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Abstract

Multiple recent studies highlight that genetic variants can have strong impacts on a
significant proportion of the human DNA methylome. Methylation quantitative trait
loci, or meQTLs, allow for the exploration of biological mechanisms that underlie
complex human phenotypes, with potential insights for human disease onset and
progression. In this review, we summarize recent milestones in characterizing the
human genetic basis of DNA methylation variation over the last decade, including
heritability findings and genome-wide identification of meQTLs. We also discuss
challenges in this field and future areas of research geared to generate insights into
molecular processes underlying human complex traits.
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Introduction
The complexity of the human genome lies not only in its composition of billions of base
pairs, but also in the chemical modifications that make it interpretable to enzymes and
other molecular factors, through epigenetic mechanisms. DNA methylation has been
the most widely studied epigenetic mark since 1948 when it was first reported [1]. In
humans, DNAmethylation consists of the covalent addition of a methyl group to cytosine
residues—predominantly at CpG sites—by a family of enzymes called DNA methyltrans-
ferases (DNMTs) [2, 3]. DNA methylation plays an important role in multiple processes
during human development and over the life course, such as the regulation of transcrip-
tion [4–6], genomic imprinting [2, 4], maintenance of X-chromosome inactivation [7],
chromosomal maintenance, and genomic stability [8].
With advances in high-throughput molecular techniques our understanding of DNA

methylation has greatly increased in the past few decades. Multiple methods have been
developed for profiling DNA methylation patterns across the human genome. Cur-
rently, the gold standard is bisulfite conversion of DNA followed by deep sequencing
or whole genome bisulfite sequencing (WGBS, Table 1). However, the most extensively
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Table 1 Glossary of commonly used terms

Term Definition

Additive genetic effects A genetic mechanism where alleles at one or more loci have a cumulative
contribution to the phenotype. In human QTL analysis. An additive
genetic model describes a model where the mean phenotype value
changes by n units in heterozygotes and by 2n in homozygotes, with
each additional copy of the risk allele at a locus. In heritability models, the
contribution of additive genetic effects to the phenotype variance is
estimated by the narrow-sense heritability.

Allele-specific methylation
(ASM)

Allelic asymmetry in DNA methylation status at a locus. ASM can be a
consequence of several factors, such as genetic variation
(sequence-dependent ASM, a type ofmeQTL effect) or genomic
imprinting.

CpG island (CGI) Region of the genome where the frequency of CpG sites is greater than
that expected by chance. Different definitions of CGI have been
proposed. CGIs are flanked by regions known as CGI shores and shelves.

Differential methylation
analysis

Computational analysis that aims to identify a statistically significant
difference in mean DNA methylation levels across sample groups. The
approach can be applied to individual CpG sites (differentially methylated
sites or positions, DMSs or DMPs) or to multiple consecutive CpG sites
(differentially methylated region, DMR).

DNAmethylationmicroarray Microarray-based technology that quantifies DNA methylation levels at a
pre-specified set of CpG sites. Commonly used approaches typically apply
bisulfite conversion of the DNA, followed by Illumina DNA methylation
array profiling. Illumina methylation arrays include the Infinium
HumanMethylation27 (27K), HumanMethylation450 (450K) and
MethylationEPIC (EPIC) BeadChips. Different arrays profile different
proportions of themethylome (coverage).

Epigenome-wide association
study (EWAS)

Analysis that systematically assesses the association between epigenetic
marks (e.g., DNA methylation levels) at genetic loci across the genome
and a phenotype or exposure of interest.

Genome-wide association study
(GWAS)

Analysis that systematically assesses the association between genetic
variation at genetic loci across the genome and a phenotype of interest.

Heritability The proportion of variance in a phenotype that is attributed to the
genetic variation. The broad-sense heritability describes the subset of
phenotype variance due to all genetic effects, while the narrow- sense
heritability describes the proportion of phenotype variance only due to
additive genetic effects.

Methylation quantitative trait
locus (meQTL)

A genetic locus at which genetic variation is associated with variation in
DNA methylation at a specific CpG site. MeQTLs can form local
associations in cis, or have long-range effects in trans.

Methylome The DNA methylation profile of the genome. The methylome can be
profiled at different levels of resolution, in single cells or in populations of
cells, across different cells and tissues, and at a specific moment in time. It
can be profiled using different technologies includingWGBS and DNA
methylationmicroarrays.

Multiple-testing correction When multiple simultaneous statistical tests are carried out, the
probability of spurious discoveries increases. Different multiple testing
correction procedures can be applied, including methods that control the
false discovery rate (FDR) and the family-wise error rate (FWER), for
example, Bonferroni correction.

Pleiotropy A genetic variant that impacts multiple phenotypes.

Post-GWAS analysis Follow-up analysis from GWAS that aims to characterize the functional
role of GWAS signals and/or identify causal genetic variants. Many QTLs
have been identified for variation in molecular processes, including but
not limited to DNA methylation (meQTL), gene expression (eQTL) and
histone modifications (hQTL).

QTL effect A quantitative measure that describes the strength and direction of
association between a genetic variant and its associated phenotype,
estimated in genetic association analysis.

Whole genome bisulfite
sequencing (WGBS)

Deep sequencing technology used to detect the methylation status of all
sites in themethylome. WGBS consists of bisulfite conversion of the
DNA, followed by whole genome sequencing.
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used methylation profiling technologies are microarrays assessing DNA methylation at
a proportion of the 28 million CpG sites in the genome. To date, Illumina bead-chip
platforms have been most popular, where pre-designed probes target bisulfite-converted
DNA, followed by hybridization, single-base extension, and its detection [9]. Early mod-
els included arrays such as the Infinium HumanMethylation27 BeadChip (27K), targeting
around 27,000 sites (0.1% of total CpGs) mainly in CpG islands (CGIs) within promoters
[9], followed by the widely used Infinium HumanMethylation450 array (450K), targeting
∼480,000 sites (1.7% of total CpGs) consisting of the 27K sites and increased coverage
in non-CGIs and intergenic regions [10]. A more recent version is the Infinium Methy-
lationEPIC BeadChip (EPIC), targeting ∼850,000 sites (3% of total CpGs), which include
almost all of the 450K sites, with additional CpG sites in enhancers [11].
Unlike DNA sequence, genomic methylation patterns are not directly inherited during

meiosis [12], but are mostly reprogrammed in two waves during embryogenesis [13–15].
Following this, DNA methylation modifications can be both stable and dynamic during
mitosis events that accumulate over the life course [16, 17]. These observations suggest
that the environment may be a key driving force behind changes in mitotic DNA methy-
lation [17–20]. However, growing evidence now shows that genetic variation also plays a
role in the establishment of DNAmethylation marks, independently of or in contribution
with environmental exposures.
Research interest in genetic impacts on DNA methylation variation is especially rele-

vant in context of methylome changes observed in disease [16, 21–23], alongside results
from genome-wide association studies (GWASs). Although many genetic associations
have been identified from GWASs, there remain important unanswered questions about
candidate causal variants and their functional consequences, as GWAS signals tend to
fall in non-coding regions [24]. Methylome analyses can provide a valuable piece of infor-
mation as a post-GWAS resource, giving insights into regulatory genomic potential of
GWAS signals and helping to prioritize loci to further follow-up [25–27].
Given these considerations, here, we present an overview of results identifying genetic

drivers of DNA methylation variation. We discuss methylation heritability findings, and
then focus on genome-wide studies that have identified genetic variants as meQTLs for
DNA methylation profiles. We also discuss cellular mechanisms that may explain genetic
impacts on DNA methylation levels. Lastly, we consider challenges of meQTL analyses,
as well as novel applications and further research directions.

DNAmethylation heritability
A fundamental question in the study of human traits is to assess the extent to which
a phenotype is under the influence of genetic factors, that is, how heritable it is. Heri-
tability refers to the proportion of phenotypic variance attributed to either total genetic
effects (broad-sense heritability, H2), or additive genetic effects (narrow-sense heritabil-
ity, h2) [28], where the latter is most commonly estimated in context of DNAmethylation
analyses.
For the estimation of DNAmethylation heritability, most studies apply twin-based study

designs. The underlying premise of the twin design is based on trait comparison between
monozygotic (MZ) twin pairs who share typically 100% of their genome variation, com-
pared to dizygotic (DZ) twins who share on average only 50% of genetic variation. The
narrow-sense heritability is then calculated by comparing the correlation of a trait—here
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level of DNAmethylation at a genomic region—betweenMZ andDZ twins [29], following
a series of assumptions. In a recent study in whole blood samples from 2603 individuals
from the Netherlands Twin Registry, van Dongen et al. [30] estimated the individual CpG
site heritability to range from 0 to 0.99 at each CpG site profiled on the Illumina 450K
array, where the mean genome-wide heritability averaged over all CpG sites tested was
ˆ̄h2 = 0.19 ( ˆ̄h2 = 0.20 with the classical twinmethod). The estimate of the average CpG site
heritability across the methylome as 0.19 is in agreement with previous twin methylation
heritability studies using the 450K [31] and 27K arrays [32]. Furthermore, the study esti-
mated that approximately 41% of Illumina 450K sites had significant evidence for additive
genetic effects and suggested that heritability at a proportion of DNAmethylation sites is
sex- and age-specific.
Fewer studies estimate DNAmethylation heritability using other approaches, for exam-

ple, using familial clustering models in extended families. The advantage of such methods
is their wider applicability to multiple types of relatives beyond twins and circumventing
key assumptions of the classical twin model such as equal influence of common envi-
ronment for MZ and DZ twins and independence of genetic and environmental factors.
Despite this, DNA methylation heritability estimates from familial clustering studies are
consistent with those obtained from classical twinmodels. McRae et al. [33] estimated the
heritability of DNA methylation measured using the Illumina 450K array in 614 periph-
eral blood leukocyte samples from twin pairs, their siblings and fathers, in altogether 117
families of European descent from the Brisbane System Genetics Study. The estimates of
heritability across the Illumina 450K probes give a similar mean CpG site genome-wide
estimate of ˆ̄h2 = 0.187, ignoring probes with known genetic variants ( ˆ̄h2 = 0.199, if all
probes included). Using a different approach, Nustad et al. [34] designed a Bayesianmixed
model that could include pedigree structure for estimating heritability in two sets of CD4+

T cell samples (n = 995 and n = 530) from the Genetics of Lipid Lowering Drugs and
Diet Network (GOLDN) study, profiled on the 450K array. Here, the mean heritability
point estimates across the genome ( ˆ̄h2 = 0.33 and ˆ̄h2 = 0.36) are slightly higher com-
pared to other studies, potentially because the mean was calculated only considering CpG
sites with strong evidence for non-zero heritability, as well as lack of precise estimates of
shared environmental effects. Other studies using the 450K array have found comparable
average heritability estimates based on family clustering ( ˆ̄h2 = 0.09 [35] and ˆ̄H2 = 0.13
[36]), or other methods applicable to unrelated individuals such as SNP-based heritability,
calculated using all genetic variants [30, 37]. For instance, in 3948 blood samples from the
Avon Longitudinal Study of Parents and Children (ALSPAC), Gaunt et al. [37] estimated
the genome-wide average SNP-based heritability for 450K array probes in blood at differ-
ent time points over the life course to range between 0.20 and 0.25, based on a panel of
1.2 million common SNPs. The majority of methylation variance was explained by SNPs
located over 1 Mbp away from the methylation site (or in trans).
Overall, these heritability studies indicate that DNAmethylation profiles have a genetic

basis, which expressed as the average heritability across all CpG site in the genome pro-
filed by the Illumina 450K array, ranges from 0.1 to over 0.3. Although this genome-wide
mean estimate of methylation heritability could be considered moderate or low, the her-
itability distribution at specific CpG sites ranges from 0 to 1, and at least one tenth of
profiled sites are highly heritable (ĥ2 > 0.5) [30, 31, 33]. Furthermore, because genetic
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variability differs across populations and over time, heritability estimates are population-
and age-specific, which may explain some of the differences in reported mean DNA
methylation heritability estimates so far [28]. Another factor to consider when inter-
preting the heritability estimates is that they may vary according to DNA methylation
platform [38, 39], as array technologies only cover a limited proportion of CpGs out of the
28million CpGs genome-wide (approximately 1.7% for 450K, 3% for EPIC) and regulatory
elements tend to be underrepresented (see the “DNA methylation profiling” section).
An outstanding research question has considered evidence for transgenerational trans-

mission of DNA methylation patterns independent of genetic variation or transgen-
erational epigenetic inheritance. In model organisms such as mice and rats, several
phenotypes have been linked to DNA methylation transgenerational inheritance. Exam-
ples include a kinked tail phenotype caused by methylation in a retrotransposon within
the axin-fused allele inmice [40], andmetabolic phenotypes inmale rats linked to in utero
nutritional deficiencies and alterations in the sperm methylome [41]. In contrast, human
transgenerational epigenetic inheritance studies are limited and show negative results,
suggesting that genetic variants likely fully explain the observed methylation heritability.
In a study aiming to test whether methylation levels at certain CpG sites are inherited
in a Mendelian fashion through multiple generations in 16 families (123 subjects) from
the Arab population, Zaghlool et al. [42] inspected loci where blood DNA methylation
levels followed a trimodal distribution, that is, with peaks around 0 (unmethylated), 0.5
(hemi-methylated), or 1 (methylated). Although about a thousand CpG sites from the
450K followed such patterns, in almost all cases, DNA methylation changes were associ-
ated with nearby genetic variants (within 1Mbp or less), discarding a direct mechanism of
transmission that is independent of genetic variation. Importantly, the trimodal loci had
high mean heritable values (0.8 ± 0.18), and almost half were associated with expression
quantitative trait loci (eQTLs). McRae et al. [33] reached similar conclusions, noting that
the transgenerational inheritance of DNA methylation is mainly attributable to genetic
heritability. Therefore, so far, there is no robust evidence in humans to indicate that DNA
methylation heritability may be attributed to non-genetic effects, such as evidence for
transgenerational epigenetic inheritance as reported in other species [12].

Methylation quantitative trait loci
Given the observed evidence for DNAmethylation heritability, much interest has focused
on identifying specific genetic variants that influence DNA methylation variation across
the genome. Multiple studies have explored the correlation between DNA methylation
levels and genetic variants across the genome (typically single nucleotide polymorphisms,
SNPs), to identify DNA methylation quantitative trait loci or meQTLs (also referred to
as mQTLs or metQTLs). Although several early papers tackled meQTLs identification
over limited target sites [43–46], it was not until the early 2010’s that initial genome-wide
efforts identified meQTLs on the 27Kmethylome and across multiple tissues (Gibbs et al.
[47], Zhang et al. [48] and Bell et al. [49]).
Studies to date have reported an influence of meQTLs on up to 45% of CpG sites pro-

filed by the Illumina 450K array across the genome [31, 35, 50, 51], with more than 90% of
meQTLs acting on nearbymethylation sites (in cis) [38, 50, 52]. CpG sites that have higher
heritability estimates are more likely to be associated with meQTLs in cis, trans, or both,
and have a clear polygenic architecture [35, 38, 50]. Some studies also include replication
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in independent sample sets, although overall a direct comparison of meQTL signals can
be challenging because studies do not systematically report meQTL effect sizes. Despite
observations that meQTLs tend to have moderate to large effects, the “missing heritabil-
ity” issue has also been raised in the context of meQTLs. That is, family-based heritability
estimates of DNA methylation are greater than the proportion of variance explained by
meQTLs, especially for distal associations [37, 53–56].

Detecting meQTLs

MeQTL identification is based on association tests between genetic variation genome-
wide and DNA methylation levels at a specific CpG site (Fig. 1). As for other quantitative
trait analyses, the majority of meQTL detection approaches apply linear models, where
the DNA methylation level at a CpG site is the response variable and genetic variants
are predictors along with technical and biological covariates, such as smoking and age.
Other statistical tests employed include non-parametric methods such as Spearman rank
correlation [51, 57–59] and Kruskal-Wallis rank test [60], that do not make assumptions
about the distribution of variables, or even machine learning approaches such as random
forests [61].
In most studies the focus is on detecting evidence for additive genetic effects alone,

where the genetic predictor is the dose of the alternative allele, for example, 0 for genotype
“AA”, 1 for “Aa” and 2 for genotype “aa”. To date and to our knowledge, full genome-wide
meQTL analyses have not yet considered genetic association models including domi-
nance effects or overall genotype effects. However, Zeng et al. [62] explored meQTLs at
984 CpGs with parent-of-origin effects (POE) in 5101 individuals from Scottish families.
The model included additive effects (coded as the dosage of alternative allele), dominance
effects (coded 1 for heterozygotes and 0 for homozygotes), and POE effects (coded 0, −1,
and 1 for homozygotes, “Aa” and “aA”, respectively). Likewise, some studies focusing on
subsets of CpGs have identifiedmeQTLs in gene interactionmodels, specifically gene-by-
gene (G×G) and gene-by-environment (G×E) (see the “Gene–environment interactions”
section).
The majority of studies discussed here apply Illumina DNAmethylation arrays. In these

platforms, the DNA methylation level at a CpG site is quantified through the Illumina
methylation β-value, defined as the intensity measured in the methylated probes for that
CpG over the total intensity across all probes for the CpG and a constant. The methy-
lation β-value is often interpreted as the probability of methylation at a given site, or
the proportion of methylated cells in the sample (Fig. 1). Some studies apply transfor-
mations of methylation β-values—such as the logit transformation or M-value—which
are more appropriate to control for heteroskedasticity but are perhaps less biologically
interpretable [63, 64].
In addition to meQTL studies that explore DNA methylation levels using Illumina

arrays, several meQTL approaches have also applied sequencing technologies. To date,
only one study has used sequencing techniques to detect meQTLs across the full genome,
rather than focusing on specific genomic subsets. In a sample of 697 Swedish subjects,
McClay et al. [52] used methyl-CpG-binding domain (MBD)-enriched sequencing (MBS-
seq) genome-wide and profiled ∼13M CpGs collapsed into 4.5M loci across the genome.
DNA methylation was quantified by estimating the coverage at each CpG. The results
show that 15% of methylation loci have meQTLs (primarily within 1 Mbp), and 98% of
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Fig. 1 A typical workflow for meQTL identification. Step 1 is DNA methylation profiling. The most commonly
applied methylation profiling technologies in meQTL studies are Illumina methylation arrays and whole
genome bisulfite sequencing (WGBS). In both approaches, DNA is treated with bisulfite, converting
unmethylated cytosines into uracils, and leaving methylated cytosines unchanged. DNA can then be profiled
by sequencing or by Illumina array technologies, consisting of pre-designed probes. In step 2, DNA
methylation levels at each CpG site are quantified, typically either as percentage (0–100%, e.g., in WGBS) or
proportion methylation (0–1, e.g., in the Illumina technology methylation β-value). The example shows the
distribution of methylation β-values for one CpG site (m1) across all profiled samples. Step 3 is the association
of a set of genetic variants (coded as allele dosages at each locus) with methylation values at each CpG site,
usually using linear models. In this example, after the association test at sitem1 with a set of i genetic variants
(shown in the Manhattan plot), g1 was found to be significantly associated withm1 (shown in the boxplot).
Finally, step 4 represents the extension of the genetic association test to all profiled CpG sites genome-wide
and the identification of genome-wide meQTLs after setting an appropriate threshold for statistical
significance. The resulting meQTL associations can be either short-range, in cis (shown in heatmap for a few
Mbp), or long-range or on different chromosomes, in trans (shown in Circos plot with all chromosomes)

the tested SNPs were associated with at least one CpG. Other studies have employed
strategies such as targeted bisulfite sequencing of a pre-designed panel with informa-
tive genomic regions [65], MeDIP-sequencing at candidate regions [66], and meQTL
replication in WGBS data [67]. Several studies have also explored sequence-dependent
allele-specific methylation (ASM), which represents a specific type of meQTL effect in
cis. In contrast to meQTL analysis, ASM discovery is restricted to heterozygous regions
within single samples, and comparison of differentially methylated CpG sites (DMSs)
between the two distinct alleles, for example, using Fisher’s exact test or equivalent. ASM
studies to date have been carried out using bisulfite sequencing in a moderate number of
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samples (less than 100). ASM results show that around 10% of the explored CpGs exhibit
allelic imbalance at heterozygous regions [65, 68–70], which is consistent with meQTLs
results.

Distribution of meQTLs across the genome

MeQTLs can have local or distal effects

MeQTLs can be divided into two classes based on the proximity of the genetic variant to
the CpG site. Cis-meQTLs are genetic variants near to or proximal to the target CpG site,
and trans-meQTLs are separated by one or more Mbp from the target CpG or located on
different chromosomes. Identification of cis and trans-meQTLs includes testing for asso-
ciations across all possible pairs of SNPs-CpGs. Pairs can be categorized into “proximal”
or “distal” and multiple testing correction can be applied for each group independently,
or they can be analyzed together and annotated post hoc [38, 47, 71]. Correcting for mul-
tiple testing burden is a crucial step for the definition of genome-wide significant p-value
thresholds. Published thresholds are typically of the order of p < 1 × 10−5 for cis effects
and p < 1 × 10−9 for trans effects, based on applying permutation-based approaches to
estimate the false discovery rate (FDR) or Bonferroni correction to control the family-wise
error rate (FWER). The exact multiple testing correction threshold clearly depends on
the methylation array and genotype coverage, methylation, and genotype distributions, as
well as sample structure and sample size if permutation-based approaches are applied (see
the “Multiple-testing correction” section). Some studies limit the search to cis-meQTLs
alone, reducing the number of total tests, or carry out trans associations only for selected
SNP-CpG pairs [51, 60].
To date, the primary focus has been on cis-meQTLs identification. In general, stud-

ies with large sample sizes (> 1000) have estimated that at least 10% [38, 53–55] and up
to 45% [35, 50, 51] of the methylome is influenced by nearby meQTLs. A consideration
in cis-meQTL analysis protocols is the maximum distance between genetic variants and
CpG sites. Published studies have applied a range from a few kbp to 1 Mbp, but in almost
all cases it has been observed that the strength of the cis-meQTL effect is inversely pro-
portional to the distance between genetic variant and CpG site. For example, in one of the
early genome-widemeQTL analysis using 27KDNAmethylation levels in lymphoblastoid
cell lines (LCLs), 37 CpG sites had meQTLs in genome-wide analyses across all possible
SNP-CpG pairs, but for 27 of these sites the most significant meQTL was located within
50 kbp of the CpG site [49]. More recently, Hannon et al. [38] conducted a genome-
wide analysis across all SNPs-CpGs using EPIC DNA methylation levels in 1111 blood
samples. The results identified meQTLs at 12% of assayed methylation sites, and again
a predominance of these associations occurred in cis. Higher effect sizes were observed
for genetic variants within a maximum of 500 kbp from the CpG site (in cis), where the
average of the change in DNA methylation per allele was of 3.48%, compared to 3.26% in
trans.
Conversely, meQTL genome-wide association analyses to date agree that no more than

5% of total CpGs show evidence for trans-meQTLs. The exception to this are the results
from Gong et al. [72] estimating meQTLs in different cancer tissues samples. The obser-
vation of higher trans-meQTL proportions here (more than 10% of total CpG sites are
associated with trans-meQTLs in eight cancer types) suggests that under certain con-
ditions, the effects of the distal associations could be enhanced. Furthermore, although
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trans-meQTL are relatively rare genome-wide, these effects also tend to target specific
genomic regions (see the “MeQTLs are differentially distributed across the genome”
section).
The physical threshold for categorizing a meQTL as cis or trans matters. Insights into

the distance between cis-meQTLs and the target CpG sites were gained by Banovich
et al. [67] who used a relatively small cis window of 6 kbp to detect meQTLs in LCLs.
The authors estimated the median distance of putative causal cis associations as 76 bp,
with 87% of the meQTLs located within 3 kbp of the CpGs. At the other end of this
spectrum, Huan et al. [35] report that 70% of intra-chromosomal trans-meQTLs were
within 5 Mbp of the target CpG, leading to the conclusion that such associations may act
as long-range cis-meQTLs, rather than as trans. In contrast, inter-chromosomal associ-
ations are the most commonly reported trans-meQTLs, accounting for at least 65% of
the trans-meQTLs [35, 37, 50, 51, 55]. Another factor to take into account is that some
trans associations could be SNPs in long-range linkage disequilibrium (LD) with “real”
cis-meQTLs—as observed for 17% of intra-chromosomal SNP-CpG associations in lung
tissue, after conditional analysis [56].

MeQTLs are differentially distributed across the genome

Early efforts exploring the correlation between genetic variants and DNA methylation
showed evidence that meQTLs and their target DNA methylation sites are not randomly
distributed in the genome. Non-genic regions and enhancers appear to be hotspots for
CpG sites associated with cis-meQTLs, while CpG islands (CGIs), 5′ untranslated regions
(UTRs) and regions upstream of the transcription start sites (TSSs) show depletion of
CpG sites with cis-meQTLs. In contrast, the opposite pattern is observed for CpGs with
trans-meQTLs, which are enriched in CGIs and in promoters and regions surrounding
the TSSs, and are underrepresented in gene bodies, 3′UTRs, and heterochromatin regions
[35, 37, 50, 51, 53, 56, 67, 73]. This genomic distribution of meQTL-related CpGs appears
to be quite stable during several life stages [37] and across tissues [73].
The underrepresentation of CpGs with cis-meQTLs in CGIs is related to the obser-

vation that most of the tested CpGs in CGIs fall in gene promoters, where they tend
to be constitutively hypomethylated and have lower DNA methylation variances [5, 6].
As hypothesized by Do et al. [70], meQTL-associated CpGs may be located in areas
with more flexible evolutionary constrains, in contrast to typically hypomethylated CGIs
which are conserved across vertebrate promoters [74]. This hypothesis is also supported
by results from Husquin et al. [60] who observed that DMSs in monocytes between two
populations (78 samples of African descent and 78 of European descent) are enriched to
harbor cis-meQTLs (70.2% of DMSs have cis-meQTLs) compared to the genome-wide
meQTL proportion (12.6% of EPIC sites had cis-meQTLs). Hence, CpGs, where methyla-
tion patterns are less conserved across different populations, have a higher probability of
being under the influence of meQTLs.
The genetic variants driving meQTL effects also exhibit non-random genomic distri-

butions. Min et al. [50] found that active chromatin domains and genic regions were
enriched for meQTLs that act in cis only or both in cis and trans, while heterochromatin
and intergenic regions were enriched for trans only meQTLs. Using a different approach,
an analysis at 11.5 million DNA methylation sites profiled by WGBS in 34 samples [75]
identified 221 de novo DNA motifs associated with unmethylated regions, and 92 motifs
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associated with methylated regions. Using data from previously published studies, the
authors found that DNA motifs associated with methylation were enriched in meQTLs
variants, especially near TSSs.
Lastly, trans-meQTLs results show that the number of inter-chromosomal trans-

meQTLs is usually proportional to the number of genes in a chromosome, except for
chromosomes 16 and 19 which are highly enriched for trans-meQTLs and chromosome 1
which is depleted for trans-meQTLs [37, 53]. Also,McRae et al. [53] estimated that almost
25% of trans-meQTLs are located in telomeres and sub-telomeres. The major histocom-
patibility complex (MHC) region is another locus that harbors highly heritable CpGs and
meQTLs associated with multiple CpGs [33, 76, 77].

Tissue-specificity of meQTL effects

DNA methylation plays an important role in cell lineage and tissue differentiation,
resulting in tissue-specific methylation profiles over a considerable proportion of the
methylome. Most meQTL studies explore whole blood, but analyses within specific cell
types or bulk tissue have also been carried out.

MeQTLs in blood-based samples

Most studies have identified meQTLs in blood and blood-derived cells, including whole
blood, LCLs, peripheral blood mononuclear cells (PBMC), and leukocytes (see Table 2).
Blood-based meQTLs studies are most common to date, have larger sample sizes, and
have shown high replicability. The majority of blood reports are not limited to the dis-
covery of novel meQTLs alone, but also include study designs that integrate DNAmethy-
lation findings with GWAS results or other biological data. In the largest study to date,
the Genetics of DNA Methylation Consortium (GoDMC), a multi-cohort meta-analysis
meQTL resource, combined data from 32,851 blood samples across different population
cohorts and found that 45.2% of CpGs in the 450K array have meQTLs, with greater
effect sizes for cis associations [50]. Additionally, the authors detected substantial sharing
between meQTLs and GWAS signals, and constructed a network of CpG sites that share
meQTLs, identifying 405 highly interconnected genomic communities enriched for regu-
latory genomic features and links to complex traits. Huan et al. [35] performed an analysis
in 4170 whole blood samples, identifying 4.7 million cis-meQTLs (within 1 Mbp of target
CpG) and 706 thousand trans-meQTLs. After a follow-up analysis, the authors found 92
CpGs with a likely causal role in cardiovascular disease, as well as supporting evidence of
CpG-expression contribution to these putative causal pathways. Likewise, Bonder et al.
[51] studied trans-meQTLs focusing on SNPs previously associated with complex traits.
Using 3841 whole blood samples from the Netherlands, they showed that one-third of the
analyzed SNPs affect DNAmethylation levels at 10,141 CpG sites in trans, and where 95%
of trans-meQTLs were validated in external data from 1748 lymphocytes. Furthermore,
the authors provided several examples of trans-meQTLs with effects on specific tran-
scription factors levels as well as methylation of their binding sites across the genome.
Chen et al. [78] identified cis-meQTLs in immune cells (CD14+ monocytes, CD16+ neu-
trophils, and naive CD4+ T cells) at almost 10% of the CpG sites from the Illumina 450K,
and estimated relatively low blood cell specificity of meQTLs especially between myeloid
cells.
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MeQTLs in non-blood-based tissues and cells

Genome-wide meQTLs have also been identified in a range of tissues including several
regions of the brain, lung, skeletal muscle, buccal and saliva samples, placenta, and adi-
pose tissue (Table 3). The discovery of meQTLs across brain regions [57, 71, 79, 80], their
overlap with non-brain tissue findings [70, 73] (see the “Tissue-shared meQTLs-CpGs”
section), and their co-localization with other molecular QTLs [81] has initiated further
studies to identify and characterize the role of genetic variants underlying neurological
disorders. In lung tissue, Morrow et al. [82] investigated meQTLs that may impact the
pathogenesis of chronic obstructive pulmonary disease in 90 cases and 36 controls. The
authors found cis-meQTLs at 10% of the 450K CpGs, and significant overlaps with GWAS
signals for the disease. In parallel, Taylor et al. [83] assessed 282 samples of skeletal mus-
cle on the Illumina EPIC array and found cis-meQTLs for almost 21% of CpGs. In adipose
tissue, Grundberg et al. [31] (n = 603, from UK females) and Volkov et al. [76] (n = 119,
from Scandinavian males) identified the cis and trans genetic effects on the methylome
profiled by the 450K array. Both studies identified meQTLs that may also be involved in
metabolic traits, such as variants in the ADCY3 gene, associated with obesity and BMI.

Tissue-sharedmeQTLs-CpGs

The majority of DNA methylation signatures are tissue-specific and reflect the devel-
opmental trajectories of each cell line [13]. However, when DNA methylation levels are
partially or fully driven by genetic variants, DNA methylation levels and meQTLs effects
can be tissue-specific or they can also be shared across tissues. Several studies have
explored this question, focusing on how easily accessible tissues such as blood may be
used as proxies for the indirect study of difficult-to-reach tissues. In a report including
samples from T cells, temporal cortex, neurons, glia, and placenta profiled with the 450K
array, Do et al. [70] found good overlap in the percentage of meQTL-associated CpGs
between temporal cortex with those in neurons/glia (61%) as expected, but not with T
cells (28%) or placenta (12%). However, the study explored in a small to moderate sample
size (n ≤ 54 for each sample type), and consequently had limited power for detection of
modest effects and their tissue-specificity assessment. Lin et al. [73] explored meQTLs in
197 saliva samples from control and schizophrenia/schizoaffective disorder patients and
compared their results with two previous studies in brain and blood samples. They esti-
mated that 38–73% of the meQTL variants in each tissue are shared with another and
that most have a consistent effect direction across tissues. They found that 31–68% of
the significant CpGs harboring meQTLs in a certain tissue are also significant in at least
one other tissue. From these results, the tissues that share most meQTLs or most CpGs
with meQTLs—with at least one other tissue—were blood and saliva. Another interesting
observation was that tissue-shared signals were enriched in genetic risk loci of diseases
such as schizophrenia, as well as in cross-tissue eQTLs (i.e., eQTLs significant in both
blood and brain tissue). Similarly, Qi et al. [84] assessed the correlation of genetic effects
at the peak cis-meQTLs in blood and brain from five data sets profiled on the Illumina
450K array. The correlation of meQTL effects between two sets of samples profiled in
the same tissue was strong (correlation coefficient r̂b = 0.92 for both blood and brain
sample types), and lower, although still considerable, between brain and blood samples
(r̂b = 0.78). Other cross-tissue meQTL analyses have also included comparisons between
blood, brain, adipose tissue, breast, kidney, and lung samples [50, 56, 65, 85, 86].
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Although no clear consensus currently exists in the estimated proportion of tissue-
shared meQTLs, increasing evidence shows that a major subset of meQTL-CpG pairs are
indeed shared among multiple tissues and cell types.

MeQTLs databases

Several efforts have attempted to create databases of meQTL findings. One of the
first online repositories that incorporated results from GWAS of DNA methylation
was GRASP, where the current build has 52,419 meQTLs records [87, 88]. In 2015,
Relton et al. [89] constructed the Accessible Resource for Integrated Epigenomic
Studies (ARIES), summarizing findings from DNA methylation analysis of 1018 mother-
offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC).
The resource also includes one of the few longitudinal meQTL studies to date, com-
plementing the original database [37]. The Brain xQTL Serve is another resource that
reports results of genetic variation in three molecular traits—gene expression, DNA
methylation, and histone acetylation—from prefrontal cortex samples of two longitudi-
nal aging cohorts [57]. In cancer research, the Pancan-meQTL [72] and DNMIVD (for
DNA Methylation Interactive Visualization Database) [90] use data from The Cancer
Genome Atlas (TCGA). Pancan-meQTL reports 8028 cis and trans-meQTLs identified
in 7242 samples from 23 different tumor types, while DNMIVD complements the
Pancan-meQTL findings with additional analyses, such as diagnostic and prognostic
models, and pathway-meQTL. Hannon et al. [38] published an interactive database of
meQTLs from a blood-based study in 1111 samples, along with putative pleiotropic
associations of meQTLs and multiple traits. Altogether, QTLbase is probably the most
comprehensive resource to date in different sample types. It compiles summary statistics
for molecular QTLs from 233 studies, with meQTL associations representing 16% of
the database and summarizing results from 39 meQTLs publications in different tissue
types [91]. In blood specifically, the GoDMC resource [50] includes an online searchable
tool with a full list of meQTLs from the largest blood meQTL study to date (see the
“MeQTLs in blood-based samples” section).

Genetic effects on DNAmethylation: potential underlyingmechanisms
Cis-meQTLmechanisms

Despite the identification of hundreds of thousands of associations between meQTLs
and CpGs, the molecular mechanisms underlying meQTLs are not well characterized.
The leading hypothesis to explain cis-meQTL effects is that SNPs in protein bind-
ing sites alter or disrupt the activity of sequence-specific binding proteins—such as
transcription factors (TFs)—and change methylation patterns of nearby CpGs, either
directly or through a signaling cascade [59, 67, 70, 92, 93]. In support of this hypothe-
sis, Banovich et al. [67] showed that for meQTLs in TF binding sites (TFBSs), different
alleles predicted to affect affinity of TF binding were correlated with methylation levels
at nearby CpG sites. Wang et al. [75] also showed consistent findings by identify-
ing DNA motifs associated with methylation levels, as previously described (see the
“MeQTLs are differentially distributed across the genome” section). The authors profiled
binding profiles of 845 TFs and concluded that TFs can interact with DNAmotifs that are
also associated with DNA methylation levels. These results are also in concordance with
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mechanisms reported to underlie other DNA regulatory pathways and their QTLs, such
as histone modifications and RNA polymerase II [94].
The signaling pathways triggered by sequence-specific binding proteins are still under

discussion, but the main premise is that if a TFBS is occupied, this could be enough to
prevent DNA methylation changes in the vicinity of this TFBS. This would represent a
form of passive control of genetic variation on DNA methylation, via TFBS occupancy
(Fig. 2a). Alternatively, TFs could recruit DNMT3A and TET enzymes for active methy-
lation or demethylation (Fig. 2b). This is supported by the observation of an overlap of
TFBS with methylation-associated DNA sequence motifs [75].
One of the main examples in support of the hypothesis of passive genetic control on

DNA methylation is CTCF (CCCTC-binding factor), which is an insulator involved in
chromatin regulation, forming loops and bringing together genetic elements that may be
physically far apart. CTCF binding sites usually contain CGI motifs and have to be poorly
methylated to allow for the recruitment of the protein [95]. The occurrence of a meQTL
within the CTCF binding site may result in a decrease or even annulment of CTCF bind-
ing affinity, which in turn can lead to an increase in DNAmethylation of nearby CpG sites,
as shown in the mouse methylome [96]. Multiple studies have now highlighted CTCF
binding as a key example of cis genetic-epigenetic interactions [56, 70, 71, 79, 97].

Fig. 2 Mechanisms underlying cis-meQTL effects. a Passive mechanism. Under normal conditions a
sequence-specific binding protein (such as CTCF) can bind to its target and prevent methylation changes at
surrounding CpG sites due to its occupancy. If a meQTL disrupts the site, the protein cannot bind
successfully, and the CpG sites are prone to change in baseline methylation status. b Active mechanism. If a
meQTL is located in a TFBS, lack of TF binding can promote the recruitment of DNMT or TET enzymes, and
thus modify the methylation status of nearby CpG sites
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An example of cis-meQTL active mechanisms involves a genetic variant within the gene
underlying a clinical subgroup of colorectal cancer known as MSI+ (or microsatellite-
unstable cancer). Here, decrease of gene expression of the DNA mismatch repair gene
MutL homolog 1, MLH1, is due to hypermethylation of its promoter. The A allele of
variant rs1800734 in the 5′UTR of MLH1 modifies the binding of TFAP4 activating the
BRAF/MAFG pathway, which increases DNMT3B-mediated methylation of the MLH1
promoter [98]. Another example of active genetic-methylation interplay is a mechanism
suggested to underlie a type 2 diabetes (T2D) susceptibility locus [99]. The T allele of
rs11257655 in the CAMK1D gene decreases DNA methylation in CAMK1D promoter as
a meQTL, increases CAMK1D expression as an eQTL, and increases T2D risk as T2D
GWAS signal. The authors propose that in the presence of the T allele at rs11257655,
a protein complex formed by FOXA1/FOXA2 and other TFs binds to an enhancer of
CAMK1D, which leads to demethylation of cg03575602 in the CAMK1D promoter and
in turn upregulates its expression.

Trans-meQTLmechanisms

Many mechanisms have been hypothesized to underlie trans-acting meQTLs effects, but
to date, very few clear examples have been uncovered. The simplest hypothesis is that
SNPs that act as eQTLs of global methylation regulators, or their associated elements,
have downstream effects as meQTLs at multiple CpG sites genome-wide (Fig. 3a). For

Fig. 3 Mechanisms underlying trans-meQLTs effects. a eQTL-mediated mechanism. If a SNP acts as an eQTL
for a gene that regulates DNA methylation, the SNP can have an indirect effect on multiple CpG sites in trans.
b Cis-meQTL-mediated mechanism. If a SNP is a cis-meQTL for nearby CpG sites, which in turn impact the
expression of genes involved in epigenetic regulatory processes, the SNP can ultimately alter DNA
methylation levels at CpG sites in trans. c 3D organization mechanism. In the 3D genome, distal sites can
move in close proximity, whereby a SNP can affect a DNAmethylation levels at CpG sites in trans, acting either
through cis-meQTL mechanisms, or by disrupting the formation of structural loops. d SNPs in the coding
regions of methyl-specific binding proteins (such as MeCP2) can alter their specificity and function, and
therefore passively or actively (by recruiting DNMTs or TETs) modify DNA methylation of their binding sites
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example, Lemire et al. [55] documented the case of SUMO-specific protease 7 (SENP7),
which interacts with epigenetic repression proteins. Intronic variants located in SENP7
gene are cis-eQTLs, and high levels of the transcript decrease methylation at several
trans-CpGs. Another case is variant rs12933229 associated with expression of RRN3P2, a
pseudogene that regulates DNA methylation through piwi-interacting RNAs (piRNAs).
Other findings suggest that distal effects may be mediated, in total or in part, by cis-

meQTL-associated CpGs (Fig. 3b). For instance, one-third of the 585 trans-meQTL-CpG
pairs identified by Shi et al. [56] in lung tissue showed weaker associations after con-
ditional analyses, conditioning on the cis-regulated CpGs by the same SNPs. In 166
trans-meQTL associations, the authors found a partial mediation of cis effects, with lower
but still significant partial correlations compared to marginal correlations, and in 30 asso-
ciations, they found a full mediation, with no significant correlations after conditioning
for cis-meQTLs. Genes for GTPase or related enzymes involved in DNAmethylation reg-
ulation, were over-represented for such cis-CpGs. Therefore, one potential mechanism
underlying trans-meQTL effects is that a meQTL may act on nearby CpGs, which then
impact the expression of genes that eventually may modify DNA methylation levels at
distal sites.
Three-dimensional (3D) genome conformation changes would be an alternative track

for the action of trans-meQTLs, since distal loci can be brought into physical proxim-
ity by 3D structures [100]. Hence, either SNPs in TFBSs acting as cis-meQTLs, or SNPs
in sites that anchor cohesins and CTCF that integrate topologically associating domains
(TADs) and loops, could have an impact on remote CpGs as they move in closer prox-
imity in complex 3D DNA structures (Fig. 3c) [26]. Furthermore, the 3D organization of
the DNA includes inter-chromosomal contact, which would be the source of a fraction
of meQTLs associations—as demonstrated by high-resolution Hi-C data that CpGs over-
lap with binding sites of architectural proteins (e.g., CTCF, RAD21, and SMC3) [51], and
with a two-dimensional functional enrichment [50].
Other explanations involve sequence-specific binding proteins, similar to mechanisms

for cis-meQTLs, but instead of the genetic variant being located in TFBS, here, the SNPs
interfere with the coding or cis-regulatory regions of the TFs, and thus their subsequent
expression, coupling, and function (Fig. 3d). The results of Bonder et al. [51] point in
this direction. The authors found that 13.1% of the trans-meQTLs that they detected also
altered the expression of TFs, and those affecting multiple CpGs had consistent direction
of effects, either increasing or decreasing methylation at most of CpGs. A representative
example is rs3774937 in the intron of the TF NFKB1, which is a trans-meQTL for 413
CpG sites genome-wide. In 380 CpG sites, the rs3774937 alternative allele was associated
with lower methylation levels, and 147 of those CpG sites were in NF-κB binding sites.
The same mechanism could also apply to the activity of proteins other than sequence-

specific binding proteins, although this theory remains mostly unexplored so far.
For example, it is well known that DNA binding of some proteins is methylation-
dependent through a methyl-CpG-binding domain (MBD), such as for the MeCP2
(methyl-CpG-binding protein 2). MeCP2 regulates DNMT3A allosterically, acting as a
repressor or an activator of the methylation process [101]. However, some mutations
in the MeCP2 gene decrease selectivity of the MeCP2 binding [102], and consequently,
could lead to untargeted methylation at several distal sites. This idea can also be
extended to proteins without MBD, as emerging evidence suggests [103]. This may
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also complement the sequence-specific binding sites theory and thus explain more
trans-meQTLs.

MeQTLs andmechanisms underlying human disease

Many research efforts have linked meQTLs to genetic variation underlying human
complex traits. MeQTLs are significantly enriched for GWAS signals, with evidence for
shared genetic effects [50]. Multiple studies have explored the directionality of shared
genetic associations, applying causal inference approaches typically exploring the poten-
tial role of DNA methylation as a mediator of genetic effects on phenotypes [38, 50, 104].
However, despite a substantial sharing of genetic effects, the findings reveal a more
complex genetic architecture including putative evidence for both mediation effects of
DNA methylation on phenotypes, as well as effects of complex traits on methylation (see
the “MeQTLs and GWAS” section).
Nevertheless, the discovery of meQTLs has contributed to the advancement of our

understanding of the molecular pathways underlying certain human phenotypic traits
and diseases, which may eventually help towards the development of therapeutic tar-
gets. Examples include a thorough investigation of previously identified genetic signals
for Alzheimer’s disease involving the promoter region of gene PM20D1 and meQTLs
(rs708727–rs960603 haplotype) [105]. With a series of in silico, in vitro, and in vivo
experiments, Sanchez-Mut et al. determined that meQTLs interact with the promoter of
PM20D1 through haplotype-dependent 3D chromatin conformations via CTCF, changing
DNA methylation levels, altering gene expression, and ultimately protecting or aggra-
vating neurodegeneration. In another study focused on characterizing osteoarthritis
risk variants in cartilage samples, Rice et al. [106] found four meQTLs for 17 CpGs.
In vitro studies of the prioritized locus suggest potential DNA methylation and gene
expression mechanisms altering the function of the PLEC and GRINA genes, which
have not been previously described in context of osteoarthritis. Similarly, meQTLs have
helped to elucidate biological pathways underlying other diseases such as Parkinson’s
disease [107], multiple sclerosis [108], colorectal cancer [98], and T2D [99] (see the
“Cis-meQTL mechanisms” section), along with complex phenotypes such as platelet
function [109], fatty acid levels [110], and others.

Challenges and future directions
Methodological and statistical caveats

DNAmethylation profiling

The vast majority of meQTL studies to date explore DNA methylation levels profiled by
Illumina DNA methylation arrays, which are relatively low-cost and highly standardized.
However, array-based DNA methylation profiles can be subject to bias introduced by
errors from cross-hybridization events, as well as batch and positional effects. For exam-
ple, positional effects have been reported to impact a larger proportion of 450K probes,
compared to 27K probes [111]. In addition, both the 450K and EPIC arrays contain two
different types of probes with different dynamic ranges [112]. Several methods have been
developed to minimize bias introduced by these potential array effects [113–116], as well
as comparisons across methods, which provide useful frameworks for the design of qual-
ity control and normalization of Illumina-based DNA methylation profiles [117–119].
Further work has also focused on guidelines for exclusion criteria of low-performing



Villicaña and Bell Genome Biology          (2021) 22:127 Page 21 of 35

probes [120–122], or has explicitly flagged unreliable probes due to cross-reactive events
or underlying genetic variation [123].
As previously discussed, genome coverage is a key consideration in DNA methylation

profiling technologies, and here the ultimate aim is to characterize meQTLs across the
entire methylome. With most studies based on array DNAmethylation profiles, the EPIC
array provides a reasonable cost-coverage balance with increased coverage of regulatory
elements compared to the 450K. Despite the improvement in coverage by the EPIC array,
regulatory regions included on the EPIC only comprise 27% of cis and 7% of trans regions
characterised by ENCODE [123]. This, combined with the limited methylome coverage,
should also be considered when generalizing meQTL findings to whole genome.
On the other hand, WGBS allows for comprehensive profiling of the methylome, but

the high costs are still restrictive and prevent its broad application in meQTL studies.
Also, some genomic regions and difficult to sequence and library preparation protocols
are technically complex and may be subject to bias from multiple sources, such as bisul-
fite conversion, PCR amplification, DNA modifications, and degradation [124, 125]. An
important parameter to define in a WGBS experiment is the sequencing depth. The rec-
ommended depth coverage based on data from the NIH Roadmap Epigenomics Project
[126] and the International Human Epigenome Consortium (IHEC) [127] is 30×. In order
to optimize costs while maintaining acceptable rates of specificity and sensitivity, Ziller
et al. [128] proposed aminimum coverage per sample of 5–15× for the discovery of differ-
entially methylated regions (DMRs). Nonetheless, coverage of 100× would be required to
have similar precision to that in Illumina arrays [124]. In light of these estimates, WGBS
in large-scale samples currently still poses significant challenges, but represents a promis-
ing method for future meQTL analyses, especially for studying regions of the genome
underrepresented in microarrays.

Statistical models

The choice of statistical model for meQTL analysis is important. Most meQTL studies
apply linear regression, but at many CpG sites the distribution of DNA methylation val-
ues does not meet its assumptions, which may in turn increase the error rate (both type
I and II). Recently, Mansell et al. [129] quantified the extent of bias in epigenome-wide
association studies (EWAS) using the EPIC array due to non-linearity between variables,
non-normal distribution of residuals (skewness and kurtosis), and heteroskedasticity.
The authors concluded that even CpG sites with extreme deviation to linear regression
assumptions do not result in major bias. By extension, this observation could also apply to
meQTL studies. Interestingly, the same study did not find better performance when using
M-values instead of β-values in DNAmethylation analysis. Ultimately, a higher selectivity
of the CpG sites to test—such as filtering out probes with low β-values variability—would
leverage the statistical confidence of the models and maximize reproducibility of results,
as recommended by Logue et al. [122].

Multiple-testing correction

One major consideration in meQTL analyses is the multiple-testing correction, given the
large number of tests in comparing millions of genetic variants against typically at least
hundreds of thousands of CpG sites. On the one hand, the multiple testing correction
must be computationally efficient, and on the other hand, the aim is to maximize
statistical power to detect low or modest effects.
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A considerable amount of studies apply permutation-based multiple testing thresholds
to quantify an empirical false discovery rate (FDR) [130]. Typically, this approach consists
of randomizing the genotypes to generate an approximate null distribution of p-values
obtained in a large number of association tests between the permuted genotypes and
CpG sites. The FDR is the ratio of associations in the permuted data to those observed at
a specific nominal significance threshold [131]. Because permutations are computation-
ally demanding, methods as FastQTL and QTLtools [132, 133] have proposed variations
of the original technique, such as drawing a few thousand permutations and modeling
the resulting p-values with a beta distribution to approximate the null distribution. This
approach has been adopted by some meQTLs analyses [83, 93]. Moreover, some analy-
ses have reduced the number of permutations, for example to a hundred [60] or even ten
[51, 82], a decision supported by eQTL results about the stability of the FDR value with
as few as five permutations [134, 135]. For example, cis-meQTL analysis by van Dongen
et al. [39] in buccal cells of MZ twins applied the aforementioned method with ten per-
mutations, conserving relatedness between twins by permuting twin pairs samples rather
than individuals.
Other studies have applied the conservative Bonferroni multiple testing correction

to control the family-wise error rate (FWER), adjusting for the total number of SNPs-
CpGs pairs tested, resulting in stringent multiple testing significant thresholds (e.g.,
p < 1×10−10) [35, 37, 136]. However, the Bonferroni multiple testing correction does not
take into account linkage disequilibrium (LD) between genetic variants or patterns of co-
methylation, that is, the correlation in DNA methylation levels at nearby CpG sites [137].
To tackle LD, McRae et al. [53] and Hannon et al. [38] employed a Bonferroni thresh-
old based on the GWAS canonical value 5 × 10−8—which accounts for LD blocks—and
divided this threshold by the number of tested probes, while Smith et al. [86] adopted a
Holm-Bonferroni method—or a step-down Bonferroni—which increases the power. To
take into account co-methylation, it has been proposed that for the Illumina EPIC array
in whole blood, an appropriate choice of the number of independent probes to control
the FWER would be 530,639 (66% of total sites) [129].
MeQTL analysis strategies that use the Bayesian framework [138] or a multivariate nor-

mal distribution [139] have also been applied to other molecular QTL studies, and appear
promising to explore in future meQTLs analyses.

Detection of common and rare variant meQTLs

Since publication of the first genome-wide meQTL studies, sample sizes have increased
dramatically and with them power to detect small effects of common genetic variants
on methylation. However, the detection of rare genetic variants is still a major challenge
in meQTL studies. Almost all genome-wide meQTL studies discard SNPs with a minor
allele frequency (MAF) less than 0.05 or 0.01, while the high penetrance of rare variants
in certain complex traits highlights their biological importance [140].
The most widely implemented approaches for assessing effects of rare genetic variants

on human complex traits are collapsing methods. The premise is that all the variants
within the boundaries of a functionally meaningful locus would induce the same pheno-
typic change [140]. To our knowledge, only the study by Richardson et al. [141] has so far
examined rare variants in meQTL analysis in blood samples. The authors collapsed vari-
ants with MAF ≤ 0.05 around CGIs (alone and with flanking shores/shelves) and carried
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out the Sequence Kernes Association Test (SKAT) testing for genetic influences on CpG
sites from the 450K array. The results identified 94 unique cis-acting and one trans-acting
regions, which were not previously linked to methylation. This novel approach can be
leveraged in future meQTL analyses by the definition of other functional units for col-
lapsing regions, testing previously identified meQTL regions after conditional analysis,
and application to data from the EPIC array or WGBS.

Gene–environment interactions

Environmental exposures can leave a clear signature on DNA methylation patterns, as
observed for smoking [18, 142, 143] and alcohol consumption [19]. Some environmental
exposure or lifestyle factors and behaviors also have a genetic component that explains
a proportion of their variance [144, 145]. Therefore, to explore the interplay between
genetic variation, environmental exposures, and epigenetic changes, some studies have
considered gene–environment (G×E) interaction terms in meQTL analyses.
To date and to our knowledge, no genome-wide G×E analysis of DNA methylation

has yet been published. However, G×E analyses at candidate genomic regions have been
described in several studies. For example, Teh et al. [146] studied the interaction of genetic
effects and in utero environment in 237 umbilical cord samples in Asian neonates. Firstly,
the authors identified 1423 variably methylated regions (VMRs) across individuals, based
on the median absolute deviation of the DNA methylation levels in each CpG site. Then,
to explore triggers of DNA methylation changes at each VMR, the authors assessed
DNA methylation effects as a function of (1) genotype alone, (2) intra-uterine environ-
ment alone, or (3) the G×E interaction. The intra-uterine environment was quantified
through 19 parameters, including maternal smoking, maternal depression, and concen-
trations of compounds in maternal serum. Interaction models of genotype with different
in utero environments had better performance at 75% of the VMRs compared to main-
effects models, and therefore better explained the variability in DNA methylation. In two
other studies [60, 147] of monocyte samples from European and African populations, the
authors suggested that some of the meQTLsmay in fact be occurrences of G×G and G×E
interactions (see the “MeQTLs are differentially distributed across the genome” section).
The cis analysis uncovered 69,702 CpGs with meQTLs, and of these, 4.1% displayed
different effects across the two populations, which may reflect G×G or G×E interactions.
Several studies have explored G×E effects involving smoking status and genetic vari-

ants at candidate loci in the context of meQTLs and complex disease. Meng et al. [148]
provide an example of a candidate G×E effects linked to rheumatoid arthritis, involving
genetic variants in the MHC and smoking status. They observed an effect of rs6933349
on cg21325723 (located in the body of the TSBP1 gene), only in current smokers. Fur-
ther examples include the study of Klengel et al. [149] who investigated a G×E interaction
in FKBP5, a gene that regulates the glucocorticoid receptor—a major component of the
stress hormone system. The transcriptional activation of FKBP5 as a response to child-
hood abuse depends on genetic variants (rs1360780) that alter the 3D conformations of
the locus; the expression of the gene is mediated by the demethylation in intron 7, a
change that is long-term stable and has implications in stress disorders. A similar pathway
potentially underlies methylation at SLC6A4 (serotonin transporter gene) [150].
The implementation of G×E meQTL analyses entails challenges, such as substan-

tially larger multiple testing burden and limited power [151]; however, it represents a
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promising niche to explore that may account for a fraction of missing heritability in DNA
methylation.

MeQTL impacts on DNAmethylation variance

Conventional statistical methods applied to QTL analysis aim to identify significant devi-
ations of the trait mean between the subjects in different genotype groups, typically with
the assumption of equal variance across groups (i.e., homoskedasticity). Recently, new
perspectives in QTL studies have explored QTLs that influence the phenotypic variabil-
ity across genotype groups, or variance QTLs (vQTLs/varQTLs). VarQTL may capture
interaction effects, such as epistatic (G×G) or G×E [152]. Methods for detecting var-
QTLs include parametric and non-parametric tests, including Bayesian and family-based
approaches [152–154]. One of the most comprehensive studies on varQTLs was carried
out recently by Wang et al. [155], with genotype data from 348,501 participants from the
UK Biobank and across 13 quantitative traits—including obesity-related, height, and lung
function measures. The results show a total of 75 varQTLs for nine traits (54 varQTLs
related to obesity) located in 41 nearly independent loci. Moreover, the authors found two
varQTLs with possible non-additive effects on the variance, 66 varQTLs that also have an
effect on the mean of the trait with the same direction, and 16 varQTLs that are explained
by G×E interaction models.
So far, only few studies have explored varQTLs in the context of molecular datasets,

such as DNA methylation or gene expression profiles. For example, Brown et al. [156]
examined variability of 13,660 genes in 765 LCL samples from the TwinsUK cohort, iden-
tifying 508 var-eQTLs in cis, of which 36% were also eQTLs. They then searched for
variants interacting with each of the var-eQTLs within the same cis window in order
to identify epistatic interactions, and found 256 G×G signals, of which 57 replicated in
another cohort. They also suggested that 70% of var-eQTLs may be the result of G×E
interactions based on analyses focusing on gene expression differences in MZ twins. In
a methylome analysis with the 450K array in 729 peripheral blood leukocytes samples
from individuals of Swedish descent, Ek et al. [157] estimated a total of 374,252 CpG-var-
meQTL pairs, or 7195 unique CpGs with at least one var-cis-meQTLs. At almost all of
these CpGs, there was also evidence of cis-meQTL effects, and after adjustingmethylation
levels for cis-meQTLs, the authors no longer found variance heterogeneity at the majority
of CpGs. As a result, they conclude that a considerable proportion of varQTLs (92%) may
be statistical artifacts attributed to SNPs in LD, rather than real biological interactions,
and that var-meQTLs are unlikely to explain missing heritability.
Future studies are needed to replicate these var-meQTLs results, explore mechanisms

driving these effects, and potentially identify novel signals.

Integrating meQTL results in association studies

MeQTLs and EWAS

EWASs aim to systematically associate variation in DNA methylation levels across the
genome with variation in phenotypes or environmental exposures. However, signifi-
cant associations between DNA methylation levels and phenotypes may arise due to
confounding effects of meQTLs, and most EWASs do not take meQTLs into account.
Adjustment of DNA methylation values for meQTL effects prior to EWAS has been pro-
posed to tackle this issue [158, 159]. Chen et al. [78] applied this approach in EWASs
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of gene expression levels genome-wide, or in expression quantitative trait methyla-
tion (eQTM) analyses. The authors quantified the contribution of DNA methylation to
gene expression variance through a variance decomposition model and found that DNA
methylation explained a lower proportion of the variance in models adjusted for under-
lying genetic effects, compared to unadjusted models. Subsequently, they performed
EWASs with two models—either not correcting for or correcting for cis-genetic effects.
Over half of the genes associated with epigenetic marks in the uncorrected model did not
reach significance in the corrected model. Although meQTLs effects were not directly
assessed in this study, these findings may extend to meQTLs. In another study, Krause
et al. [160] aimed to validate two candidate CpGs associated with T2D, but found a signif-
icant association between BMI and blood methylation only after correcting for genotype
at rs9982016, which was a cis-meQTL at one of the candidate CpGs.
Another relevant application of integrating meQTLs in EWAS is to gain insight into

the putative causal direction of association between DNA methylation signals and the
associated phenotypes by using Mendelian randomization (MR). MR evaluates the like-
lihood that a phenotype is the consequence of an exposure, which in turn is the result
of genetic variation (or the instrumental variable) [161]. In context of epigenetic anal-
yses, meQTLs are instrumental variables, DNA methylation levels are exposures, and
diseases or phenotypes are the outcomes [104]. Multiple studies have applied MR
using meQTLs in EWAS across a range of phenotypes [162–166]. For example, in an
EWAS of BMI in 3743 blood 450K methylomes from older adults and with replica-
tion, Mendelson et al. [167] identified 83 DMSs and their associated meQTLs. Follow
on MR identified two CpGs (cg11024682 in SREBF1, and cg07730360, unannotated)
with nominally significant putative causal effects of DNA methylation on BMI. In con-
trast, they identified 16 CpG where DNA methylation levels are likely mediated by BMI
after a reverse MR model. Using a similar approach, Dekkers et al. [168] analyzed if
exposure to elevated blood lipids affected DNA methylation levels in immune cells,
in 3296 450K methylomes from six Dutch biobanks. The authors identified 21 DMSs
for triglycerides (TG) levels, three for low-density lipoprotein cholesterol (LDL-C) and
four for high-density lipoprotein cholesterol (HDL-C). Follow on MR analysis identified
putative causal effects of lipid levels on 13 DMSs. To exclude pleiotropy (SNPs acting
as QTLs for multiple lipid levels, or as cis-meQTLs in DMSs) and reverse causation
(cis-meQTLs affecting DMSs, and DMSs affecting lipid levels), the authors conducted
secondary MR analysis. The results confirmed that TG likely induced differential methy-
lation at three CpGs, LDL-C at one, and either TG or HDL-C at two. Mendelian
randomization has also been applied when integratingmeQTL results andGWAS (see the
“MeQTLs and GWAS” section).
In addition, the combination of EWAS and meQTL signals can be used to explore

G×E interactions. For instance, Tsaprouni et al. [169] found that almost half of smoking-
associated loci have meQTLs. Subsequent analyses fitting G×E interaction effects iden-
tified a CpG (cg03329539 located in chromosome 2) where methylation response to
cigarette smoking was modulated by rs62192178 genotype.

MeQTLs and GWAS

Although thousands of GWAS results have been published to date, the identifica-
tion of causal variants and their functional interpretation remains mostly outstanding.
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Furthermore, GWASs also face the “missing heritability” problem and epigenetic signals
(potentially, through meQTLs) might explain a proportion of the phenotype missing her-
itability [27, 170]. Therefore, integrating meQTL findings as a post-GWAS analysis can
help to address some of these challenges.
One approach for this integration is to use meQTLs findings to prioritize GWAS signals

for follow on analysis, for example, as applied in a study of autism spectrum disorders in
1263 infants by Hannon et al. [171]. The authors estimated that 91 SNPs associated with
the disease were also meQTLs, based on a Bayesian co-localization analysis. Their results
highlight specific variants to target in subsequent studies since they may have a functional
role in autism pathophysiology. Morrow et al. [82] implemented a similar Bayesian frame-
work to identify meQTLs that are also chronic obstructive pulmonary disease (COPD)
GWAS signals (see the “MeQTLs in non-blood-based tissues and cells” section). Their
findings identified 20 SNPs with suggestive evidence of co-localization, highlighting novel
regions of interest in addition to previously identified COPD signals, such as KCNK3 and
EEFSEC.
MR analyses have also been adopted to integrate meQTL and GWAS results. Richard-

son et al. [172] assessed putative causal effects at 30,328 CpGs in 139 complex traits
based on previously published cis-meQTL and GWAS results. The authors assessed the
fit of several models spanning: (1) a forward MR model where the DNA methylation
level impacts the phenotype; (2) a joint likelihood mapping, to exclude genetic variants
in LD independently influencing DNA methylation and phenotype; and (3) a reverse MR
model to exclude cases where DNA methylation is the outcome. A final set of 346 CpG
sites were identified as potentially causal across 46 traits, ultimately highlighting spe-
cific biological pathways and suggesting potential drug targets. Similar analyses have also
been undertaken within specific phenotype domains by multiple other studies, includ-
ing Huan et al. [35], Bonder et al. [51] and Chen et al. [78]. In the largest analysis so far,
Min et al. [50] found a significant substantial enrichment of meQTLs with the GWAS sig-
nals in 13 of 37 phenotypes GWAS datasets assessed, especially for SNPs acting as both
cis and trans-meQTLs. However, after multiple causal inference analyses, the authors
observed that only for aminority of cases DNAmethylation exhibitedmediating effects of
GWAS signals in complex traits, and vice versa. These directionality results have several
interpretations, including the possibility that other molecular mechanisms may explain a
proportion of the observed shared genetic signals.

Shared QTL effects onmultiple regulatory genomic processes

Regulatory genomic changes capture multiple molecular processes across different lay-
ers of epigenetic data. Comparison of meQTLs with QTLs for different biological
profiles is a promising route to infer regulatory potential. In spite of the consider-
able amount of studies that jointly consider DNA methylation and gene expression
data, relatively few studies have explicitly compared eQTLs and meQTLs genome-wide.
Such comparisons have been based on either summary statistics of published stud-
ies [92, 173] or de novo associations [49, 51, 59, 67, 78, 83, 93]. Overlapping results
can be used to identify pleiotropic effects for DNA methylation and expression and
explore directionality of these effects, such as SNP→methylation→expression (active)
or SNP→expression→methylation (passive). For example, Gutierrez-Arcelus et al. [59]
inferred that DNA methylation can have both active and passive roles in gene expression
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regulation across fibroblasts, T cells and lymphoblastoid cells from the umbilical cords
of 204 babies. Furthermore, comparison of meQTLs with other epigenetic data QTLs
may also give further insights into regulatory epigenetic processes. Banovich et al. [67]
compared meQTLs with QTLs for histone modifications, PolII occupancy and DNAse I
hypersensitivity, and based on the extent of overlap observed they hypothesized that coor-
dinated regulatory changes may be explained by modified TF binding affinities. Chen et
al. [78] explored similar questions in three different immune cell types (n = 525), where
43.3% of the genetic variants identified as eQTLs were either found to have a coordi-
nated effect as meQTLs or to be in high LD with a meQTL. However, the effect sizes
were weakly negatively correlated, which the authors interpreted as a partial uncoupling
between methylation and expression. The study also included analysis of histone mod-
ification QTLs (hQTLs for H3K4me1 and H3K27ac), where again 43.3% of eQTLs and
hQTLs overlapped with strong positive correlation in effect sizes, suggesting an active
role for histone modifications on expression.
As additional data are being generated on multiple epigenetic and expression layers of

data, future analyses will have greater power to explore the regulatory nature of meQTLs.
However, co-localization results should be interpreted with caution, as the intersection
of QTLs does not imply a causal relationship or direct association due to LD or statistical
artifacts. Additionally, if summary statistics are obtained from databases with different
reference populations, the significant signals may not be comparable [25].
In conclusion, the identification of methylation quantitative trait loci genome-wide has

significantly increased our knowledge of the factors driving DNA methylation variation
in humans, and holds value for integrating genomics and epigenomics in the context of
disease.
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