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Over the last decade, there have been continuous efforts to improve the sharing of

genomics data to allow researchers to freely access data across a wide range of pheno-

types. Open omics data is widely available on searchable public repositories, ensuring

that datasets are not just available but also easily discoverable [1]. Availability of this

data allows for effective secondary analysis which in turn may accelerate novel biomed-

ical discoveries. Secondary analysis comprises research techniques for analyzing data

that has been collected prior to defining the current hypothesis. Using public reposi-

tories to share data substantially simplifies discovering and accessing datasets of inter-

est, as one has scalable, programmatic access to a large number of studies. But in

order for the value of publicly available omics data to be fully realized, it should be an-

notated appropriately. Annotation of metadata includes fully describing the sample

type, procedure of collection, extraction and assay methods, and relevant clinical phe-

notypes. For processed or summarized data, metadata also includes aspects of the com-

putational pipeline such as annotation (genome build, gene annotation provenance and

release number), software arguments, and software versions. Lack of complete annota-

tions may negatively impact follow-up studies aiming to reuse the omics data [2, 3].

Fair and ethical data sharing provides a firm edifice upon which the scientific re-

search community is built. The biomedical community makes a concerted effort to

share omics data but lacks consistency among researchers to ensure that metadata ac-

companying raw omics data is complete and fully available. Existing literature has ex-

plored how sharing of data should be FAIR—Findable, Accessible, Interoperable and

Reusable [4]—and has considered accuracy, completeness, and consistency as three

vital parameters to assess the quality of available metadata, although the degree to

which the research community follows these principles to ensure completeness and ac-

curacy of public metadata accompanying omics studies is currently unknown. The in-

completeness of metadata and improper annotation compromises the ability to

reproduce results of the original study. Public data sharing accompanied by fully de-

scribed metadata allows available omics data to be effectively leveraged to accelerate

novel biomedical discoveries [5], when both raw omics data and metadata are present

in a standardized format. A standardized format implies that the metadata would be
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classified into specific well-defined categories and that there would be a predetermined

minimum number of clinical phenotypes to be shared while submitting data to a public

repository, for example age, sex, ancestry, and tissue type. It is imperative to note that

here, we use the term “ancestry” to imply self-reported ancestry. We avoid using the

word “race” because of how this term has been wrongfully used socially, as well as in

medical research. “Race”, “ethnicity”, and “ancestry” are often used interchangeably but

do have a difference. “Race” is an ambiguous term that has been used in varying con-

texts politically and culturally to (often) stereotype a particular group of people. “Ethni-

city” refers to a group of people hailing from a similar cultural background while

“Ancestry” can denote genetic or self-reported ancestry [6]. More populations involved

in the study would mean that more variables need to be accounted for and controlled.

This may be why there is a persistent European bias in GWAS, owing to logistical, sys-

temic, and historical factors [7]. There are no fixed variables that define the term “race,

” and so in this context, it would be inappropriate to use such a rigid term for this

analysis.

To illustrate the completeness of metadata accompanying open omics studies, we

performed a systematic assessment of completeness of public metadata accompanying

open transcriptomics data of patients with sepsis and corresponding controls. In our

analysis, we carefully examined 3125 transcriptomic samples across 29 transcriptomics-

based sepsis studies. To estimate the completeness of metadata both in the correspond-

ing publications and the public repositories, we first referred to a comprehensive ana-

lysis for sepsis mortality prediction [8], in which the authors had obtained complete

metadata from researchers of the original sepsis studies. For the cohorts that were not

included in the comprehensive analysis, we contacted the researchers owning the data,

asking them for the corresponding metadata. In a few cases where we were unable to

obtain the required information from the authors, we assumed that they had complete

information about all clinical phenotypes under analysis. This metadata directly ob-

tained from the researchers were considered as complete and was compared to the

metadata available in the publication and public repositories. We examined nine clin-

ical phenotypes: the disease condition, age, sex, tissue type, country of residence of the

patient, ancestry, clinical tests (severity of the disease), organism, and mortality. We

found that on average, 65% of clinical phenotypes were shared in the publication and/

or public repository. We observed a large variability in the completeness of reported

clinical phenotypes. First, the percentage of reported clinical phenotypes varied from

83.3% for the most complete study to 38.9% for the least. Next, we found that the most

reported clinical phenotypes were organism and tissue type (100%) while the least re-

ported was ancestry (22.4%).

There were some marked inconsistencies between the clinical phenotypes reported in

the publication and the repository, with 35% of the information being lost from the

publication to the repository. The most reported clinical phenotypes on publications

were the disease condition, organism, and tissue type, each being consistently reported

across all studies, while this was also the case for the latter two on public repositories.

The least reported clinical variable on publications was ancestry (37.9%), while on the

repositories, it was the country of residence (3.4%). Overall, apart from tissue type and

organism, the least discrepancy was observed for reporting the disease condition, with

100% being reported on publications and 82.8% reported on the repositories. On the
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other hand, the largest difference between publications and repositories was observed

for the country of residence of the patient. While the country is mentioned on 89.7% of

the publications, it was reported by a mere 3.4% on public repositories. Interestingly, al-

though both platforms were not complete in terms of the metadata they share, we have

found that about 45.7% of the total data was lost between publication and that shared

on public repositories. It is essential to make a conscious effort to share data and the

corresponding metadata on both platforms. When data is shared only in the publica-

tion, it becomes infeasible to manually parse the text of publication to extract the rele-

vant metadata, especially when looking at a large number of studies. Public repositories

play a significant role in sharing of both raw omics data and corresponding metadata

allowing instant access to millions of diverse datasets across various diseases and phe-

notypes. In contrast, a publication format is not well suited to share the metadata as

metadata scraping is a laborious and error- prone approach, requiring the manual

search and extracting of the clinical phenotypes from the text of publication. Public re-

positories thus have a very important role in ensuring data sharing and we therefore

need rigorous standards in terms of how the metadata is shared. Having standardized

metadata will allow researchers to obtain complete and consistent information across

all platforms, whether it is from a publication or from a repository.

Open, freely accessible, and standardized metadata in an easy-to-use format is the

key for reproducibility of the findings reported in the original publication. Complete-

ness of metadata enables reusing open omics data and undoubtedly offers multifarious

benefits to the scientific community. Broader and more complete sharing of omics data

and corresponding metadata will promote extensive research especially in cases where

the scientists may find it expensive to generate new data [9].

It was a substantial effort in the biomedical community to address poorly structured

and incomplete metadata associated with the open omics data. For example, a tool

called MetaSRA has been developed to standardize the raw (unstandardized) metadata

accompanying experiments on the Sequence Read Archive (SRA) [10]. MetaSRA dir-

ectly derives information from the available omics metadata and does not extract it

from the publication or from the raw omics data itself. In general, it is possible to infer

certain phenotypes directly from omics data (e.g., sex, genetic ancestry) [11]. Such

omics-derived phenotypes promise to complement standard metadata or serve as qual-

ity controls to capture human-generated errors in reported metadata. To address the

inconsistencies between the clinical phenotypes reported in the publication and the re-

pository, natural language processing (NLP) methods show promise to extract metadata

in a standardized format directly from the text of the publication. Recently, META

GENOTE has been publicized as a web portal that helps in annotation of metadata and

streamlining the submission process to SRA [5]. It would be extremely beneficial to the

biomedical community if a similar platform is developed for the other repositories as

well. Efforts are also being made to standardize computationally derived metadata [11],

with attention paid to creating a database that has very structured information about

any transformations being made, and bidirectional links to repositories where the meta-

data is stored.

There is an emerging need to establish a standard for reporting metadata to ensure

well-rounded and complete sharing of metadata with the broad scientific community.

A significant effort has been made in the biomedical community to standardize
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metadata. The Genomic Standards Initiative has laid down minimum requirements for

reporting nucleotide sequences (MIxS) [12] and metadata, and similarly, the Microarray

Gene Expression Database Group has recommended requirements for describing tran-

scriptomic data (MIAME/Plant) [13]. Researchers have suggested similar guidelines to

be set for plant phenotypic data [14], and the same initiative is critically needed for bio-

medical research. The Genomic Standards Consortium facilitates data integration, dis-

covery, and comparison by establishing international standards [15]. These

recommendations suggest what phenotypes should be shared along with the omics

data; however, there remains a lack of formal guidelines on the format that the meta-

data needs to be shared in [11].

There are several barriers which may prevent scientists from sharing clinical pheno-

types associated with omics data. First, it may be due to the study design proposed by

the research group to the Institutional Review Board (IRB). Once proposed to and ap-

proved by the IRB, the study protocol cannot be altered. This means that if a certain

clinical variable has been neglected from the proposal, it cannot be reported in the pub-

lication or repository even if results are available. For example, if ancestry has not been

taken into consideration in a study design because it has been performed on genotypi-

cally and phenotypically similar individuals, it cannot be reported later as a clinical vari-

able in the published study. A potential solution to this would be that the IRB itself

establishes a minimum requirement checklist for omics studies that spans across all

possible clinical phenotypes that could be reported. This checklist should be envisioned

by keeping in mind not only the present research group, but also the subsequent

groups that may benefit from reusing the data. Another barrier to sharing of clinical

phenotype information may be that the individuals have been de-identified while pub-

lishing the data, for the purpose of maintaining study subject confidentiality, and the

researchers will not be able to contact them for more information. Lastly, there is a

somewhat cultural barrier, where researchers may weigh the value of sharing the meta-

data with the community against other considerations.

We recognize a need to draw the attention of the biomedical community towards an

emerging need for structuring metadata to combat the current situation wherein sub-

stantial portions of metadata accompanying open omics datasets are incomplete and

often poorly annotated. It is imperative to make shared metadata as structured as pos-

sible, with unstructured text elements used only when a structured representation is

not supported by the repository [8]. Moreover, data from studies and their correspond-

ing metadata should be deposited to public repositories as rapidly as possible. This will

prevent data from being lost between the publication and the repository by minimizing

the risk of the researchers not being able to track their datasets and the associated

metadata over time [8]. We would like to open a wide discussion of the potential solu-

tion to bridge the gap between raw omics data and metadata by suggesting the benefit

of having a fixed yardstick that describes the minimum set of clinical phenotypes re-

quired to be collected and disclosed by the researcher while submitting the data, and a

standardized format to be adopted by the biomedical community.
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