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Abstract

Background: Oncopanel genomic testing, which identifies important somatic
variants, is increasingly common in medical practice and especially in clinical trials.
Currently, there is a paucity of reliable genomic reference samples having a suitably
large number of pre-identified variants for properly assessing oncopanel assay
analytical quality and performance. The FDA-led Sequencing and Quality Control
Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and
their pool, termed Sample A, to develop a reference sample with suitably large
numbers of coding positions with known (variant) positives and negatives for
properly evaluating oncopanel analytical performance.
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Results: In reference Sample A, we identify more than 40,000 variants down to 1%
allele frequency with more than 25,000 variants having less than 20% allele frequency
with 1653 variants in COSMIC-related genes. This is 5–100× more than existing
commercially available samples. We also identify an unprecedented number of
negative positions in coding regions, allowing statistical rigor in assessing limit-of-
detection, sensitivity, and precision. Over 300 loci are randomly selected and
independently verified via droplet digital PCR with 100% concordance. Agilent
normal reference Sample B can be admixed with Sample A to create new samples
with a similar number of known variants at much lower allele frequency than what
exists in Sample A natively, including known variants having allele frequency of
0.02%, a range suitable for assessing liquid biopsy panels.

Conclusion: These new reference samples and their admixtures provide superior
capability for performing oncopanel quality control, analytical accuracy, and validation
for small to large oncopanels and liquid biopsy assays.

Introduction
Recent Sequencing and Quality Control Phase 2 (SEQC2) [1] consortium efforts have

engaged in determining samples and methods for DNA-based NGS testing for a variety

of translational and precision medicine applications. Reported here from SEQC2 con-

sortium members are methods and archetypes suitable for establishing a reliable, ro-

bust, continuous, and generally available genomics reference samples that can be used

for assessing analytical performance of next-generation sequencing (NGS) assays across

a wide range of testing scenarios, especially in cancer and including those involving

regulatory science and precision medicine.

Genomic testing of tumors to determine important somatic variants in cancer is be-

coming more commonplace in medical practice and especially in clinical trials. Cur-

rently, there is a paucity of reliable genomic reference samples that can be used as a

standard across a wide range of genomic testing methods for assessing the potential ac-

curacy and the overall analytical performance of a given assay. The National Institute

for Standards and Technology (NIST) has developed several cell lines of reference ma-

terial for testing population genetics, which translates into a very high percentage of

variants inherently at 50% and 100% allele frequency in germline cells [2]. However,

these samples are not appropriate in their current form for comprehensively evaluating

the analytical performance of cancer panels as somatic mutations often at lower than

20% variant allele frequency (VAF). Other samples including reference standards devel-

oped for somatic mutation typically involve at most one cancer cell line and a matching

normal, greatly limiting the number of relevant variants at low VAF available for evalu-

ation [3–6]. While these reference standards are valuable and provide utility in several

NGS contexts, proper comprehensive assessment of cancer panels typically requires

more than 100 appropriate qualitative analytes (such as a variant detected/not detected)

in each of several distinct VAF ranges, which is more than what many general and

commercially available reference samples have in total. Finally, the overall variant de-

tection performance is inversely related to the VAF of the analytes targeted. To deter-

mine panel performance at different VAF magnitudes, reference samples should have

large numbers of variants at various VAF magnitudes.
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Commonly available commercial reference samples typically have less than 100

variants in a relatively small number of genes with allele frequencies suitable for pan-

cancer panel validation. More recently, Horizon Diagnostics released the OncoSpan

reference standard with 386 variants across 152 (114 COSMIC tier 1) genes [7]. Acro-

metrix released the Oncology Hotspot Control which has 555 variants across 53 (52

COSMIC tier 1) genes [8]. As useful as each of these reference samples are, even if both

are used in panel testing validation, only 127 out of the 576 COSMIC Tier1 genes will

have at least one variant in either panel and only 53 genes would have any variant from

a COSMIC Tier 1 gene with a VAF less than 20%. Large cancer panels, such as the Illu-

mina TruSight Oncology 500 (TSO500) panel, would only have a minority of genes

(121 genes total or less than 25% of TSO500) that could be tested within the panel.

With regard to the greater human exome, current reference samples including the

NIST Genome-in-a-Bottle (GIAB) references provide too few variants per gene (typic-

ally ~ 1 variant per gene in coding regions) and only at high VAF (~ 50% and ~ 100%).

Using NIST or similar reference standards for oncopanel testing would require poten-

tially complex admixtures of several distinct samples to create a wide range of variants

at various VAF ranges, a complicated process for even experienced laboratories.

Current needs in genomics testing are not limited to additional appropriate refer-

ence samples but also include describing appropriate methods and guidelines for

developing and verifying such a sample. Given the complexity and the magnitude

of the number of variants required for a reference sample, it is straightforward to

conclude that the most efficient development method is to make use of more easily

identified germline variants that are diluted in some fashion to resemble somatic

changes. This is reasonable as germline variants originated as a founder mutation

and assessing analytical performance of an assay can be independent of the bio-

logical impact of the variant.

The SEQC2 consortium, led by the Food and Drug Administration (FDA), is a con-

tinuation of successful prior efforts in examining methods and reproducibility in gen-

omics and transcriptomics [9–13]. The Oncopanel Sequencing Working Group within

SEQC2 was challenged with examining the reproducibility, sensitivity, and accuracy of

current (or in development) commercially available pan-cancer tumor panels for both

solid tumors and for liquid biopsies. We ascertained the need to (1) identify “ground

truth” of an unprecedented number of low VAF variants and invariant positions in a

DNA reference sample and (2) utilize the crowdsource effort of the SEQC2 consortium

to undertake massive data generation, management, analysis, and compilation of re-

sults. To that end, genomic DNA samples from ten cancer cell lines historically used to

create RNA for the Agilent Universal Human Reference (UHR) RNA sample [14] were

examined individually as well as in pooled form (termed “Sample A”) to develop a ref-

erence set (positives and negatives) for use with tumor cancer panels (Table 1). Fur-

thermore, a cell line derived from a normal male individual (Agilent OneSeq Human

Reference DNA, PN 5190–8848) (termed “Sample B”) was similarly characterized serv-

ing primarily as a negative control for somatic variants but also providing a genomic

background for mixtures between the two reference samples. In particular, we used

Sample B to dilute mutually disjoint variants in Sample A to a much lower VAF. Thus,

the pooled Sample A used in tandem with Sample B are suitable for panel develop-

ment, panel validation, and for quality control (high number of known positives and
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negatives) in parallel with an operational assay, allowing testing of large numbers of

variants across a wide range of allele frequencies.

Results
Identification of positives and negatives in the reference sample

This study utilized four different whole exome sequencing (WES) enrichment kits and

one whole genome sequencing (WGS) method: (i) Roche MedExome [15] (WES1), (ii)

Integrated DNA Technologies (IDT) xGen [16] (WES2), (iii) Agilent SureSelect [17]

(WES3), (iv) Thermo Fisher AmpliSeq Exome [18] (WES4), and the 10X Genomics

linked-read WGS sequencing [19] (WGS1). Details of the experimental design are

shown in Fig. 1. Replicate libraries were created by independent labs for each individual

cell line and sequenced to high depth for WES1–3 methods (WES deduplicated librar-

ies had a typical depth of 235× with an average depth range from 151× to 402× in their

targeted regions). WES4 and WGS1 were sequenced at lower depth without library rep-

licates (the typical depth was 148× for WES4 with a range across cell lines of 116–185×

while the average depth for WGS1 ranged from 64.5× to 74.9× across cell lines). As

these 10 cell lines were to be pooled together, we sequenced each cell line to sufficient

depth to ensure high sensitivity to detect variants above 10% VAF by cell line, which

would generally result in a collection of identified variants down to 1% VAF in the

pooled Sample A. Details related to the sequencing of the individual cell line libraries

and their read characteristics are shown in Additional file 1: Table S1.

FASTQ files from these libraries were provided to the working group participants for

variant calling by an assortment of bioinformatic pipelines (each site ran only pipelines

for WES or WGS data for which they were proficient). We created a reference bed file

that was the intersection of the design bed files of each enrichment kit (termed the

Table 1 List and description of 10 cancer cell lines and a normal reference cell line with %
estimated copy number alterations (CNA) and an intra-tumor heterogeneity (ITH) value to indicate
potential polyclonality of the cell line

Cell
line

Name Description Comments CNA %
(est.)a

ITH (Shannon’s
index)

B Male
reference

Normal ~ 0 0

BLY B
lymphocyte

Myeloma Mixed with TLY within studyb ~ 25% 43.2

BRA Brain Glioblastoma Polyclonal 90% 21.0

BRE Breast Adenocarcinoma Polyclonal 60% 100.0

CRV Cervix Adenocarcinoma Polyclonal 70% 10.9

LIP Soft tissue Liposarcoma 90% 3.5

LIV Liver Hepatoblastoma 27% 2.5

MAC Macrophage Lymphoma Polyclonal 80% 11.8

SKN Skin Melanoma 24% 0

TES Testes Carcinoma 72% 4.8

TLY T
lymphoblast

Leukemia Inherently tetraploidc with
variations

22% 1.1

a CNA were estimated using Agilent GenetiSure Cancer Research CGH + SNP Microarray (2 × 400K), G5975A and WES
b Information of the mixture of the original BLY with TLY is provided in Supplementary Information
c Establishment of the tetraploid nature of the TLY is provided in Supplementary Information
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“Interval4” bed file) so that evaluation of the putative variants would potentially have

representative data from all four exome enrichment kits as well as WGS. The design

size of the regions-of-interest (ROI) of each kit relative to the known exome and their

overlap are provided in Additional file 1: Table S2. Variant calling methods, which in-

cluded GATK Haplotyper [20], FreeBayes [21], Mutect1 and Mutect2 [22], Platypus

[23], Samtools [24], Sentieon TNscope [25], VarDict [26], VarScan [27], and Somatic-

Seq [28], were combined with different alignment strategies (bwa-mem [29], bwa [30],

bowtie2 [31], etc.) to create a comprehensive set of putative variants. An overview of

each bioinformatic pipeline and WES kit combination is provided in Additional file 1:

Table S3.

To protect against a common bias towards false positive calls, the variant calls were

filtered based on NIST high-confidence or benchmark regions [2] [“Methods” section:

NIST high-confidence regions (v3.3.2 benchmark regions)] as well as identified low

genomic complexity regions [32] that resulted in a consensus target region (CTR) as

shown in Fig. 2. Within the CTR, a region that is roughly two thirds the size of the hu-

man exome coding regions, a set of known positive variants (termed Class 1 variants)

were identified as being called in the majority of the consortium pipeline-library combi-

nations for at least one cell line in each replicate of WES1, WES2, and WES3 (the repli-

cated kits). More details are available in “Rules for determining positive variants” in the

“Methods” section.

To further enrich the set of identified variants in important genomic regions, we also

examined each cell line using the WGS1 linked-read method in COSMIC genes [33,

34]. We added 359 variants (termed Class 2 variants) to our set of Class 1 variants that

were outside our CTR region but were in high-confidence coding regions of COSMIC

genes. The Class 2 variants were included only if they were detected by WGS1 in at

Fig. 1 Overall flow diagram of process/method. Discovery of Class 1 variants came from consensus analysis
of WES1/2/3/4 runs on overlapping WES kit target regions having high confidence. Additional Class 2
variants were discovered after analyzing WGS1 with WES results. Variants were confirmed by analyzing in
silico A results where we combined individual BAMs from each cell line replicate and by analyzing merged-
BAM Sample A from pooled Sample A individual replicate BAMs. Finally, a subset of these variants was
orthogonally validated with ddPCR
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least one cell line by two different variant calling methods and detected by at least two

WES kits. From Table 2, we see that over 10% of the identified variants having VAF <

20% in COSMIC genes are Class 2 even though they represent < 1% of positive vari-

ants overall. Using hg19, we identified 42,570 Class 1 and Class 2 variants in Sample A

(28,064 having VAF less than 20%) with additional characteristics of these variants pro-

vided in Additional file 1: Table S4. Notably, 1653 variants are in COSMIC genes with

< 20% VAF.

Pile-ups of each cell line were also examined to identify 10,229,649 negative variant

loci (hg19) that were lacking any variant in the pooled Sample A (more details provided

in “Rules for determining known negative variant positions”). Negative loci for pooled

Sample A imply that if there is any somatic variant at those loci, it must have an ob-

served AF at less than 0.25% in the pooled Sample A for each replicated kit.

To confirm these individual cell line results, we constructed independent triplicate li-

braries of the pooled Sample A using three of the original four WES kits (Roche

MedExome, IDT xGen, Agilent SureSelect) and sequenced each library very deeply

(deduplicated average depth of 180–580× depending on library) as shown on the right

side of Fig. 1. The detailed sequencing QC statistics of pooled Sample A are shown in

Additional file 1: Table S5 with a summary in Additional file 2: Fig. S1. Using Somatic-

Seq, we confirmed greater than 99.5% of the Class 1 and 2 variants identified from the

individual cell line analysis were at or near the expected VAF in Sample A using either

an in silico version of Sample A or the merged-BAM Sample A. SomaticSeq also con-

firmed 99.96% of all variants in some fashion from either individual cell lines, the

merged-BAM Sample A, or the in silico version of Sample A (see Additional file 1:

Fig. 2 Defining the consensus target region (CTR). The regions shown are not to scale. Most of these
regions and their sizes are provided in Additional file 1: Table S2. The low complexity regions are excluded
from the CTR. Importantly, the size of the CTR is ~ 22.7 Mb for hg19
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Table S6a. A merged-BAM of Sample A for a particular kit is a merging of the three in-

dependent replicate library deduplicated Sample A BAM files for each of WES1–3. The

in silico version of Sample A is a merging of the deduplicated cell line libraries for each

of WES1–3. We should note other pipelines besides SomaticSeq were also highly sensi-

tive to the identified variants and exemplar results for certain combinations of pipelines

and kits are shown in Additional file 1: Table S6b. In addition, although the WES4

Thermo Fisher runs had only one library per cell line and were not as deeply sequenced

as WES1–3, over 97.8% of the CTR positives with Sample A VAF greater than 5% were

detected in at least one cell line. Additional information on WES4-related sensitivity

and precision of individual cell lines are provided in Additional file 2: Fig. S2.

Finally, we used droplet digital PCR (ddPCR) technology to orthogonally verify 284

positives and 39 negatives randomly chosen with stratification using different classes of

variants in individual cell lines, reference Sample A, and normal Sample B. We also or-

thogonally tested those same variants using admixture reference samples C, D, and E

where Sample C is a 1:1 dilution of A:B, Sample D is a 1:4 dilution, and Sample E is a

1:24 dilution. The verified variants included more difficult-to-detect variants such as 50

smaller insertions-deletions (indels), 35 of which had VAF < 10% and 95 other low-

frequency variants (VAF < 5% in pooled Sample A) including 12 low VAF Class 2 SNVs.

We also verified 20 variants that were under copy number (CN) influence (i.e., loci hav-

ing detected CN changes in at least one of the 10 cell lines). While we identified a small

number of variants near homopolymer regions (less than 0.1% of the total), we did not

Table 2 Variant characteristics of Sample A compared to other reference material (Sample A
results are based on hg19), both Class1 and Class2 variants combined

Reference
material

Total
variants
identified

Total
coding
variants
identified

Coding
variantsin
COSMIC
genes

Total
coding
variants
< 20%
VAF

Total
coding variants
< 20% VAF in
COSMIC genes

#genes
with 1 or
more
variants

#COSMIC
genes with 1 or
more variants
(Tier1/Tier2)

Sample A 42,570 42,570 2432 28,064 1653 12,238 422/102

SNV 42,021 42,021 2398 27,683 1624

Indel 549 549 34 381 29

Acrometrix 555 555 555 341a 341a 53 52/1

SNV 504 504 504 317 317

MNV/
Indel

2/49 2/49 2/49 0/24 0/24

Oncospan 386 386 319 52 46 152 114/2

SNV 357 357 297 43 38

Indel 30 30 22 9 8

HCC1395
(somatic)

41,556 487 193 144 14 466 188

SNV 39,536 460 186 132 13

Indel 2020 27 7 12 1

HCC1395BL
(germline)

3,577,254 21,755 NA NA NA 9566 NA

SNV 3,225,512 21,381

Indel 351,742 374
aMost of the Acrometrix variants are synthetic controls. Thus, it is possible to construct a version of the material where
524 of the 555 variants have a VAF < 20%
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verify those variants independently using ddPCR but did ensure that all variants near

homopolymer regions and having VAF above the limit of detection of linked-read

WGS were detected by the linked-read WGS. Additional file 1: Table S7 provides a de-

tailed breakdown of the classes and subclasses and the number of variants by class or-

thogonally validated by ddPCR.

For the putative positives tested by ddPCR, 100% of the variants from the different

classes were verified as positives with 99.65% having a concordant VAF value (i.e.,

within stochastic sampling noise) when comparing ddPCR and WES consensus VAF

estimates for the individual cell lines and for Sample A (Fig. 3a, b; r2 = .994 on linear

and r2 = .97 on log scale respectively). In addition, variants with VAF diluted through

admixture changed in expected and predictable ways in concordance with the dilution

level (Fig. 3c). For Samples D and E (the samples having the identified positive variants

but at lower frequency), we also examined the concordance of replicate ddPCR wells

along with concordance of the same variants in replicated Sample B assays (where no

detection is expected). Figure 3d shows r2 = .95 for log (VAF) in replicate runs of Sam-

ples D and E and also shows uncorrelated VAF of those same variants in replicates of

Sample B where they should not be present. In general, about half of the ddPCR assays

showed noticeable variation between 0.1 and 0.01% VAF in Sample B for loci expected

to be variant-free in Sample B, implying that the observed VAF is mostly background

measurement error in ddPCR. This implies the positive variants are verified down to

0.1% in all reference samples but not necessarily below 0.1%. Negatives have the oppos-

ite characteristic: we are confident that the true VAF for each negative locus tested by

ddPCR, if greater than 0, is below 0.1% VAF.

From this process, we identified 42,570 (hg19) and 38,957 (hg38) variants and more

than 10,000,000 negative loci in the autosomal coding regions of the human genome

for Sample A. We also identified 13901/12623 (hg19/hg38) positives for Sample B.

Hg38 positives are noticeably less in number due to the requirement that positives be

in NIST high-confidence (benchmark) regions for that reference version combined with

over 2000 Sample A positives identified in high-confidence regions of hg19 not being

in high-confidence regions of hg38 (even though the hg19 variants are easily mapped

to hg38). The majority (~ 70%) of Sample A variants have a VAF below 20%. Of these

42,570 hg19 variants, 1809 were identified in COSMIC Tier 1 genes with 1255 having a

VAF below 20%. The overwhelming majority of positives (98.7%) consist of single nu-

cleotide variants (SNVs) with indels as a minority (1.3%) across the exome. Some de-

tails and characteristics of the variants identified from Sample A are provided in

Table 2 relative to other reference samples.

An illustrative example of the various design considerations, constraints, and infor-

mation available (including positive and negative variant positions, WES kit interroga-

tion regions and their overlaps, high-confidence regions, CTR) from this study is

provided with a representative gene (TP53) in Fig. 4.

To maximize the number of variants with a wide range of VAF, we selected several

diverse cell lines derived from distant individuals. These cell lines represented a variety

of cancer tissues having been previously selected to compose the Agilent UHR RNA

[14]. Further, we used a very well-characterized cell line from a normal individual

(Sample B) to dilute the VAF for the majority of variants in reference Sample A to cre-

ate reference samples C(1:1), D(1:4), and E(1:24). However, one could create a different
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reference sample using other cell lines. For more detailed recommendations and infor-

mation related to creating a reference sample with low allele frequency variants, includ-

ing the impact of the number of cell lines to admix, see Additional file 3:

Supplementary Information section “Recommended process for reference sample

creation.”

Characteristics of reference Sample A and the cell lines than comprise it

The cell lines examined and pooled for reference Sample A are diverse in several ways.

In addition to being reflective of different tissues of origin, they also are reflective of

some degree of genetic diversity as they contain germline variants from 10 distinct indi-

viduals. In fact, most variants identified are germline variants as cancer cells typically

have less than 10 mutations per Mb of coding sequence while typical germline variants

may be on the order of hundreds per Mb of coding sequence. The number of variants

positively identified for each cell line (including Sample B) is provided in Additional file

1: Table S8.

Fig. 3 ddPCR and WES concordance: a VAF concordance of individual cell line WES consensus results with
ddPCR assays of that cell line. b Concordance (log10 scale) of Sample A VAF between ddPCR and WES for
positives only. c Various dilutions (C, D, E) of Sample A into B achieve the expected reduction in VAF as
seen in the ddPCR results. It also shows the potential noise for measuring ddPCR variants below 0.1%
(10− 3) in the distribution of Sample B variants. d Concordance of replicate ddPCR assays (on log10 scale) is
very high (r2 = .95) in diluted target Samples D and E. Putative VAF values from Sample B are also shown
for comparison
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Population ancestry and the number of somatic variants are the primary cause of

variation in magnitudes of SNVs and Indels across cell lines. The TLY cell line itself

has roughly 19k variants (including by far the most identified somatic alterations, pos-

sibly numbering over 6000). In addition to TLY having many somatic variants, TLY is

also essentially tetraploid with some variations (Additional file 2: Fig. S3). Other charac-

teristics of the cancer cell lines include a high degree of structural variation. Some cell

lines have more than 50% of their genome impacted by somatic copy number alter-

ations (sCNA) while all are estimated to have at least 22% of their genome impacted by

sCNA (Table 1). Two cell lines, BRA and LIP, have apparently greater than 90% of their

genome impacted by sCNA. In addition to structural variation, there are also polyclonal

aspects to some cell lines. For example, BRA, BRE, and LIP cell lines are considerably

polyclonal while LIV, MAC, and TES are much less so. Values of intra-tumoral hetero-

geneity [35] that support this assessment are also provided in Table 1.

Finally, we cross-referenced the 42,570 Sample A positives with ClinVar and Hot-

spots databases to see how many variants were potentially pathogenic and thus of great

consequence. From Additional file 1: Table S9, we see that Sample A contains at least

58 pathogenic variants (50 from ClinVar and 13 from Hotspots). Some of these variants

are well known such as the BRAF V600E variant and the NRAS G12C variant.

Variant allele frequencies of the individual Universal Human Reference cell lines and the

resulting pooled Sample A

VAF values of the identified variants within each cell line are an important characteris-

tic and play a primary role alongside of variant commonality between cell lines in de-

termining the resulting VAF in the pooled Sample A. Of tertiary importance is whether

Fig. 4 Illustration of considerations for determining positives and negatives within the reference material.
Each WES kit coverage is shown relative to their intersection with coding regions (Interval4), the high
confidence region, and the low complexity region. Also shown are known positive variant positions in
Sample A (mostly Class 1 variants SNVs) including one identified by a violet box that is outside the Interval4
and CTR regions (Class 2 variant). Other positions shown include known negative positions
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a particular variant in a cell line is in a region having large copy number deviations

from the normal diploid state. In theory, unshared variants in individual cell lines that

are heterozygous should result in a VAF of approximately 5% in pooled Sample A while

homozygous unshared (between cell lines) variants should result in a VAF of approxi-

mately 10% in A. From Fig. 5a, the observed VAF from pooled Sample A is in the range

of 0 to 20% where ~ 70% of the Class 1 and Class 2 variants are observed.

From the histogram, there is a notable overall mode around 5% but no local mode

around 10%. The likely reason for the lack of a local mode at 10% is that any germline

variant that is homozygous in one cell line is most likely a high frequency population

variant and therefore would likely be present in other members of the same population,

causing the resulting VAF in a pooled sample like Sample A to be greater than 10% de-

pending on the variant’s population frequency. The VAF distribution of normal Sample

B (Fig. 5b) reflects the hetero-homozygous dynamic that we expect as well as a nearly

total deficiency of variants that have VAF up to 40% or are between 60 and 95% due to

the (as expected) near absence of somatic point mutations and copy number variants.

While Fig. 5a provides the VAF distribution of all variants (Class 1 and Class 2), they

are dominated by the presence of Class 1 variants (> 99%). Additional file 2: Fig. S4

shows the distribution of the Class 2 variants in Sample A. Although the distributions

are similar, the Class 2 variants show a slightly smaller percentage of their variants hav-

ing VAF < 20% in Sample A (58% of all Class 2 variants vs. 66% overall). The histo-

grams of VAF of each individual cell line that constitutes Sample A are provided in

Additional file 2: Fig. S5a-j. One can see evidence of CNA in the VAF histograms for

most cell lines. Similarly, histograms of VAF of each individual cell line for Class 2 vari-

ants in Sample A are provided in Additional file 2: Fig. S5k-t.

We investigated the potential amount of bias in individual VAF estimates that may

be associated with each kit and may be a unique characteristic with certain variants.

Bias in VAF can arise from several factors: bait-hybridization bias, mapping errors and

bias in mapping towards the reference genome [36], and confusion in calling a multiple

nucleotide polymorphism or a complex multi-allelic polymorphism. To separate map-

ping and calling issues from bait biases, we ran several individual pipelines including a

compendium method (SomaticSeq) for each kit of pooled Sample A replicates as well

as in silico Sample A and merged-BAM Sample A (see “Methods” for details). In silico

Sample A for each enrichment kit was based on equal overall read depth by cell line of

BAM files accumulated across Sample A’s components and then calling variants based

on the 20× larger BAM (as each cell line had two replicate library results). Merged-

BAM Sample A was a merging of the three independent library sequencing BAMs (by

kit) and then calling variants on the roughly 3× larger BAM relative to an individual li-

brary BAM. In each case, either result helped overcome sampling variation and other

variation (such as variation in CN state across cell lines) to provide a less variable VAF

estimate for pooled Sample A. Additional file 2: Fig. S6 is a plot matrix that illustrates

the high level of concordance that the raw Sample A VAF average, in silico Sample A

and merged-BAM Sample A VAF estimates have with each other as well as across

WES kits. The correlation between and among kits for Sample A is equal to or exceeds

0.996 in all cases with the variation around the expected 45-degree line in the range of

0.05–0.10. We also observed a similar consistency across kits with correlation exceed-

ing 0.987 between any two distinct kits whether cell line averages, in silico or merged-

Jones et al. Genome Biology          (2021) 22:111 Page 11 of 38



BAM results. For final VAF values for binning purposes to evaluate panel performance,

we used merged-BAM estimates averaged across the kits (see “Methods” for more de-

tails). From Fig. S6, little differential bias appeared in VAF estimates between WES kits.

However, there are most likely common biases that exist for most capture-bait enrich-

ment techniques overall (see more details in the section Additional file 3: Bias in re-

ported WES allele frequencies).

In addition to concordance in VAF estimates across kits, we also observed

general concordance between kits in straightforward detection of the variants of

Fig. 5 a VAF histogram of Sample A variants (Class 1 and Class2) with the obvious large numbers of
variants in the low VAF range from 0.01 to 0.10. b VAF histogram of normal Sample B which can be used to
dilute variants from Sample A
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Sample A using only one bioinformatic pipeline: SomaticSeq. Additional file 2: Fig.

S7 illustrates the agreement among kits among variants in the CTR whether one

examines the Merged-BAM Sample A construct or the in silico Sample A from

Fig. 1. The vast majority (96%) of positives were detected in all three WES1-WES3

kits in both merged-BAM and in silico Sample A using the single pipeline. When

we examined the potential reasons for variants identified in only one or two kits,

we observed that undetected variants were typically from lower-depth libraries or

lower-depth ROIs from the library. Therefore, our conjecture is that one can iden-

tify the great majority (> 90%) and estimate the total number of potential positives

for a particular candidate reference sample using one kit with three independent li-

brary replicates of the pooled sample with sufficient depth combined with an ad-

vanced variant caller such as SomaticSeq.

We examined the variant and variant allele distributions by chromosome, by type

(Indel vs. SNV) and by VAF range. Additional file 1: Table S10 provides a general view

of the frequencies of identified indels vs. SNVs by chromosome and of how many vari-

ants by chromosome are in different VAF ranges: 1–2.5%, 2.5–5%, 5–10%, 10–20%,

20–50%, 50–100%. Some unusual characteristics of the cell lines that we perceived

from the table include the large number of low-frequency variants seen for chr11 and

chr16 compared to peers and the inordinately high number of variants in the 2.5–5%

range for chr19 in the TLY cell line.

Examination of data from individual cell lines allowed for identification of potential

issues such as cell line contamination, pooling errors, or pooling imbalances. In fact, in

the initial creation of DNA for cell line BLY, TLY was inadvertently admixed with BLY

in a 2:1 M ratio prior to the creation of pooled sample A and the admixtures C, D, and

E. The consortium recognized this admixture early on when analyzing the individual

cell line WES results. For example, we noticed the following relationships between the

TLY and BLY DNA samples received:

(a) The major copy number alterations (CNA) of TLY were also observed in the BLY

mixture (Additional file 2: Fig. S8)

(b) 95% of the detected variants including more than 1000 somatic variants in TLY

were also detected in the BLY mixture. We did not observe 100% detection as TLY

had many low allele frequency variants that, when diluted into BLY DNA, enabled

them to elude detection at study-related sequencing depths of individual cell lines.

This admixing implied that regions from the DNA initially labeled as BLY and

having variants unique to the original cell line of BLY would be underrepresented

in the pooled Sample A. Similarly, variant regions for variants unique to TLY

would be overrepresented, implying that variants unique to BLY and TLY would

not necessarily have a VAF in the pool equal to roughly 1/10 their frequency in

the individual cell line. However, due to sometimes large CN alterations in other

cell lines, this property was not unique to BLY and TLY. In the end, we deter-

mined that the pooled reference (Sample A) itself provided the best estimate of the

pooled VAF through direct interrogation as the pool naturally subsumes positional-

dependent depth variation across cell lines. As the final estimates of VAF for Sam-

ple A are based on the direct testing of Sample A itself, the inadvertent admixing
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of BLY and TLY when creating DNA for the BLY cell line had minimal final

impact.

Discussion
One primary challenge in oncopanel validation is to have appropriate reference samples

to gauge the true performance characteristics of a test. This evaluation must often

cover various aspects of performance that are beyond simple summaries of binary data

(detected/not detected). Panels themselves can range from testing a few thousand loci

to tens of millions. This variety creates complexity related to characterizing assay per-

formance as the LOD for a given analyte may be variable based on the locus and vari-

ant type. For example, it is well known that SNVs are easier to detect (higher recall/

sensitivity) than small indels, which in turn are easier to detect than larger indels re-

gardless of the VAF. Moreover, for each variant type, generally those variants having

higher VAF are easier to detect than those with smaller VAF. To address these require-

ments, organizations have often historically used bespoke mixtures of their own in-

house or artificially constructed specimens combined with limited publicly available

reference samples to develop, evaluate, and validate their DNA assays. However, the

custom nature of these samples outside of typical GMP-level manufacturing leads to

questions regarding reliability, bias, and stringency of the sample and the testing. We

believe that a proper reference sample from a vendor who has proficiency with building

these samples will improve the quality and trustworthiness of oncopanel testing in

general.

We recognized early in the process that the reproducibility of identified variants be-

tween pipelines for the same initial FASTQ data sets were greatly improved if we fo-

cused on high-confidence regions of the genomes. These high-confidence regions, also

known as benchmark regions, were determined by NIST efforts in sequencing the

Genome-In-A-Bottle (GIAB) germline reference specimens, which were some of the

first reference samples for validating methods when detecting germline or population

variants. Additional file 2: Fig. S9 illustrates the unexpected VAF of a large percentage

of putative variants in Sample B that replicate in a distinct run when using positions

outside of high-confidence regions. As Sample B is from normal tissue, there should be

minimal loci influenced by CN or somatic changes creating loci with VAF in ranges

outside of VAF = .5 and VAF = 1. When restricted to high-confidence regions like the

CTR, aberrant variants can constitute less than 1% of the total (whereas unrestricted

they may constitute more than 20% of the total). Therefore, we see that high-

confidence regions have a greatly reduced likelihood of false positive variant calls.

Lower confidence regions typically have one of the following characteristics: short re-

peat motifs, general low diversity or base complexity, or sequence similarity with other

regions of the genome. Calling variants with high accuracy and specificity in these more

challenging regions may require more than short-read technology. The technologies

utilized in our study were based on short reads as a primary backbone to achieve the

required depth for low allele frequency with reasonable cost. More importantly, short-

read technology is inherently compatible with liquid biopsy specimens which is charac-

teristically composed of small DNA fragments (~ 150b). Therefore, we restricted our

domain for the initial positive and negative variant set for Sample A to be within the

high-confidence human exome that was not of low complexity.
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While the consortium’s efforts have identified a reference sample with an unprece-

dented number of known positives in coding regions as well millions of negative loci in

one reference sample, the positive and negative set is not comprehensive and can be

enlarged in a variety of ways. For example, we did not examine introns and UTR re-

gions of genes even though a high percentage of the ROIs for various enrichment kits

have baits targeting these regions. There are well-known examples of important intron

and UTR variants, especially those variants impacting RNA editing or splicing [37].

One can also extend the identified variants in Sample A in COSMIC genes (and in

other genes) by possibly 50% by mining the lower confidence coding regions (high-con-

fidence regions are 63% of the bases of the human exome). However, one may need to

utilize longer-read technology at high depth with mostly intact DNA. We also initially

omitted examination of chromosome X and Y as mutations in these regions are fre-

quently more associated with developmental disorders and other non-cancerous dis-

eases even though some chrX genes are associated with cancer [38].

Some classes of variants are most likely underrepresented. In particular, the propor-

tion of identified indels to variants is only 1.3%, although this proportion is higher in

COSMIC genes, especially at low VAF. The SEQC2 Somatic Mutation Working Group

observed a 3× larger rate for indels [39] (4%) in their detailed analysis of a one breast

cancer cell line (HCC1395) and the GIAB consortium initially observed a 2.3% rate for

indels in NA12878 (a normal cell line) in the high-confidence regions of NA12878 (also

known as HG001). Still others have observed a much higher indel rate in whole exome

and whole genome analysis for other specimens (e.g., 12% [40], 13% [41]). However, it

is unclear how these ratios may differ considering high-confidence regions only. Al-

though we have identified more than 500 indels in Sample A, we recommend the Sam-

ple A reference be further investigated specifically for relevant indels, such as those in

COSMIC genes. Although relatively small in magnitude, indels are excellent phenom-

ena for challenging various mapping and variant calling methods. Therefore, expanding

the known indels in Sample A will provide a potentially less optimistically biased as-

sessment of the capability of panel assays in detecting indels in general.

Using hg19, the consortium identified 42,570 unique variants in pooled Sample A in

coding regions and 2432 (or 5% of the total) in COSMIC [42] Tier 1 and Tier 2 genes.

There are roughly 723 COSMIC Tier1 and Tier2 genes which is 3.4% of the total num-

ber of coding genes. The enrichment of identified variants in COSMIC genes is partly

due to our focus in finding Class 2 variants in COSMIC genes outside of the Interval4

region. In that effort, we identified 359 additional variants in COSMIC genes relative to

our initial Class 1 positive set. The Class 1 positives include 2073 variants from COS-

MIC genes which are 4.9% of the total of 42,211 variants in the Class 1 set. However,

the probable primary reason for COSMIC genes being enriched for variants is due to

selection bias in our reference sample (ten distinct cancer cell lines versus normal

cells).

The Sample A variant content compares favorably in magnitude and is complemen-

tary to other reference samples. As described previously, Table 2 provides a comparison

of the identified contents of Sample A versus Acrometrix and OncoSpan reference

samples by VAF range and by gene category (for COSMIC genes). For example, Sample

A contains at least one variant in 422 COSMIC Tier 1 genes, with 375 COSMIC Tier 1

genes having a variant at low frequency. By comparison, OncoSpan’s comparable values

Jones et al. Genome Biology          (2021) 22:111 Page 15 of 38



are 114 and 29 COSMIC Tier 1 genes respectively and Acrometrix’ comparable values

are 52 and 37 COSMIC Tier 1 genes respectfully (Note: Acrometrix can manipulate

their synthetic variants to be at lower VAF, if needed). Acrometrix concentrates their

variants into specific genes. For example, 145 of the 555 identified variants in Acrome-

trix are in four genes: TP53, PTEN, EGFR, and APC. However, only 42 of those 145

variants have a VAF less than 20% and all 42 variants with low VAF are in TP53 only.

That is, no variant in the standard Acrometrix controls for PTEN, EGFR, and APC has

a VAF less than 20% even though these three genes contain almost 20% of all identified

variants. In comparison, for the same genes, Sample A has less variants overall in these

four genes (31 vs. 145) than Acrometrix but over half of these Sample A variants have

a VAF less than 20%. Also, in Sample A, each of TP53, PTEN, EGFR, and APC have at

least one variant with a VAF less than 20%. OncoSpan’s identified variants are more

uniformly distributed over the OncoSpan gene set. However, OncoSpan’s relative con-

centration of variants is much lower than Sample A (0.2 variants per COSMIC Tier 1

gene for OncoSpan vs. 3.1 variants for Sample A). In short, all of these reference sam-

ples are useful when developing and validating panels. Acrometrix in particular with its

high proportion of variants concentrated in relatively few genes would be highly suited

for small fragment-based panels that overlap with its concentrated list (amplicon-based

panels may have challenges with the high concentration creating interference with

primers). OncoSpan and Sample A test variants in many more important COSMIC

genes. Sample A also tests variants throughout the human exome, averaging two vari-

ants for every gene and having 12,238 genes with at least one identified variant. Acro-

metrix and OncoSpan contents are focused on currently known actionable variants.

Sample A content, while containing many important and actionable variants, is more

designed for assessing analytical performance across a flexible target region for a wide

variety of potential genomic assays including clinical assays.

During the initial phase of discovering variants in Sample A, we examined data from

four different whole exome enrichment kits. When reviewing the sequenced data re-

sults, we realized that the data from the AmpliSeq WES4 panel was noticeably different

than the other three WES panels. In particular, the other panels tested technical repli-

cates for each cell lines while the WES4 results had only one singlet per cell line. The

WES4 results also had lower coverage per cell line which presented challenges in de-

tecting lower frequency variants in certain cell lines, especially the TLY and BLY cell

lines that had a higher concentration of variants at lower VAF values. We also had

many fewer pipeline outputs with WES4. Therefore, the WES4 results were used as an

independent confirmation of the positives derived from WES1-3 and WGS1 which all

used Illumina-based sequencing. We were successful in that 97.8% of the Sample A

positives having a VAF greater than 5% were detected by WES4. The gap is primarily

due to the lower depth of WES4 especially for BLY. However, we encourage the com-

munity to evaluate Sample A with other alternative sequencing technologies so that

omissions can be uncovered and any potential false positives, especially variants identi-

fied at the lower allele frequencies (less than 2%), can be identified.

The consortium made extensive use of the v3.3.2 NIST high confidence (benchmark)

regions from the ongoing GIAB project [2, 43, 44]. We examined the high-confidence

regions from five individuals: the female Caucasian (HG001), the Ashkenazim trio

(HG002-HG004), and the Chinese son (HG005) within a trio [2]. NIST has publicly
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provided well-annotated and defined high-confidence benchmark regions for detecting

small variants (SNVs and small Indels) for both hg19 and hg38 versions for their entire

genomes. We observed that the high-confidence regions for HG002-HG005 had greater

than 95% overlap (min X ∩ Y greater than 95% for X and Y ε HG002-HG005) for the

coding regions of the human genome. However, the high-confidence region for HG001

was noticeably different than the other four in terms of size: HG001 benchmark regions

were noticeably larger by 3–4% (even after excluding chrX regions exclusive to

HG001). Reasons for these differences are discussed in the section “NIST high-

confidence regions (v3.3.2 benchmarking regions)” in “Methods.”

We chose a more conservative approach for ground truth and created a common

high-confidence region based on overlapping regions of HG002, HG003, HG004, and

HG005 to serve as the basis for high-confidence regions for this initial release of posi-

tives and negatives. In addition, we excluded a small amount of low complexity regions

[32] overlapping with this more universal high-confidence region which served as the

basis for both Class1 and Class 2 variant detection. Although these benchmark sets

were developed for NIST sample-specific purposes, the consortium determined early

on that the reproducibility of variant calls in general was much greater within these

benchmark regions than outside. As we utilized the v3 NIST benchmark regions for

this release, it is more suited for use with panels employing shorter-read technologies.

As v4 benchmarks become available, this Sample A reference should be updated to be

more compatible with long-read methods [45].

From ddPCR analysis, we detected a small reference bias in the WES results. This

bias was largest in the middle of the dynamic range of variants measured in Sample A

[.01,1] and generally larger for indels than SNVs. We typically observed SNV VAF

values that were up to 7% relatively higher for ddPCR than that observed from the con-

sensus WES estimate. Indels could be as much as 15% relatively higher for ddPCR than

the WES estimate. For example, SNVs and indels observed at 10% VAF from WES

would typically be observed at 10.2 to 10.7% and 10.5 to 11.5% respectively from

ddPCR. Although this bias is rather small, it may have certain impacts for thresholding,

even at lower VAF thresholds when comparing results from orthogonal measurement

platforms. The bias can be most easily observed in Fig. 3a where biases in the indels

are clearly observable to the left relative to the other types of variants (especially near

VAF = .5 and 1). See Additional file 3: Supplementary information section “Bias in re-

ported WES allele frequencies” for more details.

When using a reference sample such as Sample A for cancer panel or liquid bi-

opsy performance evaluation as in companion efforts by the SEQC2 consortium

[46, 47], caution must be taken when performing the final evaluation. A large por-

tion of the low-frequency variants in Sample A originated as germline variants in

the original cell line. As some pipelines may automatically remove certain known

germline variants when identifying somatic changes, one may need to review fil-

tered results to properly account for putative false negatives. Otherwise, key met-

rics such as recall/sensitivity and precision may be greatly impacted. Likewise,

complex variants such as multi-allelic variants and multi-nucleotide variants

(MNVs) can pose challenges in both representation and proper assessment of per-

formance of solid tumor and liquid biopsy panels. Reference Sample A contains

both multi-allelic variants and MNVs. See the section “Complex variants including
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multi-allelic variants and multi-nucleotide variants (MNVs)” in “Methods” for a

more detailed discussion of these variant types in Sample A and techniques that

properly characterize them.

In addition, we implemented certain constraints to increase confidence in our nega-

tive positions as proving a negative is inherently difficult. Those constraints may omit

regions that are subject to systematic errors in targeted sequencing thereby potentially

causing an underestimate in the true false positive rate when using Sample A alone and

its identified negatives. Additional orthogonal sequencing technologies can potentially

be used to further expand the set of negative variant loci of Sample A so that system-

atic errors related to a particular technology or genomic region are not hidden. Com-

plementary alternative methods to estimating the false positive rate indirectly include

assessing the rate of low VAF loci in known normal cells (something that should not

exist). This method be unbiased relative to systematic sequencing errors that could

have biased our negative set for Sample A.

Reference samples or reference DNA are ideally produced using a large pool of such

DNA at one time so that aliquots will be a homogeneous and consistent resource for

several years. This was done for this study and this key practice has important ramifica-

tions. The cancer cell lines that constitute Sample A already have chromosomal remod-

eling and significant copy number alterations (CNA). As the cell lines go through

additional passages, more alterations and new variants could be reasonably expected.

Therefore, each new iteration of the resulting large DNA reference sample pool should

be thoroughly assayed to monitor and quantify changes, which will invariably occur

given the magnitude of relevant variants having low VAF in the reference Sample A.

Due to the different ploidies that occur within and between each cancer cell line, the

pooled Sample A is not as suitable a reference sample for detecting CN alterations,

even at the ploidy level. As we do not propose Sample A for this purpose, given the

creation of a large pool of DNA with verified variants, the main impact of variations in

ploidy levels are corresponding variations in observed depth levels of Sample A. How-

ever, the “natural” variation in the resulting library due to enrichment bait bias impacts

coverage depths in the final pool more noticeably in general than ploidy-level changes

in individual cell lines. Therefore, ploidy variation in the individual cell lines create no

worse variation in overall read depths in Sample A than what is already occurring due

to the nature of the bait-based WES assays (based on comparing the distribution of

read depths in variants common between the normal Sample B which only has bait bias

impacting local depth and Sample A which has both bait bias and ploidy variation—

data not shown). So long as new iterations of the cell lines and Sample A are properly

tested, we see no issue in updating the variant information for each iteration.

Conclusions
We have reported efforts by the SEQC2 consortium Onco-panel Sequencing Working

Group to address urgent needs in the regulatory science and precision medicine com-

munities regarding genomics reference samples. NGS is rapidly changing clinical care

in oncology, drug development, and regulatory science. The 21st Century Cures Act

sought to catalyze the development of new medical technologies when fundamental ad-

vances in our understandings of the genetic basis of disease and advances in medical

technology are allowing significant progress on previously vexing conditions.
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The two reference samples (Sample A and B) described in this document have an un-

precedented number of known positive variants and known negative loci down to a 1%

VAF. In particular, we have identified 42,570 distinct positive variants and greater than

10,000,000 negative loci in human exome coding regions. In reference Sample A, we

have identified 1653 variants in COSMIC genes with VAF between 1 and 20%, implying

on average more than two positive low allele frequency variants per COSMIC gene.

Sample A has, to our knowledge, the largest number of identified positive variants in

COSMIC genes: ~ 5-fold as many as the Acrometrix control, ~ 40-fold as much as

OncoSpan, 100-fold the amount in HCC1395) having low variant allele frequency

values [1–20%] for one reference specimen.

When combined with the normal Sample B reference genomic background or similar,

one can create a new reference sample that has ever decreasing lower ranges of VAF

for validating highly sensitive cancer panels or liquid biopsy assays. The Sample A and

B content verification utilized four different WES library prep methods having very

high levels of concordance. The study also used WGS to enrich known positives in

COSMIC genes which were not in common ROIs to all kits. The methods and results

were verified with ddPCR across a wide range of variant characteristics (low VAF, diffi-

cult indels, random SNVs, and VAF influenced by CNA).

Initially, the consortium utilized a wide range of bioinformatic methods to ascertain

the relevant content of the candidate reference samples. We subsequently determined

that the consortium-wide bioinformatic effort could be greatly reproduced by imple-

menting a single high-quality pipeline (such as SomaticSeq) with fewer (two or three)

enrichment kits, but requiring duplicate libraries of sufficient quality, complexity, and

depth. Similarly, duplicate libraries from a small number of enrichment kits can moni-

tor any drift in the cell lines and reference sample to provide quality assurance for fu-

ture batches.

Methods
Library preparation and sequencing of cell lines and Sample A with WES1 (Roche) and

WES2 (IDT) exome kits performed at University of Texas Southwestern Medical Center

and Novogene

All genomic DNA samples were provided by Agilent (Agilent Technologies). Whole ex-

ome sequencing libraries were constructed using KAPA Hyper Prep kit (Kapa Biosys-

tems) and Roche NimbleGen SeqCap EZ hybridization and wash kit (Roche

Sequencing Solutions), or Next Ultra II DNA Library Prep kit for Illumina (New Eng-

land Biolabs) and IDT xGen hybridization and wash kit (Integrated DNA technologies,

Inc.) according to the manufacturers’ instructions. Briefly, genomic DNA was sheared

to an average fragment size of 200 bp or 300 bp on Covaris S220 (Covaris). Ten nano-

grams, for 10 UHR cell lines and Sample B in duplicate, or 100 ng for Sample A in trip-

licate, of fragmented DNA, was used as input for the library preparation. Samples were

sequentially end-repaired, A-tailed, and adapter-ligated. The libraries were then sub-

jected to minimal PCR cycling and quantified with Agilent DNA 1000 assay. One

microgram of each sample library was hybridized with WES1 and 500 ng of each sam-

ple library with WES2. The hybridized probe-target complexes were captured with

streptavidin beads and washed to remove non-targeted DNA. Captured libraries were
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amplified by PCR, and the quality of the libraries was validated by Agilent high sensitiv-

ity DNA assay and quantitative PCR. The libraries from each panel were pooled in

equimolar amounts and subjected to 150-bppaired-end sequencing (PE150) at Novo-

gene on an Illumina HiSeq 4000 for the cell line libraries and on an Illumina HiSeq X

Ten for Sample A libraries.

Library preparation and sequencing of cell lines and Sample A with WES3 (Agilent

SureSelect) exome kits performed at Q2 Solutions/EA Genomics and Novogene

Genomic DNA libraries from individual cell lines blended in Sample A and the final

pooled sample were constructed in duplicate for individual cell lines and in triplicate

for Sample A according to the SureSelectXT Target Enrichment System for Illumina

Paired-End Multiplexed Sequencing workflow at EA Genomics with additional automa-

tion protocol modifications as described elsewhere [48]. In brief, 200 ng of each cell line

high molecular weight genomic DNA was sonicated in a 50 μl total volume in a Covaris

E220 instrument to a mean size of 150 bp (Duty Factor: 10%, Peak Incident Power: 175,

Cycles per Burst: 200, Treatment Time: 2 × 180 s, Bath Temperature: 2° to 8 °C). DNA

fragments were then end-repaired and A-tailed, followed by ligation to XT adaptors for

15 min at 20 °C. Adapter-ligated fragments were amplified by PCR in a 50 μl total vol-

ume with Herculase II Fusion DNA Polymerase under the following conditions: 2 min

at 98 °C (initial denaturation), 10 cycle amplification of 30 s at 98 °C, 30 s at 65 °C, 1

min at 72 °C, and 10min at 72 °C (final extension). Library quality control (concentra-

tion and size distribution) was then assessed using a Picogreen assay and the 2200

TapeStation with D1000 screen tape. In total, 750 ng of prepared gDNA libraries was

then hybridized to SureSelect Human All Exon V6 biotinylated RNA probes for 24 h at

65 °C and captured with Dynabeads MyOne Streptavidin T1 beads. SureSelect enriched

gDNA libraries were PCR amplified and indexed using on-bead protocol in a 50 μl total

volume with Herculase II Fusion DNA Polymerase under the following conditions: 2

min at 98 °C (initial denaturation), 11 cycles of 30 s at 98 °C, 30 s at 57 °C, 1 min at

72 °C (amplification), and 10 min at 72 °C (final extension), followed by 4 °C hold. All

DNA purifications between steps were performed with AMPure XP beads as indicated

in the user manual. Post-capture library quantification was done using qPCR and frag-

ment size distribution determined by HSD1000 screen tape assay on TapeStation 2200.

Indexed libraries were finally pooled and sequenced on either an Illumina HiSeq 2500

or HiSeq X Ten instrument. Individual cell lines were sequenced at EA Genomics to a

200× on-target mean read depth after deduplication on HiSeq 2500 instruments in

high-output mode with V4 sequencing reagents using a 2 × 100 bp paired-end protocol

(Q30 scores ≥ 80%). Pooled Sample A libraries with 200 ng of input were sequenced at

Novogene on a HiSeq X Ten-PE150 with standard workflow (post-deduplication target

depth of 270×, 417×, and 583× using a 2 × 150bp paired-end protocol (Q30 scores ≥

75%).

Library preparation and sequencing of cell lines with WES4 (Thermo Fisher AmpliSeq)

kits performed at Thermo Fisher

The Ion AmpliSeq™ Exome Panel [49] was utilized to generate libraries for next-

generation sequencing on the Ion Torrent S5 platform. The panel contains 293,903
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amplicons in 12 pools. This assay enables analysis of variants across > 97% of the Con-

sensus Coding Sequences (CCDS). Eleven DNA samples (10 human cell lines and one

human reference gDNA) were used to prepare libraries with a mean insert size of 215

bp. Exome libraries were generated following the manufacturer’s instructions in the Ion

AmpliSeq Exome RDY Library Preparation User Guide [50] with 100 ng input for each

sample. Each sample was assigned a distinct IonCode barcode [51]. Each barcoded li-

brary was diluted to 30 pM for template preparation on the Ion Chef™ Instrument using

the Ion 540™ Kit-Chef [52]. Sequencing was performed with the Ion S5™ XL System

[53] and the Ion 540™ Chip [54].

Signal processing and base calling were performed using Torrent Suite Software v5.4

using default parameters for the AmpliSeq Exome assay. The signal processing step

consists of modeling the pH dynamics on the semiconductor surface taking account of

the varying local pH in each individual sensor coming from the different reagent flows

across the chip and from any nucleotide incorporation that may be happening over

each sensor [55]. The base calling step consists of taking the estimated levels of nucleo-

tide incorporation for each read and each nucleotide flow and modeling the de-phasing

process whereby some templates within each clonally amplified population run ahead

or behind in terms of their nucleotide incorporation. During the base calling process,

sample-specific barcodes and 3′ adapters are annotated.

Library preparation and sequencing of WGS1 with 10X Genomics performed at Cornell

University and data analysis at National Heart Lung and Blood Institute

Samples were shipped on dry ice to the HudsonAlpha Institute. Sample aliquots were

profiled for QC on a 0.4% agarose gel with ErBr, run at 58 V for 1.75 h. Libraries of

each sample were synthesized using the 10X Genomics Chromium Genome kit accord-

ing to the manufacturer protocol. Each library was sequenced on one lane of an Illu-

mina HiSeqX. Raw sequence data was demultiplexed and converted to barcode and

read data FASTQ files using 10X Genomics Long Ranger mkfastq version 2.2.1. Align-

ment, deduplication, filtering, and subsequent calling and phasing of SNPs, indels, and

structural variants was achieved for each sample using Long Ranger wgs version 2.2.2,

against both hg19 and GRCh38 reference human genomes retrieved from the 10X Gen-

omics Long Ranger downloader website. Both GATK and FreeBayes variant callers

were employed using Long Ranger alignments for WGS variant analysis.

Agilent analysis of WES3

Each sample was demultiplexed using bcl2fastq with the base mask Y150, I8, Y10,

Y150, and all default settings except for mask-short-adapter-reads, which was set to 0.

Adapters were trimmed using AGeNT Trimmer (Agilent). All data was aligned to the

hg19 reference genome using bwa-mem [29] v1.7.10 with default settings. Quality con-

trol was performed using Picard tools and an internally developed pipeline. Deduplica-

tion was performed with Picard [56] MarkDuplicatesWithMateCigar v2.9.2 with default

settings except for a minimum distance of 500.

Variant calls were done as follows. SureCall v3.5.1.46 (Agilent) was run starting from

aligned files with default settings with two exceptions: the ‘minimum number of reads

supporting variant allele’ was set to 3 and the ‘minimum allele frequency’ value was
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reduced to .001. Samtools calls were completed using samtools [24] v1.3.1 and bcftools

[57] v1.3.1, with commands of the form ‘samtools mpileup -d 8000 -uvf $REF_FASTA

$BAM_FILE | bcftools call -mv | bcftools view -O v’. Platypus calls were completed

using platypus [23] v0.8.1 and using default settings. GATK [58] Unified Genotyper

v2.2–3 were run with default settings, except the filter filterMBQ was applied and

dbSNP v147 was used as a reference.

Roche analysis of WES1, WES2, and WES3

The FASTQ files from the WES1 dataset are quality checked with FastQC [59] to en-

sure the sequencing quality. Adapters were trimmed using AlienTrimmer [60]. The

reads were then mapped to reference genome hg38 and hg19 with bwa-mem [29]

(v0.7.12 (RSSMSN01-RSSMSN04)). Samtools [24] fixmate tool was applied to correct

any read-pairing issues that may be introduced by bwa. Duplicated reads were marked

with Picard [56] MarkDuplicates, and base quality score was recalibrated with GATK

[58] BaseRecalibrator and ApplyBQSR. The processed BAM files were then supplied to

four variant callers, i.e., GATK mutect2 (v2.1-beta/v 4.0 alpha), Vardict (v1.5.1), sam-

tools mpileup (v1.2), and Sentieon TNscope [25] (201,704.03).

For the WES1, WES2 and WES3 datasets run with the RSSMSN05 and RSSMSN06

pipelines, a similar analysis was performed, but the mapping step to hg38 was done

with bwa-mem [29] (v0.7.17). The processed BAM files were supplied to GATK [58]

mutect2 (v 4.0.6.0) using default settings and GATK HaplotypeCaller (v 4.0.6.0) for

variant calling.

National Center for Toxicological Research (NCTR) analysis of WES1, WES2, and WES3

The NCTR team’s pipelines were applied on WES1, WES2, and WES3 datasets. Refer-

ence genomes were downloaded from Illumina iGenomes website for both hg19 and

hg38 version. Reads were aligned with BWA-MEM [29] (v0.7.12-r1039) and Bowtie2

[31] (v2.3.2). Duplicate reads were marked using Picard [56] (v2.7.1) MarkDuplicates

function. The reads were then local realigned around small insertions and deletions

(indels) and base quality scores were recalibrated using GATK [58] (v3.6-0-g89b7209).

dbSNP (b150) was supplied to GATK for indel realignment and quality score recalibra-

tion. GATK’s default downsampling option was suspended by setting “--downsam-

pling_type NONE.” Variants were called with FreeBayes [21] (v1.1.0-46-g8d2b3a0) and

VarScan2 [61] (v2.4.0) with their default settings.

National Institute for Environmental Health Sciences (NIEHS) analysis of WES1, WES2, and

WES3

The NIEHS team’s pipeline was applied to WES1, WES2, and WES3 datasets. Raw data

from the FASTQ files was preprocessed with cutadapt [62] (v. 1.12) by removing the

sequencing adapter and low quality read (Q20), then was aligned to human reference

genome (hg19) with BWA-MEM [29] (v0.7.15-r1140) with default parameters (bwa

mem -M -t 4 -a -V -T 60 -p). The alignment was post-processed with Picard [56]

(v2.9.1) by removing the duplication, then bam files for each tissue were merged (by ex-

ome capture vendor platform library). All three batches of whole exome sequencing

alignments have gone through an in-houseEnsemble-Variant-Calling pipeline, which

Jones et al. Genome Biology          (2021) 22:111 Page 22 of 38



contains Samtools [24] (v1.3.1.), Mutect1 [22] (v1.1.4), and VarScan2 [61] (v2.4.3), and

the calling was done with default recommended parameters. Whenever the reference

genome was needed for variant calling, hg19 was used for WES1, WES2, and WES3.

Human SNPs obtained from dbSNP v.146 were used in the variant calling to mask

germline variants. Somatic variants were reported according to each exome capture

platform vender’s recommended filtering criteria and in conjunction with a minimum

read depth of 20.

Instituto de Genetica Medica y Molecular (INGEMM) analysis of WES1

The INGEMM team’s pipeline follows best practices of GATK version 3.3–0. First, the

FASTQ files were preprocessed with trimommatic [63] v0.32. Then, the filtered se-

quences were mapped to the UCSC human reference genome hg19 (version February

2009) with Bowtie2 [31]. Duplicate reads were removed using Picard [56] RemoveDu-

plicated function. Indel realignment and base quality score recalibration was performed

afterwards (RealignerTargetCreator and IndelRealigner functions from the suite GATK

[58]). Variant calling was performed over the realigned and recalibrated BAM files. The

variants characterized were the result of in-house consensus criteria between the out-

puts of the GATK variant callers UnifiedGenotyper and HaplotypeCaller. The consen-

sus VCF files were filtered and annotated with Annovar [64]. In addition, the vcf file

was enriched with prediction tools of pathogenicity provided by the proxy dbNSFP [65]

(v3.0) together with population data (Exac Non-Finnish European data [66], clinical

and genomic information).

The quality of library amplification and the sequencing procedure was assessed by a

range of markers such as the percentage of mapped reads, the percentage of mapped

reads in the region of interest (ROI), the percentage of duplicated reads, and the per-

centage of ROI over a depth of 20× (i.e., horizontal coverage). Also, the final efficiency

of each sample was measured by the ratio of the sequences that are able for variant de-

termination and the initial number of mapped reads.

Finally, the mean depth and the horizontal coverage together with a set of markers

was evaluated to establish if the samples were suitable for the study. For that, each sam-

ple was flagged with any of the three statuses: Ok, warning, or rejection.

Q2 solutions/EA genomics analysis of WES1, WES2, and WES3

WES1, WES2, and WES3 for individual cell lines were aligned with BWA-MEM [29]

(v0.7.10) using hg19 reference sequence and local alignment was done with ABRA [67]

(v0.94). Alignment was replicates for hg38 but for WES1 only. Deduplication was per-

formed with Picard [56] (v1.140). Variants were called with VarDict [26] (v1.5.1) and

Sentieon [68] TNscope (v201704) (http://www.sentieon.com/). Similarly, variants were

called on Sample A using the same methods. Separately, WES3 cell line variants were

also called for hg19 only with GATK HaplotypeCaller (v3.6–0). All results were output

as VCF (v4.2). In addition, for some analyses, CNAs were called for WES3 with Covit

(in-house tool) and CNV Radar [69] (in-house tool).
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Fondazione Bruno Kessler (FBK) analysis of WES2

Multiple lanes of the same replicate were merged into a single FASTQ file before read

trimming with SeqPurge [70] (version 0.1-886-gf72a054) and alignment on hg19 with

HISAT2 [71] (v2.0.4). At each analysis step, FastQC [59] (v0.11.5) was used to check for

quality and processing progress. Variants were called using Platypus [23] (v0.8.1). We note

that duplicate reads were not removed prior to variant calling, as Platypus directly dedu-

plicates BAM files during the calling process. BCFtools [57] (v1.9-207-g2299ab6) was used

for variant annotation, filtering and selection. tabix (v1.6) and RTGtools [72] (v3.8.4) were

used to manipulate the VCF files and compute basic statistics.

University of Fudan analysis of WES1, WES2, and WES3

Reference genome hg38 was used for all work. Reads were mapped with BWA [29]

(v0.7.12-r1039). Variants were called with Sentieon Haplotyper (v201611.02). CNV esti-

mation from WGS data was done with Breakdancer [73] (v1.1), CNVnator [74] (v0.3.3),

Delly2 [75], DWAC-Seq(v0.7), GenomeSTRiP [76] (v2.0), Meerkat [77](v0.189),

MetaSV [78] (v0.5.2), read depth (v0.9.8.4), svclassify [79], and Pindel [80] (v0.2.0).

CNV estimation for the WES datasets was performed with CNVkit [81] (v0.8.5),

CODEX [82] (v1.6.0), CopywriteR [83] (v2.6.0), DeAnnCNV [84], EXCAVATOR2 [85]

(v1.1.2), ExomeDepth [86] (v1.1.10), GATK [58] 4 Alpha, RefCNV [87], SAAS-CNV

[88] (v0.3.4), and VarScan2 [61] (v2.4.2). All results were output as VCF files.

Thermo Fisher analysis of WES4

After completion of primary analysis with Torrent Suite [89] v5.4, reads were uploaded

to Ion Reporter [90] v5.6 for subsequent processing. Reads were aligned with tmap

[91], which uses the BWA fastmap routine to map reads and applies post-processing of

the alignments to optimize for technology-specific error patterns. After alignment, vari-

ant calling was performed with Torrent Variant Caller (TVC) [92], a variant calling

framework optimized for Ion Torrent data. TVC takes as input the aligned reads and

uses a modified version of Freebayes to generate a very permissive list of candidate de

novo alleles to be evaluated. The de novo alleles are evaluated in a statistical likelihood

model that compares the observed flow signals for all of the aligned reads with the flow

signals that would be expected under reference and non-reference hypotheses. The use

of flow signals leads to significant improvements in variant calling compared to variant

calling approaches that rely on base calls alone. At each position evaluated, the poster-

ior likelihood of each evaluated allele’s frequency is assessed to determine if the null hy-

pothesis that the allele frequency is less than or equal to a particular threshold can be

rejected. Finally, a series of post-calling filters are applied to variant calls to filter out

situations where the statistical model of flow signals is not a good fit for the observed

data, and to eliminate potential artifacts where a variant appears on only one strand in

regions with coverage on both strands, or in only one amplicon in regions where more

than one amplicon spans the variant.

CN analysis of individual cell lines

The CN analysis of individual cell lines to assess the level of chromosomal alterations

individual cell lines was performed using the GenetiSure Cancer Research CHG + SNP
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microarray. Another method used WES3 VAF and relative depth profile data (WES3

had highest average depth of the WES kits) to illustrate certain ploidy-level characteris-

tics of specific cell lines as shown in Additional file 2: Fig. S3.

The GenetiSure Cancer Research CGH + SNP Microarray, 2 × 400 K (Agilent,

G5975A), used in this study contains approximately 300,000 CGH probes and 120,000

SNP probes. Many of CGH probes are targeted to cancer regions of the genome with

median CGH probe spacing of 10 kb in the targeted cancer regions. CN changes (am-

plifications and deletions) are measured using three or more CGH probes for almost

90% of the covered exons, providing resolution down to the single exon level. Percent

of CNAs in each individual UHR cell line was estimated using the CytoGenomics soft-

ware v 4.0.

DNA samples were prepared using the SureTaq complete DNA labeling kit (Agilent,

PN 5190-4240) as described in the Agilent Oligonucleotide Array-Based CGH for Gen-

omic DNA Analysis Protocol (Version 7.5 June 2016). One microgram of each DNA

sample was enzymatically digested and then labeled with Cy5 or Cy3 dyes. Ten individ-

ual UHR DNA samples labeled with Cy5 were hybridized against sex-matched refer-

ence samples labeled with Cy3. Samples were hybridized to the GenetiSure Cancer

Research CGH + SNP Microarray, 2 × 400 K for 40 h at 67 °C, then washed, scanned

using the SureScan scanner, and analyzed using the CytoGenomics software v 4.0.

QC analysis of the Sample A individual libraries

FastQC [59] v0.11.6 was used to determine the quality of the demultiplexed FASTQ

files. Each sample in each lane was downsampled to 120 million read pairs using SeqTK

v1.0 and mapped using bwa-mem [29] v0.7.15 with default parameters. Reads from 5

different lanes were merged using Picard [56] v2.9.0 MergeSamFiles. To assess the li-

brary size and percent duplication, duplicates reads were identified with Picard v2.9.0

MarkDuplicates. Duplicate marked BAM files were used to evaluate target enrichment

using Picard v2.9.0 HsMetrics.

In silico Sample A methods (confirmation)

For each WES kit, we prepared the in silico Sample A by combining reads from all cell

lines. For each cell line replicate, we aligned and marked the duplicated reads using Pic-

ard [56] MarkDuplicates. Then, we mixed the deduplicated alignments of all cell line

replicates, followed by GATK [58] IndelRealigner and Base Quality Score Recalibration

(BQSR) steps on the mixed alignment for the derived in silico Sample A. We then used

SomaticSeq [28] in tumor-only mode to combine somatic mutation predictions from

six individual somatic mutation callers, Strelka2 [93], MuTect2 [94], VarScan2 [61],

VarDict [26], LoFreq [95], and Scalpel [96] on this sample. Scalpel only detects INDELs

and the other five callers detect both SNVs and INDELs. Mutations with ≥ 3 supports

were included in the final output. The VAF for the reported calls are computed using

the minimum mapping quality of 1 and the minimum base quality of 5.

Merged-BAM Sample A methods (confirmation)

For each WES kit, we prepared the merged-BAM Sample A by combining aligned reads

from different libraries of pooled Sample A. Each pooled Sample A library was aligned
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and deduplicated separately using Picard [56] MarkDuplicates. Then, we mixed the

deduplicated alignments, followed by GATK [58] IndelRealigner and BQSR steps on

the mixed alignment to obtain the merged library A alignment. Using SomaticSeq [28]

in tumor-only mode, we then combined predictions from six individual somatic muta-

tion callers, Strelka2 [93], MuTect2 [94], VarScan2 [61], VarDict [26], LoFreq [95], and

Scalpel [96] on this merged library. Scalpel only detects INDELs and the other five cal-

lers detect both SNVs and INDELs. Mutations with ≥ 3 supports were used for assess-

ment. The VAF for the reported calls are computed using the minimum mapping

quality of 1 and the minimum base quality of 5.

NIST high-confidence regions (v3.3.2 benchmark regions)

As described in the main text, NIST has, through their Genome-in-a-bottle (GIAB)

program, made available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ variants

and high-confidence genomic calling regions for (at the time) five distinct persons.

High confidence for GIAB samples was achieved by several methods, of which the ini-

tial primary results were from determining consensus among distinct library preps (in-

cluding 10X Chromium preps), sequencing, (e.g., sequencing platforms typically

involved Illumina, Ion Torrent, and SOLID), and variant calling methods. The genome

HG001 (aka NA12878), had additional data from more sequencing platforms and add-

itional review to identify extended regions from the initial consensus for what was

viewed as “high-confidence” calls for that genome. Due to this special case of additional

data and review of the high-confidence regions, the SEQC2 consortium instead exam-

ined the high-confidence regions for HG002, HG003, HG004, and HG005 (all v3.3.2)

and their overlap for hg19 and hg38, respectively. The overlap in high-confidence re-

gions between any pair of this set was greater than 95% while the overlap in high confi-

dence of any member of the set with HG001 was usually less than 91% of HG001 due

to its much larger size and that HG001 includes chrX while the others did not. The

final region selected as the high-confidence region for this study for the individual cell

lines and their mixture was the intersection of the high-confidence regions of HG002-

HG005. Although we performed parallel discovery and validation for hg19 and hg38,

the positives are primarily determined using the high-confidence region of hg19 as

hg38 is noticeably smaller in size.

Human exome

Human genome annotation files were downloaded from Ensembl FTP site. For hg19,

gtf file was downloaded on August 23, 2017 from ftp://ftp.ensembl.org/pub/release-75/

gtf/homo_sapiens /Homo_sapiens.GRCh37.75.gtf.gz. For hg38, gff3 file was downloaded

from ftp://ftp.ensembl.org/pub/ release-97/gtf/homo_sapiens/Homo_sapiens.GRCh38.

97.gtf.gz on September 22, 2019. The exon regions of major chromosomes (chr1-22,

chrX, chrY, and chrM) were extracted and saved as BED files for both versions

accordingly.

Human coding regions

Human coding regions were downloaded from UCSC. In UCSC Table Browser, we

chose “Feb. 2009 (GRCh37/hg19)” for assembly, “Genes and Gene Predictions” for
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group, “NCBI RefSeq” for track, and “UCSC RefSeq (refGene)” for table. We chose

“BED” as the output format and then clicked “get output”. We chose “Coding Exons”

and clicked “get BED.” We performed the same procedure for hg38. The Coding BED

file for hg19 was retrieved on August 23, 2017, and the hg38 version was retrieved on

September 22, 2019. Both files can be downloaded from our data repository [97] at fig-

share. To further restrict the human coding regions, we only took the intersection be-

tween UCSC Coding regions and the Ensembl Exon regions.

Low complexity regions

Low complexity regions were identified using an implementation of sdust [32] from

https://github.com/lh3/minimap2, utilizing default parameters (-w 64 -t 20). The entire

hg19 or hg38 genome file was processed to produce a bed file. Low complexity regions

which overlapped with Ensembl Exon regions (GRCh37-75 for hg19 and GRCh38-97

for hg38) were extracted using bedtools [98] intersect. 5-nt was padded to both ends of

each interval.

Consensus target region

The consensus target region (CTR) [97] is primarily defined by the intersection of (i)

the Interval4 regions, (ii) the human coding regions, and (iii) the NIST high-confidence

regions. Interval4 is simply the intersection of the targeted design regions for WES1–4.

CTR was generated for both hg19 and hg38. The targeted regions for WES1, which

were designed in hg38, were lifted over to hg19 using the UCSC LiftOver tool. The tar-

geted regions for WES2–4, which were designed in hg19, were lifted over to hg38. Fi-

nally, the low complexity regions were excluded. The size of CTR is 22,694,348 in hg19

and 21,710,990 in hg38 and shown in comparison to other regions of interest in Add-

itional fie1; Table S2.

Rules for determining Class 1 positive variants (by each genome version)

There were a diversity of variant calling pipelines used by members of the SEQC con-

sortium. We asked the bioinformaticians of each organization to develop their pre-

ferred pipelines with their best expertise to call variants on their selected WES and

WGS datasets. For WES datasets, there were twenty-two pipelines developed by nine

teams as shown in Additional file 1: Table S3. All teams selected certain WES datasets

for which they had their best experience. Each WES1–3 dataset was analyzed by seven

to fourteen different pipelines on either reference genome versions. All teams selected

certain WES datasets for which they had their best experience. Each WES1–3 dataset

was analyzed by seven to fourteen different pipelines on either reference genome

versions.

The freedom of choice of datasets, reference genome versions, mappers, and callers

as well as parameters and filters created diversity and resulted in marginal to signifi-

cantly different results between variant calling pipelines on the same input data. We in-

vestigated the similarity of the pipeline-library combinations (PLCs) in terms of variant

calling on the individual UHR cell lines. The results did not fall into simple patterns.

Many PLCs provided quite similar variant calls while outlier pipelines were also

detected.
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To achieve consensus, we defined a Class 1 positive variant as having at least half of

the PLCs call the variant with alternative allele frequency (VAF) no less than 10% on

the same cell line for each of WES1–3. The variant list for each cell line was then

pooled together across the cell lines by kit to generate a non-redundant list of variants

for the pooled Sample A by kit. We then took the intersection of the non-redundant

variants called for each of WES1, WES2, and WES3 to compose the Class 1 list of vari-

ants, which are defined as known positives in this study. We also considered the region

for which we would define the Class 1 variants. Only variants called within the CTR

were termed as Class 1 known positives. We performed this procedure for hg19 then

conducted a liftover for mapping to hg38 genome positions.

The Class 1 positives are not a complete list of variants for pooled Sample A. How-

ever, given (i) the large sequencing depth, (ii) only variants with VAF ≥ 10% were con-

sidered by cell line, (iii) the variants were selected by voting with multiple PLCs with

diversity of callers and also agreed among three WES datasets, and (iv) a random sam-

ple of 114 (including 33 at VAF < 5%) of these variants were 100% orthogonally verified

by ddPCR, we consider the Class 1 variants to be known positives.

Rules for determining Class 2 positive variants

Variants from WGS 10X Chromium libraries of individual cell lines were examined in

high-confidence coding regions of COSMIC genes but outside of CTR regions that in-

cludes common design coding regions to all WES kits utilized in this study. If the same

variant was called by two different WGS variant callers (Freebayes and GATK) and was

called by SomaticSeq from two different WES kits in the same cell line, then the variant

was categorized as a Class 2 positive variant. The magnitude of the Class 2 positives

was much smaller (by two orders of magnitude) than those of the Class 1 positives

(359 vs. 42,211). This is primarily due to Class 2 positives being restricted to COSMIC

genes and from the WES kits having highly overlapping target regions, which exclude

these loci from being considered as a Class 2 variant. However, the number of Class 2

positives in COSMIC genes with VAF < 20% (210) is more than 10% of the identified

total positives with VAF < 20% in COSMIC genes (1653).

Complex variants including multi-allelic variants and multi-nucleotide variants (MNVs)

Particular attention should be paid to complex variants as there is typically variability

in the manner in which they are documented. For example, we detected 32 loci that

had distinct alternative alleles between various cell lines. When pooled into Sample A,

these will appear as multi-allelic variants. For simplicity for analytical performance cal-

culations and given the small magnitude of these variants, they were removed from our

official positive variant list. However, we are quite confident in our assessment that

these 32 loci are multi-allelic in Sample A and those 32 loci (64 variants) are provided

in Additional file 1: Table S11. In addition to multi-allelic variants, we have also docu-

mented certain SNVs/indels in phase with other SNVs/indels which could be properly

termed MNVs. Our list of positives includes over 200 dinucleotide and some trinucleo-

tide positions that can more properly be termed as MNVs as well as other potential

MNVs.
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When evaluating the performance of cancer panels, it is important that proper guide-

lines and tools be used relative to the known content of complex reference samples

[99]. We recommend using tools such as RTG vcfeval when reviewing panel results

with Sample A positives to resolve the ambiguities with multiple representation of vari-

ants so that false positive and false negatives are best characterized.

Rules for determining known negative variant positions

In addition to known positives, we also determined a set of negative positions. The total

read depth (DP), reference allele depth (RDP) and alternative allele depth (ADP) were

counted with the samtools [24] (v1.9) mpileup function at each position. Positions with

DP < 50 in one library were removed. DP and RDP of the two libraries for each cell line

were summed together and the reference allele frequency (RF), alternative allele fre-

quency (AF) recalculated. We then applied filters by merged DP ≥ 125 and recalculated

RF ≥ 99%. A simple averaged RF of the ten cell lines was calculated and filtered by aver-

age RF ≥ 99.5%. We only considered negative positions inside the CTR (which is a sub-

set of the intersection of the coding target regions for the WES1–3) as used for the

Class 1 positives. We did this procedure for both genome versions hg19 and hg38. We

then lifted over the hg19 version to hg38 (noted “hg19ToHg38”) and hg38 version to

hg19 (noted “hg38ToHg19”) with R package rtracklayer [100] (v1.42.0). For INDEL

calls with the simple samtools mpileup, the adjacent positions from both ends of the

INDEL calls were removed. To further remove possible variants, we employed a similar

route to call negative positions through WES1–3 data of pooled Sample A. The DP and

RDP of all libraries of each of WES1–3 were summed together. Any positions with total

DP ≥ 500, ADP > 2, and AF ≥ 0.002 were removed. The adjacent positions from both

ends of the INDEL calls were also removed. Finally, we took the intersection between

hg19 and hg38ToHg19, or between hg38 and hg19ToHg38 as known negatives for the

pooled Sample A in this study. This stringent process led to 10,229,649 negative posi-

tions in hg19 and 10,208,086 negative positions in hg38.

ddPCR methods (orthogonal validation)

Droplet digital PCR (ddPCR) technology uses water-oil emulsion to partition the DNA

sample into thousands of nanoliter-sized droplets and thus generates thousands of

measurement data points for independent PCR amplification event [101]. We chose

Bio-Rad’s PrimerPCR™ Assays for ddPCR as a proven technology for orthogonal valid-

ation to NGS with a convenient pipeline for custom assay design. Given a 100 ng DNA

sample, PrimerPCR assays accurately detect mutant DNA in 10,000-fold wild type

background (Bio-Rad Droplet Digital PCR Application Guide).

In total, 375 targets were selected for ddPCR validation and testing. These targets

represented multiple variants variant types such as Class 1 and Class 2 positive variants,

known negatives, and some investigational loci. SNVs, indels, and variants under influ-

ence of CN variation were examples of variant types. We established three criteria to

guide the process of target selection: (i) preference was given to targets with clinical

relevance or those in cancer related genes such as COSMIC genes; (ii) stratification

with random selection: a sufficient number of targets were assigned to each category

and then targets were randomly selected within each category; (iii) targets with close-by
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variant(s) were avoided in order to minimize interference with the primer or probe of

the ddPCR assay. Mapped COSMIC IDs or sequence around the target were used as

the input for online assay design. Only targets with a successful assay design were kept

for further consideration. The assays and their categories are listed in Additional file 1:

Table S12. Below is the description and count of assays in each category.

Category 0: Variants with documented oncology relevance. Subset 0.1 includes 19

hotspot variants detected in cell lines or Sample A (investigational). Subset 0.2 includes

39 targets which are known negatives. Subset 0.3 includes 9 investigational targets as

putative negatives.

Category 1: Class 1 variants (SNV or small indels) in 219 COSMIC Classic genes.

Out of 340 designable targets, 132 variants were randomly selected. Seventeen assays

were excluded due to design errors discovered after the fact. As a result, there were

115 assays randomly selected as Class 1 variants from COSMIC genes.

Category 2: Class 2 variants (SNV or indels) in COSMIC genes. From 359 Class 2

variant targets, 50 variants were selected for ddPCR assay design, all in COSMIC genes

as all Class 2 variants are in COSMIC genes.

Category 3: Low VAF Class 1 variants. These variants have VAF in Sample A ranging

from 1 to 2.5%. This category includes 40 positives that are present in only one cell line

that is not BLY and then 10 variants that are present only in BLY.

Category 4: Challenging and other indels. All candidate indels were first called in

WES data and confirmed by 10X Genomics WGS data. Indels longer than 20 bps could

not be designed. Out of all designable indels, 50 indels were randomly chosen with one

design failure leaving 49 ddPCR assays for indels. Challenging indels included 14 indels

that were low frequency (i.e., VAF < 10%), 8 complex (insertion or deletion at least 2

bases in length), and 20 that were both. In addition, there were 7 additional simple

Indels.

Category 5: Variants under greater CN influence. A list of about 40 potential candi-

dates was first generated for 13 regions under CN influence in various individual cell

lines. At least one designable variant was then manually chosen to represent each re-

gion. For certain wide regions, two variants were chosen. In total, there were 20 Class 1

positives assayed by ddPCR under greater CN influence.

Category 6: Additional investigational low VAF variants (not Class 1 or Class 2)

called by Accugenomics pipeline [102] that incorporate the background sequencing

error rate inferred from Accugenomics controls. Potential variants were reported in

two pan-cancer panels from the Pan-Cancercross-lab study [102] using Sample A.

There were 24 investigational ddPCR assays in this category.

Each ddPCR assay was used to test gDNA from 10 individual UHR cell lines and ref-

erence Samples A, B, C, D, and E. The sample input amount for 10 UHR cell lines and

Sample A was 11 ng. The input amount was chosen to enable variant allele detection

sensitivity of 0.1% while moderately conserving samples. Eight assays and 11 samples

were multiplexed to a 96-well plate with one well for a no-template control (NTC)

sample for each assay. The input amount was increased to 55 ng for more sensitive de-

tection in reference Samples B, C, D, and E. To ensure the results were reproducible,

Samples B, D, and E were tested in duplicate wells. Twelve assays and four samples (oc-

cupying seven wells) were multiplexed to a 96-well plate with one well for an NTC

sample for each assay. In total, 84 plates were used to implement the whole ddPCR
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experiment. Following Bio-Rad’s ddPCR protocol, samples were first fragmented by the

enzyme specified in each assay design and loaded to the QX200™ AutoDG instrument

(Bio-Rad) for analysis. Data analysis was then carried out through Bio-Rad’s software

with the users manually checking and, if necessary, adjusting cluster thresholds for each

assay. After clustering, the magnitude of group cluster membership of individual drop-

lets (negative for both alleles, allele1 occupancy, allele2 occupancy, occupancy by both

alleles) was evaluated for consistency with expected values from binomial distribution

assumptions related to joint probabilities for distinct alleles occupying the same drop-

let, single alleles occupying a droplet and for neither allele occupying a droplet. Incon-

sistencies were corrected and assays not achieving expected distributional frequencies

were deemed as failed. A description of the loci tested by ddPCR is also provided in

Additional file 1: Table S12.

Analysis of cell line mixture proportions

In principle, it should be possible to calculate/estimate the theoretical allele frequencies

in Sample A for each of the variants identified in the individual cell lines starting from

the allele frequencies and/or the read counts at a locus determined independently for

each cell line. This would provide evidence that the mixtures were performed properly

and are at expected levels in the pooled final reference. We attempted to build models

that used read counts in each cell line related to known positives to predict their VAF

by locus in Sample A. VAFs calculated on the deeply sequenced sample A were used to

estimate the error of the prediction. To simplify analysis and given the abundance of

variants available, we identified private known positives by cell line and performed a

linear regression tuned on the private known positives so that the VAF from positives

of Sample A could be expressed as a linear combination of the cell line VAFs (positive

or 0). The model multipliers were obtained by solving the linear system whose matrix

is computed as the convex combination of the depth and the alternate allele counts on

a chosen subset of all possible genomic positions. While some models appeared more

reasonable than others, we observed large variations in the β estimates for the cell line

mix ratios for different models and subsets, resulting in fundamentally unreliable VAF

predictions. The instability in estimates was possibly due to the large number of rear-

rangements in the cancer cell lines, creating inconsistent depth at a given locus from

cell line to cell line. A simple linear regression of the VAF of each cell line onto the

Sample A VAF provided reasonable if oversimplified results that indicated the cell lines

were properly mixed (given the approximate 1:2 mixture of TLY into BLY described

elsewhere).
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Additional file 2:. Fig. S1. Unique Fragments, total Deduplicated Depth, and Coverage of Sample A by Exome
enrichment kit replicate. WES1–3 are Illumina sequencing libraries. Fig. S2. Data related to Thermo Fisher’s WES
panel related to its a) sensitivity by cell line at VAF greater than 0.1 and 0.2, b) total number of WES4 variants
called relative to total positives by cell line at VAF greater than 0.1 and 0.2 and c) precision (or positive predictive
value) of the WES4 panel on individual cell line variants. Fig. S3. TLY VAF profile at top where common variants
from dbSNP are in red (het) or green (hom). Variants not found in dbSNP are in orange. Since TLY has an
asymmetric VAF profile indicated in by the somatic variants in orange, the reasonable explanation (combined with
cytology) is that TLY is inherently tetraploid with some noticeable large sCNA (e.g., chr 4, 7, 8, 17 and 20 are most
noteworthy) and that the somatic variants are all near 0.25 as somatic changes are randomly scattered among the
two chromosome pairs from the cancer cell, rarely affecting both. In essence, cell line TLY is a fusion of a normal
and cancerous cell. Fig. S4. VAF histogram of Sample A for Class 2 variants only (COSMIC genes but not in CTR).
Fig. S5. a-j) Histograms of VAF using all positives (Class 1 and Class 2) contributed by each of the 10 cell lines. Class
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library results and the averaging of individual cell line results. Results between same kits are slightly more highly
correlated. Cell line average results are concordant except for a small number of variants, many related to CNA in-
fluences from individual cell lines. Fig. S7. Concordance of putative positives (variants) from CTR using WES1–3. The
area of each figure represents the magnitude of the overlap between the different kits and the different methods:
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tives from the CTR region are detected in all three kits in both the merged-BAM Sample A and the in silico Sample
A using only the single SomaticSeq pipeline. Only 0.24% are not detected by SomaticSeq in either in silico Sample
A or merged-BAM Sample A. Fig. S8. CN and other data establishing BLY as a mixture of original BLY and TLY. VAF
profile at top consists of only common SNPs as well as the log ratio of TLY and BLY depths (compared to normal
reference Sample B). The green regions indicate TLY somatic CN loss and the red regions indicate TLY somatic CN
gain. Gray regions are somatic CN gain or loss examples that only exist in BLY and thus must have come from the
original B lymphocyte cell line. All TLY gains and losses clearly appear exactly in BLY except for the gain in chr4.
Thus, the original B lymphocyte cell line must have a corresponding chr4 loss, which was verified by subsequent
CNV analysis of the original B lymphocyte cell line (data not shown). Fig. S9. Each point is a putative variant either
associated with canonical het and homozygous non-reference alleles (blue), putative variants with replicated non-
zero VAF but outside canonical regions (red), or putative variants observed in only one replicate (gray). The repli-
cate VAF of the Normal B Reference cell line is shown for the Q201 pipeline for all variants in coding regions (top)
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B Reference will only have canonical het and homozygous non-reference alleles, which is more compatible with
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error. Fig. S10. As a supplement to Fig. 3a, this figure illustrates the difference observed in VAF between ddPCR and
consensus WES results across a range of VAF and different types of variants tested by ddPCR. One can see the bias
in the VAF estimate from WES and how it is more pronounced at higher VAF values and for indels vs. SNVs. Fig.
S11. Results from a series of simulations using 2 to 12 independent unrelated cell lines from 13 cell line candidates
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and simulating VAF and number of variants using a mixture of a random subset of them. The yellow line indicates
the median of the typical VAF given the various mixtures of cell lines. The orange dashed lines indicate the median
of the 25th (Q1) and 75th (Q3) percentiles of the VAF given the various mixtures of the cell lines. The solid blue
lines indicate the median total coding variants that one could identify in the CTR while the dashed blue line indi-
cates the typical (median) total number of coding variants that one expects to have an allele frequency less than
10%. Corresponding values observed for Sample A are also shown.

Additional file 3. Supplementary information. Bias in reported WES allele frequencies. Recommended process for
reference sample creation.

Additional file 4. Review history.
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