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formed a monophyletic clade and had no distinct geographically based pattern (Additional
file 1: Fig. S6) consistent with previous reports [13–15, 17]. Admixture analysis of population

structure (Fig. 2d) supports the classification of groups or subgroups and backs up our
inferences on the domestication history. More specifically, atK = 2, LC is separated from the

WE and WK (wild) populations, with evidence of mixed ancestry in the WE group, and at

K = 3, the WE, WK, and LC groups are apparent. AtK = 5, further subgroups emerge, includ-
ing the split between WK-I and WK-II, but no geographically structured subgroups were

Fig. 2 Population genomic analyses in castor bean.a Geographic distribution of 505 castor bean
accessions. Blue, red, and green dots on the world map represent the wild Ethiopia (WE), wild Kenya (WK),
and domesticated accessions (including landraces and cultivars, LC), respectively.b Geographic distributions
of wild castor bean collected from Ethiopia (blue dots) and Kenya (red dots).c Phylogenetic tree of all
accessions inferred from whole-genome SNPs, withJatropha curcasas an outgroup. Three major clades are
indicated. The line colors indicate groups of castor bean accessions (WE, WK, landrace, and cultivar).d
ADMIXTURE plot for all castor bean accessions. The values ofKrepresent the number of clusters.e PCA plot
of the first two eigenvectors of castor bean accessions.f Genetic diversity (θπ) and divergence (FST) among
three castor bean populations WE, WK, and LC.g LD decay for three populations (WE, WK, and LC)
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observed with the increase ofK value, althoughK = 10 was optimal (Fig.2d and Additional
file 1: Fig. S7). The principal component analysis (PCA; Fig.2e) revealed a similar population

structure.
Associated with castor bean domestication, we observed a significant reduction of

genome-wide diversity in the LC population (θπ = 1.71 × 10−3) relative to WE (1.95 ×

10−3) and WK (1.81 × 10−3) (P< 0.01 by Kruskal-Wallis test; Fig.2f and Additional file1:
Fig. S8a), consistent with the general pattern of wild populations harboring higher gen-

etic diversity than domesticated populations. However, this ratio of diversity (πwild/πcul-

tivar) in castor bean (1.14) was quite small relative to other crops such as rice (1.25),

soybean (1.58), cucumber (1.96), and tomato (2.63) [23] suggesting an overall weak
domestication bottleneck. PairwiseFST between populations indicates obvious genetic

divergence between wild and domesticated population (WE and LC:FST= 0.19, WK

and LC:FST= 0.21) but less between the WE and WK populations (FST= 0.13, Fig.2f).
Decay of linkage disequilibrium (LD) occurred over a substantially shorter distance in

wild populations (~ 15.3 kb for WE and ~ 20.8 kb for WK to decay tor2 = 0.2) than in
the domesticated population (~ 64.5 kb for LC) (Fig.2g), correlating with expectations

based on greater outcrossing in wild castor bean than domesticates [14].

Four centers of phenotypic diversity have been proposed [9, 11]; therefore, we esti-
mated the genetic diversity for the three geographic groups in Asia including West Asia

(including Turkey, Syria, Iraq, and Iran), South Asia (Pakistan and India), and China
and compare those to the fourth center in East Africa. West Asian castor bean har-

bored relatively high nucleotide diversity (θπ = 1.90 × 10−3) comparable to the wild

group and substantially greater than found in South Asian and Chinese groups (1.66 ×
10−3 and 1.56 × 10−3, respectively). The potential reason for high genetic diversity in

this area is that accessions in West Asia may have repeatedly received gene flow from
wild castor bean in East Africa or that this represents the earliest group of domesti-

cates, with other Asian accessions being founded from this region. We employed Tree-
Mix to measure gene flow and migration and found, indeed, that gene flow from

Ethiopia to West Asia was supported (weight = 0.24, Additional file1: Fig. S9). While it

is possible for wild castor bean to have previously existed in this area, archeological re-
mains of only cultivated castor bean seeds have been reported in this region (from Iraq

dating to ~ 6000–7000 YBP [10]). PairwiseFST shows low differentiation between Chin-
ese and Indian castor bean (FST= 0.09) and greater differentiation between these East-

ern sites and West Asian castor bean (FST= 0.19 between Chinese and West Asian

accessions andFST= 0.11 between India and West Asian accessions).
Taken alongside archeological evidence, our results clearly show that accessions from

East Africa are the extant wild progenitors of castor bean and that domestication oc-
curred somewhere between East Africa and West Asia, and these are the main centers

of diversity. Following this, accessions were distributed throughout the world. The lack

of geographically structured genomic variation in the landraces and cultivars suggests
continued and multi-directional transport and/or breeding of castor bean.

Population demographic history reveals genetic bottleneck and vicariance

To better understand the demographic history of castor bean, we employed the
SMC++ method to infer effective population size (Ne) through time and divergence
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Genome sequencing and assembly

We selected a wild accession“Rc039” from Anabora District, Ethiopia (8° 3� N, 38° 9� E), that

displays traits typical of wild castor bean. Genomic DNA was extracted using the Plant
Genomic DNA Kit (TIANGEN, Beijing, China), and libraries were constructed and sequenced

on the NovaSeq 6000 platform. The raw reads were pre-processed to remove the adaptors

and low-quality bases using fastp (version 0.20.0) [61] with parameter min-length 75. K-mer
distribution was estimated using jellyfish (version 2.2.6) [62] with parameters“-m 17 -C,” and

genome size was estimated with GenomeScope [63]. Genome size was also estimated by flow
cytometry using maize B73 (~ 2300 Mb) as an internal standard.

For de novo assembly of the Rc039 genome, we used long read sequencing on the
PacBio Sequel platform with two SMRT Cells. In brief, high molecular weight (HMW)

DNA was used to construct a DNA library with ~ 20 kb insert size and subsequently

sequenced on the PacBio Sequel sequencing platform at Shanghai OE Biotech Co., Ltd.
(Shanghai, China). De novo assembly was performed with FALCON (pb-assembly ver-

sion 0.3.0) [64] with the following parameters:length_cutoff =� 1, seed_coverage = 40,
length_cutoff_pr = 12 Kb, pa_HPCdaligner_option = -v -B128 -M20 -T8, pa_daligner_op-

tion = -e0.75 -l4800 -k18 -h480 -w8 -s100, ovlp_daligner_option = -k24 -h1024 -e.96

-l2400 -s100, ovlp_HPCdaligner_option = -v -B128 -M24 -T8, falcon_sense_option = --
output_multi --min_idt 0.70 --min_cov 3 --max_n_read 300. Subsequently, the contigs

were phased and polished by FALCON-Unzip based on all PacBio long reads. Finally,
the assembled contigs were filtered to remove potential contaminants by BLASTN

against NCBI NT database with the parameters-evalue 1e-5 -best_hit_overhang 0.25

-perc_identity 0.5 -max_target_seqs 10. Finally, sequence polishing was performed with
Arrow (https://github.com/PacificBiosciences/GenomicConsensus, version: 2.3.3) using

PacBio long reads, and then Pilon (version: 1.23) [65] using Illumina short reads.

Hi-C sequencing and gap filling

The Hi-C sequencing library was constructed and sequenced (150-bp paired-end) on

the NovaSeq 6000 platform. Raw reads were quality-trimmed with fastp as mentioned
above and aligned to the draft genome assembly using Juicer [66] with default parame-

ters and a chromosome-scale assembly was generated using 3D de novo assembly (3D-

DNA) pipeline [67] (https://github.com/theaidenlab/3d-dna) with the parameters -r 1
-q 10. The resulting assembly was visualized using Juicebox Assembly Tools (version

1.11.9) [68] based on a contact matrix, and the mis-assemblies and mis-joins were
manually corrected based on neighboring interactions. After scaffolding, we employed

PBJelly in the PBSuite package (version 15.8.24) [69] to close gaps between contigs.

Finally, we performed the second-round error correction as mentioned above. The
completeness and accuracy of genome assembly were quantitatively assessed by

BUSCO (version 3.1.0) [70] with the eudicot odb10.

Genome annotation

For repeat annotation, we adopted the Extensivede-novoTE Annotator (EDTA version

1.7.0) [71], which incorporates LTRharvest, LTR_FINDER, LTR_retriever, TIR-Learner,

HelitronScanner, RepeatModeler, and RepeatMasker, as well as customized filtering
scripts for de novo identification of each TE class, and compiles the results into a

Xu et al. Genome Biology         (2021) 22:113 Page 17 of 27

https://github.com/PacificBiosciences/GenomicConsensus
https://github.com/theaidenlab/3d-dna


comprehensive TE library. Subsequently, the TEs identified were annotated by search-
ing the EDTA TE library using RepeatMasker (version 4.0.9) [72].

Protein-coding annotations were predicted using the MAKER (version 2.31.10) [73]
annotation pipeline which integrated ab initio prediction, RNA-seq, and homology-

based approach based on the masked genome. For ab initio prediction, we used the

gene predictor software Augustus (vers. 3.3.2) [74] and GeneMark-ES (version 4.3.8)
[75] which were previously trained using BRAKER2 [76] (https://github.com/gatech-

genemark/BRAKER2) with RNA-Seq data (four samples including root, stem, leaf, and
seed, ~ 6Gb clean reads for each sample). These samples were also aligned to the

genome using HISAT2 (version 2.10.2) [77] and transcripts were reconstructed by
StringTie (version 1.3.0) [78]. The transcripts from the RNA-seq, 62,629 expressed

sequence tags (castor bean EST, download date: 2019-04-17, NCBI), and protein

sequences from six plant species:Hevea brasiliensis, Manihot esculenta, Ricinus
communis“Hale”, Arabidopsis thaliana(all downloaded from phytozome12:https://

phytozome.jgi.doe.gov/pz/portal.html), Vernicia fordii (downloaded fromhttp://bigd.
big.ac.cn/gsa, GWHAAEU00000000), andJatropha curcas(downloaded from China

National GeneBank under accession number CNP0000449) were used as evidence dur-

ing annotation, and finally to generate a comprehensive set of protein-coding genes
with a AED score [19]. BUSCO [70] was used for the evaluation of annotation com-

pleteness with eudicotyledons_odb10. Approximately 96.0% of conserved genes (2036/
2121) were identified in the castor bean genome. In addition, we also predicted non-

coding RNAs (rRNA, small nuclear RNA, and microRNAs) using RNAmmer (version

1.2) [79] and Infernal (version 1.1.2) [80] by searching Rfam (version 14.1) [81]. The
tRNAs were identified using tRNAscan-SE (version 1.3.1) [82].

Functional annotations were assigned by aligning the castor bean protein sequences
to the public databases including SwissProt, TrEMBL, NR, eggNOG, and KOG data-

bases using diamond (E-value≤1e−5). Motifs and domains were annotated by searching
ProDom, PRINTS, Pfam, SMRT, PANTHER, and PROSITE using InterProScan (ver-

sion 5.36). Gene Ontology (GO) annotations were assigned according to the corre-

sponding InterPro entry.

Comparative genome analyses

Protein sequences from ten eudicot genomes:Hevea brasiliensis, Manihot esculenta,

Populus trichocarpa, Linum usitatissimum, Arabidopsis thaliana, Glycine max, and

Vitis vinifera (downloaded from phytozome12:https://phytozome.jgi.doe.gov/pz/portal.
html), Vernicia fordii (downloaded fromhttp://bigd.big.ac.cn/gsa), Mercurialis annua

(downloaded fromhttps://osf.io/a9wjb/), andJatropha curcas(downloaded from China
National GeneBank under accession number CNP0000449) were obtained. Orthologous

genes among these plant species and castor bean were identified using OrthoFinder2

(version 2.2.7) [83] with the parameter-S diamond. Subsequently, all single copy ortho-
logs were subjecting to multiple sequence alignment using MAFFT (version 7.407) [84]

and poorly conserved blocks were trimmed using trimAl [85] with default parameters.
Finally, the consensus sequence was merged into a supergene. The phylogenetic tree

was constructed using RAxML (version 8.1.2) [86] with 100 bootstrap replicates and
PROTGAMMAAUTO model. Divergence times were estimated under a relaxed clock
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model using MCMCtree in PAML (version 4.9i) [87] with the following parameters:
burnin = 1,000,000, nsample = 20,000, and sampfreq = 500, and divergence dates for

Vitis vinifera (105–115 MYA), Glycine max(97–109 MYA), and Arabidopsis(75–99
MYA) obtained from Timetree (http://www.timetree.org/) were further used to cali-

brate the divergence time. Evolutionary analysis of gene synteny and collinearity were

performed using MCScan (python version,https://github.com/tanghaibao/jcvi/), and
syntenic gene pairs were visualized using the dotplot script in jcvi package. We used

CAFE (version 4.2) [88] to identify the expansion and contraction of gene family in
castor bean genome relative to other plant species. Whole-genome duplication (WGD)

was detected by corrected fourfold synonymous third codon transversion (4DTv) with
an in-house perl script and synonymous substitution rate (Ks) calculated with the NG

model in KaKs_Calcuator (version 2.0) [89].

Genomic resequencing and variant calling

Genome resequencing was carried out for 280 castor bean accessions using the same
methods as above for the Illumina NovaSeq 6000 samples. Combined with the WGS

data mentioned above [16], the clean reads from 505 accessions were mapped to the
Rc039 genome using bwa-mem (version 0.7–17) [90] with default parameters. Picard

tools (version 2.18.17,http://broadinstitute.github.io/picard/) were used to remove PCR

duplicates according to the mapping coordinates. Genetic variants including SNPs and
Indels (short insertion and deletion) were detected using Genome Analysis Toolkit

(GATK, version 3.8.1) [91] and its subcomponents HaplotypeCaller, CombineGVCFs,
and GenotypeGVCFs to form a merged vcf file with all samples. SNPs were filtered

with the following parameters:QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRank-

Sum <� 12.5, ReadPosRankSum <� 8.0, and indels filtered with the parametersQD <
2.0, FS > 200.0, MQ < 40.0, SOR > 10.0, ReadPosRankSum <� 20.0. From this, we de-

fined a core SNP set by removing SNPs with more than two alleles, > 20% missing calls
and MAF < 1% which was used for subsequent analyses.

According to the gene model of the Rc039 genome, genetic variants identified above
(SNPs and indels) were further annotated using the SNPeff (version 4.3T) [92], and the

density across each chromosome was determined with 500-kb sliding windows using

VCFtools (version 0.1.17) [93].

Population genetic diversity and structure analysis

To infer the basal group of castor bean, we constructed a rooted phylogenetic tree based on

48,450 SNPs from 9063 single copy orthologs between castor bean andJatropha curcus.
Briefly, all single copy orthologs between castor bean Rc039 andJ. curcaswere identified

using the OrthoFinder2 [83] with default parameters, and single copy orthologs were ob-

tained for each castor bean accession by replacing the corresponding SNPs. The resulting
single copy orthologs were then merged into a supergene and a rooted maximum likelihood

tree was constructed using IQ-TREE (version 1.6.12) [94] with the parameters -alrt 1000
-bb 1000 GTR+F+R2 (ultrafast bootstrap) withJ. curcusas outgroup. The phylogenetic tree

was visualized using the R package ggtree [95].

Based on the phylogenetic analyses, we defined three groups of individuals: WE (wild
accessions from Ethiopia), WK (wild accessions from Kenya), and LC (landrace and
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cultivated accessions from throughout the world). Nucleotide diversity (θπ) was deter-
mined for WE, WK, and LC population using VCFtools [93] using a 100-kb sliding

window with a 20-kb step size. Genetic differentiation (FST) was calculated among dif-
ferent groups using the same method. To detect selective sweeps, we calculated the

ROD andFST value (wild vs. cultivar) within the same sliding windows and the regions

that scored in the top 5% of the ROD andFST values were defined as candidate domes-
tication sweeps. LD decay for each population was estimated for all pairs of SNPs using

PopLDdecay (version 3.4) [96] with the parameters� MAF 0.05 � Het 0.88� Miss 0.25
� MaxDist 300.

Before inferring the population structure, we pre-processed the core SNP set by
adopting a linkage disequilibrium pruning procedure using PLINK [97] with parameters

indep-pairwise 50 10 0.5.In total, we obtained 754,561 SNPs that were used for subse-

quent analyses. Population structure was performed using ADMIXTURE (version 1.3)
[98] with a block-relaxation algorithm with the core SNP set, and the genetic ancestry

of each sample was estimated by specifying the number of genetic clusters (K) from 2
to 20 and running the cross-validation error (CV) procedure (Additional file1: Fig. S7).

We carried out PCA using EIGENSOFT (version 6.1.4) [99] with default parameters

and the first two eigenvectors were plotted.
In order to further understand population splits and mixtures in castor bean, we

employed TreeMix [100] to construct a subgroup graph based on the core SNP set.
TreeMix runs were conducted 8 times allowing for 0–8 admixture events (m). The

model with the optimal number of admixture events, m = 6, was chosen based on the

explained variance more than 99%, beyond which the explained variance improved only
marginally. Bootstrap support for the resulting tree topologies was obtained using 100

bootstrap replicates with PHYLIP [101]. Meanwhile, gene-flow information and migra-
tion events were mapped onto this tree.

Population demographic analysis

We first estimated the mutation rate per nucleotide per year (μ) for castor bean. Briefly,

we identified syntenic regions between castor bean andJ. curcasgenomes using LASTZ
(version 1.04.03) [102] with the parametersT = 2, C = 2, H = 2000, Y = 3400, L = 6000, and

K = 2200. The number of base pair mismatch within syntenic regions was calculated that
excluded those with ambiguous nucleotide and within gap region, resulting in the 34.0%

sequence divergence between them. We assumed a generation time of 2 years for wild

castor bean as observed in our field investigations and a divergence time of 48.8 MYA be-
tween castor bean andJ. curcas(as estimated in the species tree above), givingμ = 6.9 ×

10−9 mutations per nucleotide per year for castor bean, consistent with a previous average
estimate for plant nuclear genes ranging from 5 × 10−9 to 7 × 10−9.

We employed SMC++ (version v1.15) [103] to infer population size histories and split

times between two populations based on the unphased SNPs with MAF > 0.05. We per-
formed the masking step as suggested [104] to delineate the largely uncalled regions

with SNPable toolkit (http://lh3lh3.users.sourceforge.net/snpable.shtml). The above
substitution rate and a generation time of 2 years for wild castor bean or 1 year for cul-

tivated castor bean were used to convert the scaled times and population sizes into real
times and sizes, respectively.
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We employed environmental niche modeling (ENM) to study the past demo-
graphic processes and potential distribution of castor bean from the Last Glacial

Maximum (LGM, 21–18 thousand years ago, KYA) to Mid-Holocene (7–5 KYA)
and the present. The occurrence sites ofcastor bean were collected from our field

investigations, records, and collection databases (http://www.ars-grin.gov/) and were

manually checked to exclude duplicated and illogical sites and cultivated sample
sites. We downloaded 19 climatic variables across the three periods mentioned

above from the WORLDCLIM database (www.worldclim.org). We further removed
four occurrence records that lacked environmental variable data. To reduce the

overfitting of these bioclimatic variables on models, environmental variables with
Pearson’s correlation coefficientr > 0.7 or <− 0.7 were excluded. As a result, eight

environmental variables were used for subsequent analysis: Bio1 (annual mean

temperature), Bio2 (mean diurnal range), Bio3 (isothermality), Bio5 (max
temperature of the warmest month), Bio8(mean temperature of the wettest quar-

ter), Bio16 (precipitation of the wettest quarter), Bio17 (precipitation of the driest
quarter), and Bio19 (precipitation of the coldest quarter). Ecological niche models

were performed based on the present variables using the maximum entropy in

Maxent (version 3.3.3) [105] with 10 subsample replicated runs and 30 random test
percentage.

Phenotyping and GWAS analysis

Nine agronomic traits were measured in 2017 and 2018 in our experimental field, fo-

cusing on those traits that differed between wild and domesticated castor bean. We
combined the data from five plants in each of the 2 years and the mean value was used

for GWAS analysis. As mentioned above, some accessions did not survive in the second
year and hence 1 year of data was used. Because of the 2-year generation time for wild

castor bean, we averaged the seed phenotypes of that collected from the maternal plant
in the wild as well as the seed phenotypes after one season which were highly consist-

ent. For plant architecture, we measured three traits including plant height (PH) above-

ground, diameter of the main stem (DMS), and the number of nodes (NN). Seed traits,
including seed length (SL), width (SW), and thickness (ST), were determined by a

digital caliper. For seed area (SA), five seeds were first scanned by a scanner and the
area was calculated using Adobe Photoshop software. Single seed weight (SSW) was de-

termined as the average value of 30 seeds. The seed oil content (SOC) was measured

by MQ-ONE Seed Analyzer (BRUKER, Germany) using NMR. For each phenotypic
trait, more than five biological replicates were used in this study.

In total, 2,314,859 SNPs with MAF > 0.05 and present in the 279 phenotyped individuals
we cultivated were used for GWAS. GWAS was performed using the MLM, MLMM, and

FarmCPU statistical methods implemented in GAPIT (version 3.0) [106]. The first three

PCA values (eigenvectors) and kinship (K) matrix generated with GAPIT were used to
correct for population structure and random polygenic effect. We identified significant

GWAS signals after applying an adjusted Bonferroni test threshold of 7.67, corresponding
to a raw P value of 2.15 × 10−8 based on a nominal level ofα = 0.05. The LD blocks

around GWAS signals were further evaluated by calculatingr2 between SNPs using
PLINK and visualized using the R package LDheatmap (version 0.99-7) [107].
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Genetic map construction and QTL analysis

We reconstructed a genetic map based on recombinant inbred lines (RILs) by crossing

the landrace Rc250 with large seed with the cultivar Rc249 with small seed. The GBS
sequencing data from the two parents and 200 offspring were obtained from our previ-

ous study [49]. In total, 23,413 high-quality bi-allelic SNPs were called using GATK

with the following criteria: (i) QD < 2.0, MQ < 40.0, MQRankSum <− 12.5, ReadPos-
RankSum <− 8.0; (ii) progeny depth > 8 and GQ > 30; and (iii) missing data in progen-

ies less than 10% and MAF > 0.05. Subsequently, the genetic map was constructed
using Lep-MAP3 (version 0.2) [108] and linkage groups (LGs) were defined based on a

LOD (logarithm of odds) score of 41 and a fixed recombination fraction of 0.03. We re-
solved 10 LGs and each LG contained at least 1167 SNPs. The order of markers and

the genetic distance were then estimated using Lep-MAP 3 [108] with the parameters

useKosambi = 1 sexAveraged = 1 grandparentPhase = 1. The final genetic map included
18,946 SNP markers and the total genetic length was 1244.54 cM. This genetic map

was used to recalibrate and evaluate the assembly of the Rc039 genome using ALLM
APS [109] with default parameters. In addition, QTL analysis was performed for five

seed traits (SL, SW, ST, SOC, and SSW) using the QTL IcIMapping (version 4.2) [110]

with 2186 bin markers and significantly associated QTL loci were identified based on a
LOD threshold of 2.5.
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