the user starts with the command “nextflow run Golob-
Minot/geneshot” and appends any of the flags.

Additional file 3: Table S2. The images used by the current version of geneshot.

Additional file 4. Review history.
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