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Abstract

Genome-scale metabolic models of microorganisms are powerful frameworks to
predict phenotypes from an organism’s genotype. While manual reconstructions are
laborious, automated reconstructions often fail to recapitulate known metabolic
processes. Here we present gapseq (https://github.com/jotech/gapseq), a new tool
to predict metabolic pathways and automatically reconstruct microbial metabolic
models using a curated reaction database and a novel gap-filling algorithm. On the
basis of scientific literature and experimental data for 14,931 bacterial phenotypes, we
demonstrate that gapseq outperforms state-of-the-art tools in predicting enzyme
activity, carbon source utilisation, fermentation products, and metabolic interactions
within microbial communities.
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Background

Anything you have to do repeatedly
may be ripe for automation.

— Doug McIlroy

Metabolism is central for organismal life. It provides metabolites and energy for all cel-
lular processes. A majority of metabolic reactions are catalysed by enzymes, which are
encoded in the genome of the respective organism. Those catalysed reactions form a com-
plex metabolic network of numerous biochemical transformations, which the organism is
presumably able to perform [1].
In systems biology, the reconstruction of metabolic networks plays an essential role,

as the network represents an organism’s capabilities to interact with its biotic and abi-
otic environment and to transform nutrients into biomass. Mathematical analysis has
shown great potential for dissecting the functioning of metabolic networks on the level
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of topological, stoichiometric, and kinetic models [2], which together provide a wide
array of methods [3]. Although different microbial metabolic modelling approaches exist,
they can be summarised by a theoretical framework that provides a unifying view on
microbial growth [4]. Metabolic models not only have demonstrated their ability to pre-
dict phenotypes on the level of cellular growth and gene knockouts, but also provide
potential molecular mechanisms in form of gene and reaction activities, which can be val-
idated experimentally [5–7]. Due to this predictive potential, metabolic models have been
applied to identify metabolic interactions between different organisms [8–13], to study
host-microbiome interactions [14–16], to predict novel drug targets to fight microbial
pathogens [17, 18], and for the rational design of microbial genotypes and growth-media
conditions for the industrial production or degradation of biochemicals [19, 20]. Further-
more, recent advances in DNA-sequencing technologies have led to a vast increase in
available genomic- and metagenomic sequences in databases [21], which further expands
the applicability of genome-scale metabolic network reconstructions.
In the process of genome-scale metabolic network reconstruction, the genomic con-

tent of an organism is linked to biochemical processes, including enzymatic reactions
and cross-membrane metabolite transport [22]. Therefore, the quality and integrity of
network models depend on the genome sequence annotation and the underlying reac-
tion and transporter database [22, 23]. Advances in the computational annotation of
genomes and the massive increase of biochemical knowledge stored in online databases
[24–26] have prompted the development of several software approaches to automate the
reconstruction process [27]. A recent study byMendoza et al. comprehensively compared
seven current genome-scale metabolic reconstruction tools [28], namely AuReMe [29],
CarveMe [30], Merlin [31], MetaDraft [32], ModelSEED [33], Pathway Tools [34], and
RAVEN [35]. On the basis of 18 specific criteria, Mendoza et al. concluded that each
tool displayed strengths and shortcomings in different aspects [28]. One of the compari-
son criterion was the ability of the software to provide a ‘ready-to-use’ model as output,
where the ‘use’ refers to the possibility to perform flux balance analysis (FBA [36]) or FBA-
derived simulation techniques to predict the organism’s metabolic physiology, including
biomass production, under a given chemical environment. This criterion was fully met
only by CarveMe and ModelSEED [28].
The feature to directly obtain network models that can be used for FBA-based growth

simulations is especially powerful in situations where large numbers of new microbial
genomes are assembled from high-throughput metagenomic datasets [37]. In such stud-
ies, the models can be used to predict physiological properties of the sampled microbial
community, including metabolite cross-feeding interactions between species. However,
a fundamental issue with automatically reconstructed genome-scale models is that their
physiological predictions (e.g. using FBA) are often inaccurate [38]. Since the reconstruc-
tion process involves various steps, the causes for false metabolic flux predictions from
automatic reconstructions can be manifold: First, inconsistencies in databases can lead to
an incorporation of imbalanced reactions into the metabolic network, which may become
responsible for incorrect energy production by futile cycles [22]. Second, many genes are
lacking a functional annotation due to a lack of knowledge [39] and, thus, also the gene
products cannot be integrated into the metabolic networks, which potentially lead to gaps
in pathways. And third, the gap-filling of metabolic networks is frequently done by adding
a minimum number of reactions from a reference database that facilitate growth under a
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chemically defined growth medium [33, 40, 41]. Such approaches miss further evidences
potentially hidden in sequences and are biased towards the growth medium used for
gap-filling.
The potential of automated reconstruction tools to directly predict metabolic-

physiological properties of organisms based on their genome sequence was so far
only evaluated on the basis of smaller experimental data sets from model laboratory
strains such as Escherichia coliK12 or Bacillus subtilis 168. The overall performance
of reconstruction tools, particularly for non-model organisms, is therefore insufficiently
assured. Yet, accurate phenotype predictions for a wide range of organisms is crucial
for the broad application of automated network reconstruction pipelines in research.
For instance, genome-scale metabolic network reconstructions are increasingly applied
to simulate complex metabolic processes in microbial communities [42, 43]. Such sim-
ulations are highly sensitive to the quality of the individual metabolic networks of
the community members. This is because the accurate prediction of by-products and
carbon source utilisation is crucial for the correct prediction of metabolic interac-
tions since the substances produced by one organism may serve as resource for others
[44]. Thus, in multi-species communities, the metabolic fluxes of organisms are intrin-
sically connected, which can lead to error propagation when one defective model
affects otherwise correctly working models. As a consequence, the feasibility of com-
munity modelling fundamentally depends on the accuracy of the individual organismal
models.
In this work, we present gapseq a novel software for pathway analysis and metabolic

network reconstruction. The pathway prediction is based on multiple biochemistry
databases that comprise information on pathway structures, the pathways’ key enzymes,
and reaction stoichiometries. Moreover, gapseq constructs genome-scale metabolic
models that enable FBA-based metabolic phenotype predictions as well as the applica-
tion in simulations of community metabolism. Models are constructed using a manually
curated reaction database that is free of energy-generating thermodynamically infeasi-
ble reaction cycles. As input, gapseq takes the organism’s genome sequence in FASTA
format, without the need for an additional annotation file. Network topology as well as
sequence homology to reference proteins inform the filling of network gaps. A novel
Linear Programming (LP)-based gap-filling algorithm identifies and resolves gaps in
order to enable biomass formation on a given medium. In addition, the algorithm also
identifies and fills gaps in metabolic functions, whose presence in the network is sup-
ported by sequence homology to reference proteins and which are likely to be relevant
for growth in environments that are different to the chosen gap-filling medium. This
approach reduces the gap-filling medium-specific effects on the final network structures
and thereby increases the versatility of gapseq models for subsequent physiological
predictions under various chemical growth environments. Finally, we use large-scale
phenotype data sets to validate enzyme activity, carbon source utilisation, fermentation
products, gene essentiality, and metabolite cross-feeding interactions in microbial com-
munities. The results obtained with gapseq are benchmarked against CarveMe [30]
and ModelSEED [33], as these tools also provide the full procedure to construct models,
which can directly be employed for FBA-based metabolic flux simulations of microbial
growth.
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Results
Biochemistry database and universal model

The pathway, transporter, and complex prediction is based on a protein sequence
database that is derived from UniProt as well as TCDB and consists in total of 131,207
unique sequences (112,056 reviewed unipac 0.9 clusters and 19,151 TCDB transporter)
and also 1,138,176 unreviewed unipac 0.5 cluster that can be included optionally. The
reference protein sequences are regularly updated by the gapseq maintainers using
the latest UniProt and TCDB releases. gapseq automatically checks for updates and
retrieves the latest reference sequences upon start of the software. For the construction
of genome-scale metabolic network models we have built a biochemistry database, that
is derived from the ModelSEED biochemistry database. In total, the resulting curated
gapseq metabolism database comprises 15,150 reactions (including transporters) and
8446metabolites. All metabolites and reactions from the biochemistry database are incor-
porated in the universal model that gapseq utilises for the gap-filling algorithm. If
all dead-end metabolites and corresponding reactions would be removed, the universal
model comprises 10,792 reactions and 3885 metabolites. However, since genome-scale
metabolic networks are also used as structured knowledge-bases, no dead ends are
removed from the universal model. It needs to be noted, that the current biochemistry
database and the derived universal model represents mainly bacterial metabolic functions
and that, at the current version of gapseq, the database does not include all archaea-
specific nor eukaryotic-specific reactions. However, those reactions and, thus, also the
possibility to use gapseq for the reconstruction of archaeal and eukaryotic models will
be included in a later version of the software.

Enzymatic data

Microbial isolates are commonly subject to laboratory enzyme activity tests for strain
characterisation and identification. The Bacterial Diversity Metadatabase (BacDive) pro-
vides results from enzyme activity tests spanning a wide taxonomic range and different
enzymes [45]. This data represents highly valuable phenotypic information that can be
used to scrutinise whethermetabolic networkmodels of microorganisms also harbour the
enzymatic reaction that was experimentally tested. Here, we performed this evaluation for
automated network reconstructions obtained with the tools CarveMe [30], ModelSEED
[33], and our gapseq approach.
In total, we compared 10,538 enzyme activities, which consists of data for 3017 organ-

isms and 30 unique enzymes. For all organisms, genome-scale metabolic models were
constructed using the three different software tools. gapseq models had with 6% the
lowest false negative rate compared to CarveMe (32%) and ModelSEED (28%). Cor-
respondingly, gapseq showed with 53% also the highest true positive rate compared
to CarveMe (27%) and ModelSEED (30%), while the rates of false positive and true
negative predictions were comparable (Fig. 1a). For this test, the most prominent EC
numbers were the catalase, 1.11.1.6, accounting for 26% of the comparisons and the
cytochrome oxidase, 1.9.3.1, accounting for 22%, which reflects the ecological impor-
tance of cytochrome oxidases and catalases as proxy for an aerobic lifestyle. The overall
results remain stable when sampling equal numbers of test data for each EC number and
thereby controlling for a potential bias by the over-representation of these EC numbers
(Additional file 1: Fig. S4).
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Fig. 1 Results from enzyme activity and carbon source validations. a In total 10,538 enzyme activities (30
enzymes and 3017 organisms) of experimental data from the DSMZ BacDive database [45] were compared
for three different methods. b The predictions of 1795 carbon sources (48 unique carbon sources and 526
organisms) were evaluated with data from the ProTraits database [46]

Carbon source utilisation

The bacterial kingdom comprises a tremendous diversity in carbon source utilisation
strategies. In the context of genome-scale metabolic modelling, a major challenge is the
accurate prediction of carbon source utilisation phenotypes from an organism’s genome
sequence. In order to evaluate gapseq’s potential to predict carbon source utilisation
capabilities we retrieved data on bacterial phenotypes from the ProTraits resource [46]. In
brief, ProTraits provides information on phenotypic traits, including carbon source util-
isation, of individual microorganisms, where the phenotypic trait data is inferred from
scientific literature and comparative genomics. Here, we evaluated the quality of auto-
mated model reconstruction pipelines by testing if the models are able to recapitulate
carbon source utilisation phenotypes as indicated in ProTraits.
In summary, we compared 1795 different carbon source utilisation predictions for 526

organism and 48 carbon sources (Fig. 1b). gapseq outperformed the other methods in
terms of false negatives (13% compared with 29% ModelSEED and 36% CarveMe) and
true positives (47% compared with 31% ModelSEED and 24% CarveMe). ModelSEED
showed fewer false positives (5% compared with 11% gapseq and 11% CarveMe) and
more true negatives (35% compared with 29% gapseq and 29% CarveMe). gapseq,
predicted most false positives for formate (29 times). This overestimate of formate as
potential carbon source is likely due to the fact that we tested carbon source utilisa-
tion on the basis of electron transfer from the source to electron carriers (i.e. ubiquinol,
menaquinol, or NADH), which is analogous to the experimental carbon source test of
BIOLOG plates [47]. However, while it is known that formate can serve in fact as electron
donor in a number of different bacteria [48], the role as source of carbon atoms for the
synthesis of biomass components is limited to a few knownmethylotrophs [49]. Across all
methods, the most accurately predicted carbon sources, withmore than 100 tested organ-
isms, were fructose (92% correct predictions), mannose (91%), or arginine (82%), whereby
the predictions were less accurate for arabinose (29% correct predictions), dextrin (41%),
or acetate (51%).
In general, we note that testing carbon source utilisation via the proxy of electron trans-

fer from the substrate to reducing equivalents has the advantage that one can test a vast
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number of model reconstructions without the need to define a complete chemical growth
environment that contains besides the carbon source also all other compounds required
for growth (e.g. specific amino acids in case of auxotrohies). However, this approach has
the shortcoming that in some cases, the ability of an organism to use a substance as elec-
tron donor does not always imply that the substance can also be used as source of carbon.
Nevertheless, we argue that the implemented carbon source utilisation prediction is per-
tinent as it reflects the same approach as BIOLOG plates, which is an established system
for carbon source utilisation profiling.

Gene essentiality

We compared the ability of gapseq models to predict the essentiality of genes with
predictions fromModelSEED and CarveMe reconstructions as well as with curated mod-
els for the same organisms (Fig. 2). As expected, the curated models outperformed all
three automated reconstruction tools for most species and prediction metrics (namely
precision, sensitivity, specificity, accuracy, and F1-score). Interestingly, for Shewanella
oneidensisand Pseudomonas aeruginosagapseq reconstructions outperformed curated
models in most test scores with the exceptions of the sensitivity in the case of S. oneiden-
sisand specificity for P. aeruginosa(Fig. 2c, d). Compared to CarveMe, gapseq showed
in four out of five cases a higher sensitivity in essentiality predictions but, at the same
time, a slightly lower specificity. This pattern is attributed to the fact that gapseqmodels
tend to predict more genes as essential than CarveMe, leading to a higher number of true
positive (TP) predictions but also more false positives (FP). For most organisms and on
the basis of most prediction metrics, gapseq outperformed network models that were

Fig. 2 Results from model gene essentiality tests for five bacterial species. a Escherichia coli. b Bacillus subtilis.
c Shewanella oneidensis. d Pseudomonas aeruginosa. e Mycoplasma genitalium. Results from gapseqmodels
(red) are compared to CarveMe (blue) and ModelSEED (yellow) models, as well as to published curated
genome-scale metabolic models (black) of the respective organisms. Radar chart axes scales are linear with 0
in the centre and 1 at the corners. f Counts of genes, reactions (including exchanges and transporters), and
metabolites in each reconstruction
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reconstructed using ModelSEED. The results presented here consider genes as essential,
if the predicted growth rate of the focal gene-knockout strain was below 0.01 hŠ1. How-
ever, we note that the results remained virtually unaltered with a higher (0.05 hŠ1) or
lower (0.001 hŠ1) threshold (Additional file 1: Fig. S1).
Accurate gene essentiality predictions rely on precise gene-protein-reaction (GPR)

associations, which are formulated as Boolean expressions to describe the reactions’
dependence on proteins and the corresponding protein-encoding genes. The automated
prediction of GPR associations is especially challenging for reactions that depend on pro-
tein complexes consisting of different protein/peptide subunits. We compared the GPR
expressions for such reactions in the metabolic network of E. coli between the man-
ually curated network (iML1515) and the automated reconstructions from CarveMe,
ModelSEED, and gapseq (Additional file 2: Table S6). 59 protein complex-associated
reactions were shared among all networks. Considering the GPR associations of the
curated network as reference, only 6% were equivalent to those in the CarveMe network,
10% for ModelSEED, and 19% for gapseq. These results suggest, that accurate GPR
association predictions are still a weakness in the tested automated reconstruction tools
and thereby limit the essentiality predictions of individual genes, which encode protein
subunits.

Fermentation products

Anaerobic or facultative anaerobic bacteria utilise different fermentation pathways in
order to extract energy from environmental compounds by chemical transformations
in the absence of oxygen. We tested if fermentation products can be predicted by
metabolic reconstructions obtained from gapseq, CarveMe, and ModelSEED for 24
different bacterial organisms (Fig. 3). The organisms were selected based on following
criteria: (1) the organisms have a published RefSeq genome sequence, (2) are known
anaerobic or facultative anaerobic organisms, and (3) the identity of fermentation prod-
ucts has been experimentally described and reported in primary literature (Additional
File 2: Table S2). Overall, gapseq showed the highest number of true positive pre-
dictions (TP) with 50 TP predicted with the Minimise-Total-Flux (MTF) and 51 TP
predicted with Flux-Variability-Analysis (FVA) which is substantially higher compared
to CarveMe (15 TP with MTF, 16 TP with FVA) and ModelSEED (2 TP, 4 TP). The
production of the short-chain fatty acids acetate, butyrate, and propionate was correctly
predicted (TP) by gapseq in 91% of cases and thereby outcompetes CarveMe (12%)
and ModelSEED (0%), which did not predict butyrate or propionate production for any
tested organism.Moreover, gapseq correctly predicted homolactic fermentation by Lac-
tobacillus delbrueckiiand Lactobacillus acidophilus, which is dominated by lactate as
fermentation end product and also predicted known heterolactic fermentation by Bifi-
dobacterium longum, Bifidobacterium animalis, and Lactobacillus plantarum. However,
gapseq failed to predict lactate production of organisms that utilise different fermenta-
tion strategies, which also yield lactate (e.g. mixed-acid fermentation by Escherichia coli).
Interestingly, the predicted quantities of fermentation product release is higher for true
positive than for false negative predictions (Fig. 3). This further suggests, that gapseq is
able to predict the main fermentation products of bacterial organisms during anaerobic
growth.
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Fig. 3 Results of the fermentation product test of 24 bacterial organisms under anaerobic growth with
models generated using gapseq, CarveMe, and ModelSEED. Point sizes indicate the predicted production
of a fermentation product metabolite (columns) by the corresponding organism (row). Predictions (black) are
based on Minimise-Total-Flux (MTF) flux balance analyses. Grey circles indicate the upper production limit
obtained from Flux-Variability-Analysis (FVA). Metabolite-organism-combinations highlighted in green
denote known fermentation products, which have been reported in literature based on experimental
measures of the metabolite in anaerobic cultures

Anaerobic food web of the gut microbiome

The prediction of metabolic interactions between microbial organisms is of special inter-
est in ecology, medicine, and biotechnology. So far, we showed the capacity of gapseq
on the level of individual models. In a next step, we simulated several individual models
together as a multi-species community to validate the potential of gapseq in microbial
community modelling. As sample application we selected representative members of the
gut microbiome that are known to form an anaerobic food web [50, 51]. Altogether, we
employed 20 organisms and simulated the combined growth in a shared environment for
several time steps using the community modelling framework BacArena [52]. BacArena
permits a dynamic and spatial simulation of individual models which are optimised sep-
arately in a shared growth environment. Based on metabolic models and environmental
substance availability, BacArena predicts growth and nutrient exchanges of individual
microorganisms and overall alteration in substance concentrations. Metabolite produc-
tion and consumption rates by individual community members was analysed at time step
3 for CarveMe and gapseq and at time step 5 for ModelSEED, to ensure the commu-
nity metabolism is captured during the exponential growth phase before the inflection
point (Fig. 4).
On the community level, simulations using gapseq models captured the central sub-

stances, which are known to be produced in the context of the food web (Fig. 4). This
included the production of short-chain fatty acids (acetate, propionate, butyrate), lactate,
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