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Abstract

Background: Deconvolution analyses have been widely used to track compositional
alterations of cell types in gene expression data. Although a large number of novel
methods have been developed, due to a lack of understanding of the effects of
modeling assumptions and tuning parameters, it is challenging for researchers to
select an optimal deconvolution method suitable for the targeted biological
conditions.

Results: To systematically reveal the pitfalls and challenges of deconvolution
analyses, we investigate the impact of several technical and biological factors
including simulation model, quantification unit, component number, weight matrix,
and unknown content by constructing three benchmarking frameworks. These
frameworks cover comparative analysis of 11 popular deconvolution methods under
1766 conditions.

Conclusions: We provide new insights to researchers for future application,
standardization, and development of deconvolution tools on RNA-seq data.

Introduction
Deconvolution refers to a process that separates a heterogeneous mixture signal into

its constituent components. In the biomedical field, researchers have used deconvolu-

tion methods to derive cell type-specific signals [1–3] from heterogeneous mixture

data. Cellular composition information is crucial for developing sophisticated diagnos-

tic techniques because it enables researchers to track each cellular component’s contri-

bution during disease progressions [4]. Although some experimental approaches like

fluorescence-activated cell sorting (FACS), immunohistochemistry (IHC), and single-

cell RNA-seq can derive cellular composition information [3], all these approaches are

either restricted by their throughput or remain too costly and laborious for large-scale

clinical applications. Deconvolution, which computationally decomposes mixture sig-

nals, provides a cost-effective way to derive cellular composition information and has
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the potential to bring considerable improvements in the speed and scale of relevant

applications.

By January 2018, approximately 50 deconvolution methods had been developed [2].

While the speed of method development is increasing, researchers now face the new

challenge of selecting appropriate methods for their analysis. In methodological papers,

authors often use small benchmarks to illustrate the improvements of their methods.

These benchmarks only contain a limited number of deconvolution methods and sam-

ples. Moreover, different research groups applied inconsistent testing frameworks with

different simulation strategies, evaluation metrics, and cell type annotations, making it

difficult for researchers to reach a solid conclusion on the method’s performance.

Therefore, independent benchmarks are usually in need of rigorous and comprehensive

comparisons [5]. Previously, Sturm et al. [3] and Cobos et al. [6] have generated inde-

pendent benchmarks of reference-based and marker-based deconvolution methods on

RNA-seq data. Focusing on spill-over effects, minimal detection fraction, and back-

ground predictions, Sturm et al. [3] suggested refining signature gene lists to improve

deconvolution accuracy. On the other hand, Cobos et al. [6] focused on the impact of

different normalization strategies, sequencing platforms of reference data, marker gene

selection strategies, and missing cellular components in the reference. Compared with

previous benchmarks, which mainly focused on the influence of reference profile and

feature selection, our study focused on factors directly related to the mixture samples

such as mixture noise level, quantification unit, cellular component number, weight

matrix property, and unknown cellular contents. In addition to these factors, we also

studied factors related to the testing framework construction, such as simulation model

selection, evaluation metric selection, and measurement scale selection.

There are three types of benchmarking frameworks for the evaluation of deconvolu-

tion methods: in vivo framework [7], in vitro framework [8], and in silico framework [9,

10] (Additional file 2: Table S1). The in vivo testing framework mainly relies on indirect

performance assessments and usually cannot derive a definite conclusion of the

method’s performance. Only a few in vivo benchmarking datasets [3, 10] have coupled

FACS results for direct performance assessments. Nevertheless, these benchmarking

datasets only contain limited sample numbers and cannot provide a comprehensive

performance assessment [3, 10]. The in vitro testing framework where mixtures are

generated in the tube with predefined mixing compositions also suffers from limited

sample numbers. Moreover, most benchmarks generated from the in vitro testing

framework used “orthogonal” weights [8] during the mixing process, which would po-

tentially result in over-optimistic conclusions. The in silico testing framework synthe-

sizes heterogeneous mixture data by simulation. The primary goal of this study is to

systematically investigate the impact of different biological and technical factors, where

numerous finely tuned conditions need to be created [11]. A few biologically relevant

cases cannot reveal the systematic biases since all technical and biological factors are

confounded. Therefore, both in vivo and in vitro frameworks are not feasible for this

type of systematic comparison due to the limitation in sample number and confound-

ing factors. Careful consideration of these issues led us to select the in silico testing

framework to systematically examine the impact of different biological and technical

factors, which require large amounts of benchmarking datasets under controlled and

finely tuned multi-factor testing environments (Fig. 1a and Table 1).
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Fig. 1 Overview of three in silico testing frameworks. a Three benchmarking frameworks were constructed
to investigate the impact of seven factors that affect deconvolution analysis: noise level, noise structure,
other noise sources, quantification unit, unknown content, component number, and weight matrix. b
Eleven deconvolution methods are tested and have been categorized based on the required reference
input: marker-based, reference-based, and reference-free. c Performance of the methods is assessed
through Pearson’s correlation coefficient (R) and mean absolute deviance (mAD). Evaluation results are
illustrated by heatmaps and scatter plots. When unknown content is involved, we derive evaluation metrics
in both relative and absolute measurement scales
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To provide a reliable reference for the application and development of deconvolution

methods, we compared 11 deconvolution methods (Fig. 1b) that cover three categories:

marker-based, reference-based, and reference-free. To establish sophisticated bench-

marking frameworks that mimic application scenarios of diverse biological systems, we

designed three sets of benchmarking frameworks that simulated up to 1766 biological

conditions with varying noise levels, library sizes, cellular component numbers, weight

matrix properties, simulation models, and proportions of unknown contents (Fig. 1a

and Additional file 2: Table S2). These simulated conditions will enable us to investi-

gate the tipping point where each method deteriorates. To determine the impact of

evaluation frameworks, we performed comparisons under different simulation models

and measurement scales with two sets of evaluation metrics: correlation (Pearson’s cor-

relation coefficient) and mean absolute deviation (mAD) (Fig. 1c, the “Methods” sec-

tion). Moreover, we studied the impact of commonly applied simulation strategies, and

by comparison to the real mixture data, we derived improved simulation strategies that

can generate more complex and yet authentic in silico mixtures. Our results provide a

dynamic testing landscape that allows the user to select the right method under the tar-

geted experimental condition.

Results
Using simulation to generate diverse deconvolution testing environments

We designed three benchmarking frameworks to test the performance of deconvolution

methods under multiple application scenarios. Each framework was designed to study

the impact of specific technical and biological factors on deconvolution analysis (Fig. 1a

and Table 1). The first benchmarking framework (Sim1) was designed to reveal the im-

pact of the noise structure across dynamic noise levels (Additional file 1: Figure S1).

The second benchmarking framework (Sim2) was designed to reveal the impact of the

Table 1 Cellular components and datasets involved in three testing frameworks and variance
analysis

Analysis Cell types Datasets

Variance analysis CD8 T cells
Whole blood
Simulated mixtures (T, B, and mono)

GSE113590
GSE60424
GSE51984

Sim1_simModel Simulated mixtures (T, B, and mono) GSE60424
GSE51984
GSE64655Sim1_libSize Simulated mixtures (T, B, and mono)

Sim2 6 gradients of cell types: Comp 5–10 GSE60424
GSE51984
GSE64655
GSE115736

Sim3 6 gradients of cell types: Comp 5–10 and one unknown component HCT116 GSE60424
GSE51984
GSE64655
GSE115736
GSE118490

Six gradients of cell types:
Comp 5—T, B, monocytes, neutrophils, and NK cells
Comp 6—T, B, monocytes, neutrophils, NK cells, and eosinophils
Comp 7—T, B, monocytes, neutrophils, NK cells, eosinophils, and myeloid DC
Comp 8—T, B, monocytes, neutrophils, NK cells, eosinophils, myeloid DC, and CD34+ HSC
Comp 9—CD4 T, CD8 T, B, monocytes, neutrophils, NK cells, eosinophils, myeloid DC, and CD34+ HSC
Comp 10—CD4 T, CD8 T, naive B, memory B, monocytes, neutrophils, NK cells, eosinophils, myeloid DC, and CD34+ HSC
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cellular component number and weight matrix property (Additional file 1: Figure S2a).

The third benchmarking framework (Sim3) was designed to reveal the impact of un-

known biological contents and measurement scales (Additional file 1: Figure S2b).

In an in silico benchmarking framework, a deconvolution testing environment con-

sists of mixture data, reference data, ground truths, and deconvolution methods for

testing. Mixture data refers to heterogeneous gene expression profiles for deconvolu-

tion. Reference data refers to homogeneous cell type-specific data that used to guide

the deconvolution process. Ground truth refers to the real mixing proportions of con-

stituent cell types in the mixture data. The accuracy of deconvolution methods can be

assessed by comparing estimated proportions to the ground truths. Since reference data

can vary based on the required input of the tested methods, we classified 11 deconvolu-

tion methods into the following categories: marker-based, reference-based, and

reference-free (Fig. 1b and Additional file 2: Table S3). Marker-based methods such as

DSA [12], MMAD [13], and CAMmarker [14] use marker gene lists to guide the decon-

volution analysis. Reference-based methods such as CIBERSORT [9], CIBERSORTx

[10], EPIC [15], TIMER [7], DeconRNASeq [16], and MuSiC [17] use cell type-specific

gene expression profiles. Except for MuSiC [17], nearly all reference-based methods re-

quire signature gene lists as an additional input, which are differential expression genes

across the cell types in the reference. MuSiC [17] applies weighted non-negative least

squares regression (W-NNLS) and does not require any pre-determined gene sets. Fi-

nally, reference-free methods such as LinSeed [18] and CAMfree [14] do not require

any external references in the deconvolution process. But these methods require refer-

ence profiles for the cluster annotation (assign cell types) after the deconvolution

process.

Selection of simulation model affecting deconvolution evaluation

The benchmarking framework Sim1_simModel is designed to learn the impact of noise

structure across dynamic noise levels (Fig. 1a, Additional file 1: Figure S1a and Add-

itional file 2: Table S2). To understand the impact of noise structures, we simulated

noise based on three simulation models: normal, log-normal, and negative binomial

(nb). These simulation models have been applied in the previous publications [9, 11,

16, 18, 19] to generate in silico mixtures. For each simulation model, we generated ten

levels of noise to evaluate the robustness of deconvolution methods across dynamic

noise levels (Additional file 2: Table S2 and the “Methods” section). To ensure the gen-

erality of our conclusion across different datasets and account for reference-mixture

variance, we performed repeated mixture simulation with three independent blood

datasets and created nine testing environments with different mixture-reference pairs

(Additional file 2: Table S2 and the “Methods” section).

For the noise level, we observed that the accuracies of the deconvolution methods de-

creased as the noise level increased, which was exhibited as decreasing correlation (Add-

itional file 1: Figure S3) and increasing mAD (Additional file 1: Figure S4) values. We also

noticed that the impact of the RNA-seq quantification unit is trivial (Additional file 1: Fig-

ures S3 and S4) and thus selected the most commonly used unit tpm for the remaining il-

lustrations of the results. Unless specifically indicated (as in Sim1_libSize and variance

analysis), all results in this study are from mixture data with the tpm unit.
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To reveal the impact of the simulation models, we averaged the evaluation metrics

across noise levels and generated summarized evaluation heatmaps (11 × 3) where 11

indicated the number of methods and 3 indicated the number of simulation models.

Based on the summarized evaluation heatmaps of correlation (Fig. 2a) and mAD (Add-

itional file 1: Figure S5a), we observed that the selection of the simulation model

strongly affected the evaluation results. For instance, compared with evaluations from

normal and log-normal groups, methods such as DSA [12], TIMER [7], and CAMfree’s

[14] rankings were higher in the negative binomial group in both correlation (Fig. 2b)

and mAD (Additional file 1: Figure S5b) metrics.

The negative binomial model recapitulates noise structures of real data

In the Sim1_simModel, we found that the noise structure is the main factor obscuring

deconvolution performance assessment (Fig. 2a, b, Additional file 1: Figure S5). To

identify the simulation model that best recapitulates the essential characteristics of real

data, we performed noise structure comparisons between real and simulated data by

using mean-variance plots, sample-sample scatter plots, and coefficient of variance

(CV) density plots (Fig. 2c–h). We selected two blood datasets that are sampled from

dynamic biological conditions (different tissue and disease status) as representations of

real datasets while using one blood dataset that is sampled from healthy donors as the

simulation source (Table 1). Since comparing with simulation source, real data were

sampled from more diverse biological conditions, we considered the noise observed in

the real data as an upper boundary of the noise level.

We used the mean-variance plots to study the overall trend between variance and

mean in both real and simulated data (P6 noise level) (Fig. 2c, d). As expected, we ob-

served that the variance and the mean value of counts follow a linear trend in the log

space with a clear overdispersion phenomenon, which is typical to the RNA-seq data

[20] (Fig. 2c). However, in the simulation group, only the simulations generated from

the negative binomial and normal models showed a similar mean-variance trend to the

real data (Fig. 2d).

Next, we used sample-sample scatter plots to study the concordance trend of gene

expression profiles (Fig. 2e, f). In the real data, we observed that lowly expressed genes

exhibited larger relative deviances to the diagonal reference line (y = x) than highly

expressed genes (Fig. 2e). This phenomenon indicates larger uncertainties in quantify-

ing lowly expressed RNA molecules. In the simulation group, only the simulation data

from the negative binomial model recapitulated higher deviances of lowly expressed

genes (Fig. 2f).

We also compared the magnitude of noise between the real and simulated data. In

the real data, the sample-sample Spearman’s correlation values ranged from 0.53 to

0.99 while the sample-sample Euclidean distances fluctuated around the order

of 104~105 (Additional file 1: Figures S6 a and b and S7 a and b). Among the three

tested simulation models, only the negative binomial model was capable of generating

simulated profiles with comparable sample-sample correlation (0.57–0.98) and Euclid-

ean distance (around the order of 104~105) to the real datasets (Additional file 1: Figure

S8) while maintaining the mean-variance trend with the overdispersion phenomenon

(Additional file 1: Figure S9).
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We compared the density curve of coefficient variation (CV) values in the real and

simulated data (Fig. 2g, h). The real data exhibited a unimodal bell-shaped curve, indi-

cating that most of the genes had low to moderate levels of CV (Fig. 2g). In the simula-

tion group, only simulations derived from the negative binomial model maintained the

unimodal bell-shaped curve throughout all noise levels (Fig. 2h). CV density distribu-

tions of normal and log-normal models showed density curves that were skewed

Fig. 2 Evaluation results of Sim1_simModel and noise structure comparisons between real and simulated
data. a Heatmap of the summarized evaluation results based on the Pearson’s correlation coefficients and b
rankings of the tested deconvolution methods in the Sim1_simModel. In each heatmap, row indexes refer
to the tested methods and column indexes refer to the simulation models (negative binomial, log-normal,
and normal). c, d Mean-variance plots of c real and d simulated data. e, f Sample-sample scatter plots of e
real and f simulated data. r, Spearman’s correlation coefficient; d, Euclidean distance. g, h Density plots of
CV (coefficient of variation) of g real and d simulated data. Real data are derived from GSE113590 and
GSE60424 (Additional file 1: Figures S6 and S7 contain detailed variance analysis results for each dataset). All
simulated data in Fig. 2 are based on simulations derived from GSE51984 with the P6 noise level. Results in
a and b are in the tpm unit; results in c–h are in count unit

Jin and Liu Genome Biology          (2021) 22:102 Page 7 of 23



towards the high CV value from noise level P6 to P10, indicating unauthentic noise

structure (Additional file 1: Figure S10b) in these simulations.

In conclusion, the negative binomial simulation model, which successfully recapitu-

lated the mean-variance trend, sample-sample concordance, and the density of CV, pre-

sented the noise structure that was most similar to the noise structure in the real data.

The negative binomial model also kept the magnitude of noise at comparable levels to

the real data and thus should be considered as the most appropriate simulation model

for generating in silico mixtures.

Library size normalization is required to ensure the deconvolution accuracy

In Sim1_simModel, we observed the trivial impact of the quantification unit, but this

might be due to the fact that all negative binomial simulated mixtures have the same li-

brary size (the “Methods” section). To further investigate the impact of quantification

unit with varied library sizes, we designed Sim1_libSize (Additional file 2: Table S2 and

Additional file 1: Figure S1b). In this framework, every simulated mixture set comprised

two types of samples with 12M and 24M reads (the “Methods” section). For simplicity,

we summarized the evaluation results across all 10 noise levels and generated evalu-

ation heatmaps with dimensions 11 by 4 where 11 indicates the number of methods

and 4 indicates the number of quantification units being tested.

We observed that three methods, CIBERSORT [9], CIBERSORTx [10], and MuSiC

[17], which implemented normalization procedures, showed satisfactory performance

(r ≥ 0.9, mAD ≤ 0.1) regardless of the selected quantification unit (Fig. 3a, Additional file

1: Figure S11a). Six methods (DSA [12], MMAD [13], CAMmarker [14], TIMER [7],

CAMfree [14], and LinSeed [18]) showed improved accuracy after library size

normalization (Fig. 3a, Additional file 1: Figure S11a). We observed that, contrary to

the Sim1_simModel (Additional file 1: Figure S3 and S4), the choice of quantification

unit had a high impact on Sim1_libSize, which was shown by discrepant rankings of

the tested methods (Fig. 3b and Additional file 1: Figure S11b). Because the only differ-

ence between these two benchmarking frameworks was the library size (the “Methods”

section), we deduced that the inconsistent performance across different quantification

units was due to the library size variation in the mixture dataset. Our results indicate

using quantification units normalized by library sizes can mitigate the bias caused by li-

brary size variation (Fig. 3a and Additional file 1: Figure S11a). When a deconvolution

method has no specific requirement on the quantification unit, we suggest researchers

apply RNA-seq quantification units that are normalized by library sizes.

Impact of cellular component number and weight matrix on deconvolution analysis

The weight matrix, which is defined by the cellular proportions across mixture samples,

plays an important role in the deconvolution analysis as it directly affects the condition

number (or orthogonality) of mixture datasets. While the weight matrix is not control-

lable in the analysis, researchers can roughly speculate weight matrix property based on

previous cellular composition-relevant studies. Therefore, understanding the impact of

weight matrix property will provide researchers new insights about method selection

based on the mixture conditions.
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To investigate the joint impact of the cellular component number and weight matrix

property, we designed benchmarking framework Sim2 with six gradients of component

number ranging from 5 to 10 and two types of weight matrices: “orthog” and “real”

(Fig. 1a, Additional file 2: Table S2 and Additional file 1: Figure S2a). The “orthog”

weight matrix was generated by minimizing the condition number, and the “real”

weight matrix was constructed based on whole blood immune cell proportions in the

real biological samples [21] (the “Methods” section). We discarded the CAMfree [14]

method in Sim2 due to the poor scalability of CAMfree [14] on mixtures with large

component numbers.

We found that nearly all deconvolution methods achieved higher levels of accuracies

with the “orthog” weight matrices (Fig. 4a) relative to the “real” weight matrices

(Fig. 4b), indicating that the mathematical property of the weight matrix had a signifi-

cant impact on deconvolution analysis. In the mixtures with five components (Comp

5), eight methods (DSA [12], MMAD [13], CAMmarker [14], EPIC [15], CIBERSORT

[9], CIBERSORTx [10], MuSiC [17], and LinSeed [18]) exhibited high accuracy

levels(r ≥ 0.95, mAD ≤ 0.05) in the “orthog” group (Fig. 4a and Additional file 1: Figure

S12a), while only two of those eight methods (CIBERSORT [9] and MuSiC [17]) in the

“real” group achieved the same level of accuracy (Fig. 4b and Additional file 1: Figure

S12b).

In addition to the impact of the weight matrix selection, the cellular component

number also affected the deconvolution accuracy. In both the “orthog” and “real”

groups, the majority of the methods exhibited poorer performance as the cellular com-

ponent number increased (Fig. 4a,b and Additional file 1: Figure S12). It is also worth

noting that none of the tested deconvolution methods showed a correlation higher than

0.9 with mixtures consist of large cellular component numbers (Comp 7 to Comp 10)

in the “real” group (Fig. 4b).

To further investigate the performance of deconvolution methods with large compo-

nent numbers, we explored the accuracies of mixtures with 10 cellular components and

the “real” weight matrix by drawing scatter plots of the estimated proportions and

Fig. 3 Evaluation results of Sim1_libSize. a Heatmap of the summarized evaluation results based on the
Pearson’s correlation coefficients and b rankings of the tested deconvolution methods. In each heatmap,
row indexes refer to the tested methods, and column indexes refer to the quantification units (count,
countNorm, cpm, and tpm)
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Fig. 4 Evaluation results of Sim2. a, b Heatmaps of the summarized evaluation results based on the
Pearson’s correlation coefficients with a “orthog” weight matrix and b real weight matrix. In each heatmap,
row indexes refer to the tested methods, and column indexes refer to the cellular component numbers. c
Scatter plots of estimated weights vs. ground truths of “real” mixtures with 10 cellular components. d, e Cell
type-specific evaluation results of “real” mixtures consist of 10 cellular components based on d Pearson’s
correlation coefficient and e mean absolute deviance. In each heatmap, row indexes refer to the tested
methods, column indexes refer to the cell types, and the last column “all” refers to the averaged evaluation
results across all cell types
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ground truths (Fig. 4c, data corresponds to the last column of Fig. 4b and Additional

file 1: Figure S12b). Unexpectedly, we found that the correlation evaluation metric,

which was considered as the golden standard for the evaluation of deconvolution

methods, cannot reflect the deviance of estimations from ground truths (Fig. 4c). How-

ever, the deviance of estimation can be shown by another evaluation metric mAD

(Additional file 1: Figure S12). For instance, MMAD [13] and CAMmarker [14] per-

formed relatively well on the correlation evaluation metric (r ≥ 0.65, Fig. 4b), but both

methods had mAD values larger than 0.1, indicating the existence of large estimation

deviance (Additional file 1: Figure S12b). By combining information from two evalu-

ation metrics (Fig. 4b and Additional file 1: Figure S12b), we reached the same conclu-

sion shown by the scatter plots (Fig. 4c) that the best performers were CIBERSORT [9],

CIBERSORTx [10], and MuSiC [17]. All three methods achieved high accuracies on

both correlation evaluation metric (r ≥ 0.65) (Fig. 4b) and mAD evaluation metric

(mAD ≤ 0.02) (Additional file 1: Figure S12b) in the Comp 10 mixture with “real”

weight matrix.

To understand the impact of each cellular component on deconvolution analysis, we

drew evaluation heatmaps with cell type-specific correlation and mAD values (Add-

itional file 1: Figures S13 and S14). Based on the evaluation heatmap of mixtures with

ten cellular components and the “real” weight matrix, which is the most complicated in

silico mixture set in the Sim2 benchmark framework, we identified three best per-

formers: CIBERSORT [9], CIBEERSORTx [10], and MuSiC [17]. Firstly, we found that

all three methods correctly estimated major cellular components (r ≥ 0.85, mAD ≤

0.05), such as neutrophils, CD4 T, and CD8 T in the mixtures (Fig. 4d and e). Secondly,

while all three methods failed to estimate the linear trend of proportions of rare cell

subpopulations (r − 0.19~0.35) that occupied less than 1% in the mixture, such as mye-

loid DC, and hematopoietic stem cells (HSC), the three methods correctly identified

them as minor components and did not attribute the percentages of other cell types to

these rare cell populations (mAD 0~0.01) (Fig. 4d, e). Finally, we discovered that

marker gene-based methods DSA [12], MMAD [13], and CAMmarker [14] and

reference-free method LinSeed [18] showed high mAD values on neutrophil proportion

estimation indicating larger deviances of their estimations on the major components

(mAD 0.36~0.63) (Fig. 4e).

To understand which cellular component caused the performance deterioration, we

inspected the cell type-specific evaluation results of the “real” weight matrices across

the six component gradients (Additional file 1: Figure S13). We found that the rare cel-

lular component myeloid DC (~ 0.3–0.9%) in the Comp 7 mixture has the lowest cor-

relation to the true proportions, which might be due to its high similarity in gene

expression to the monocytes [22]. However, introducing a relatively distinct HSC in the

Comp 8 mixture further exacerbated the performance deterioration (Additional file 1:

Figures S13 and S14, “real” group). Therefore, we concluded that the deterioration of

deconvolution performance on mixtures with large component number is due to the

confounding effect of both the highly correlated cellular component and the rare cellu-

lar component in the mixture dataset.

To further explore the impact of minor components and highly correlated propor-

tions, we synthesized mixtures with two types of weight matrices: “dominant” and “uni-

form” (the “Methods” section). In the “dominant” group, there is one major cellular
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component (T cell or CD4 T cell) and K-1 minor components (Additional file 1: Figure

S15a). In the “uniform” group, all cellular components have similar levels of propor-

tions (Additional file 1: Figure S15b). Consistent with previous analysis on “real” and

“orthog” weight matrices, we found that CIBERSORT [9], CIBERSORTx [10], and

MuSiC [17] showed satisfactory accuracy (Additional file 1: Figure S15) in these two

simulations, which indicates the high robustness of these three methods to the weight

matrix property.

Impact of the unknown component on deconvolution analysis

Unknown biological content is another major factor that influences deconvolution ana-

lysis for several reasons. First, unknown content could be treated as a source of noise

unless explicitly modeled by deconvolution methods [9, 15]. Second, unknown content

is not counted in the estimated cell type proportions and violates the sum-to-one as-

sumption applied by the majority of deconvolution methods [2, 8].

To study the impact of unknown biological content on deconvolution analysis, we de-

signed a benchmarking framework that contains mixtures with three sets of tumor

spike-ins: the “small” group refers to mixtures with low levels of tumor spike-ins (20–

30%), the “large” group refers to mixtures with high levels of tumor spike-ins (70–80%),

and the “mosaic” group refers to mixtures with dynamic levels of tumor spike-ins (5–

95%). Tumor spike-ins were introduced to the 12 mixture sets generated in the Sim2

framework to analyze the joint impact of the component numbers, weight matrix prop-

erties, and unknown biological contents (Fig. 1a, Additional file 2: Table S2 and Add-

itional file 1: Figure S2b). At the performance assessment step, we used two sets of

ground truths to derive evaluation results that represent different measurement scales

(Additional file 2: Table S4 and the “Methods” section). The first set of ground truths

used the absolute proportions of immune cell types and led to “absolute” deconvolution

accuracy. The second set of ground truths used the relative proportions of immune

cells and led to “relative” deconvolution accuracy. We evaluated ten methods and two

additional specific method settings TIMERtumor [7] and EPICabsolute [15], which are

tailored for deconvolution analysis with unknown tumor contents (Additional file 2:

Table S3).

Our results indicated that the weight matrix property was the leading factor that af-

fected the deconvolution accuracy with the “orthog” group presented higher accuracies

in most deconvolution methods across all tumor content groups (Fig. 5a, b and Add-

itional file 1: Figure S16). In addition to the weight matrix property, we found that the

size of tumor content also affected the deconvolution accuracy as we observed decon-

volution methods performed better on mixtures with smaller tumor content (Fig. 5a, b

and Additional file 1: Figure S16). Moreover, we found that when evaluated on different

measurement scales (Fig. 5a, b and Additional file 1: Figure S16), most of the methods

showed inconsistent performances. For example, CIBERSORT [9] and CIBERSORTx

[10] showed greater accuracies (r 0.69~0.97, mAD 0.02 – 0.04) on the relative measure-

ment scale (Fig. 5a and Additional file 1: Figure S16a) than on the absolute measure-

ment scale (r 0.4~0.97, mAD 0.04~0.11) (Fig. 5b and Additional file 1: Figure S16b).

Meanwhile, EPICabsolute [15] showed greater accuracies on the absolute measurement

scale (r 0.56~0.87, mAD 0.02~0.05) (Fig. 5b and Additional file 1: Figure S16b) than on
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the relative measurement scale (r 0.3~0.85, mAD 0.06~0.12) (Fig. 5a and Additional file

1: Figure S16a).

To further investigate the performance of deconvolution methods under the cell type

resolution, we drew scatter plots of the estimations from 5 Comp mixtures with “mo-

saic” tumor spike-ins and “real” weight matrix (Fig. 5c, d). On the relative measurement

Fig. 5 Evaluation results of Sim3. a, b Heatmaps of the summarized evaluation results based on the
Pearson’s correlation coefficients on the a relative measurement scale and b absolute measurement scale.
In each heatmap, row indexes refer to the tested methods, and column indexes refer to the types of tumor
spike-ins (small, large, and mosaic). c, d Scatter plots of the estimated weights vs. ground truths of mixtures
consist of 5 cellular components and mosaic tumor spike-ins. c Estimated weights vs. relative ground truth.
d Estimated weights vs. absolute ground truth
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scale, CIBERSORT [9] and CIBERSORTx [10] were the top performers and achieved

high accuracy (r ≥ 0.95, mAD ≤ 0.05) (Fig. 5c and Additional file 1: Figure S17 first col-

umn in the “mosaic” and “real” groups). However, on the absolute measurement scale,

EPICabsolute [15] was the top performer and correctly estimated the absolute immune

cell proportions (r ≥ 0.95, mAD ≤ 0.05) (Fig. 5d and Additional file 1: Figure S18 first

column in the “mosaic” and “real” groups).

Next, we checked the robustness of the three best performers in terms of component

number and tumor content in the “real” weight matrix group. The robustness of

CIBERSORT [9] and CIBERSORTx’s [10] performance to the component number is

high ( r 0.45~0.95, mAD 0.02~0.05) on the relative measurement scale (Additional file

1: Figure S17, the “real” group). EPICabsolute [15] also showed good robustness to the

component number except for Comp 10 mixture (r 0.43~0.95, mAD 0.01~0.07, results

of Comp 10 is excluded) on the absolute measurement scale (Additional file 1: Figure

S18, the “real” group). We also found that having a larger variance in tumor content in-

creased the accuracy of EPICabsolute [15], as we observed that with mosaic tumor

spike-ins, EPICabsolute achieved greater accuracies (r 0.31~0.95, mAD 0.02~0.05) than

other tumor spike-in groups (r 0.17~0.84, mAD 0.01~0.07) (Additional file 1: Figure

S18, the “real” group) on the absolute scale. Consistent with the results in Sim2, we ob-

served decreasing accuracies of CIBERSORT [9], CIBERSORTx [10], and EPICabsolute

[15] with the increasing component number (Additional file 1: Figure S17a and Add-

itional file 1: Figure S18a). We reasoned that this phenomenon was due to the difficulty

of current deconvolution methods estimating rare subpopulations and closely related

cell types.

Our results revealed the impact of unknown biological content on deconvolution

analysis. We found that both the size (large vs. small spike-ins) and variance (large vs.

mosaic spike-ins) of unknown content affected the deconvolution analysis. We also ob-

served a discrepancy in performance evaluation when using different measurement

scales. When the relative scale was used, CIBERSORT [9] and CIBERSORTx [10] were

the top performers. When the absolute scale was used, EPICabsolute [15] was the top

performer.

Discussion
In this study, we designed three in silico benchmarking frameworks to systematically

investigate the impact of several biological and technical factors. We identified top-

performing deconvolution methods for each framework and illustrated the strengths

and weaknesses of the tested methods under different application scenarios. Addition-

ally, we provided strategies for mitigating systematic biases caused by different tech-

nical and biological factors such as varied library sizes, simulation models, and cellular

compositions.

In the first framework (Sim1), we explored the impact of noise structure at different

noise levels. We identified CAMmarker [14], MMAD [13], DSA [12], CIBERSORT [9],

CIBERSORTx [10], and MuSiC [17] as the best performers since these methods showed

high levels of accuracy at varying noise levels. For the noise structure, we identified the

negative binomial as the best simulation model that captured the essential characteris-

tics of the real data. In the second framework (Sim2), we explored the impact of the

cellular component number and the weight matrix property. We identified
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CIBERSORT [9], CIBERSORTx [10], and MuSiC [17] as the top performers since these

three methods achieved a high degree of accuracy across a gradient of cellular compo-

nent numbers with both “orthog” and “real” weight matrices. We also found that all

marker gene-based methods exhibited larger estimation deviances from ground truths.

This type of estimation biases was shown in the scatter plots and can be quantitatively

captured by the mAD evaluation metric, indicating the necessity of using mAD as a

supplementary evaluation metric for deconvolution performance assessment. In the

third framework (Sim3), we explored the impact of unknown biological content and

measurement scales. On the relative measurement scale, CIBERSORT [9] and CIBER-

SORTx [10] were the best performers. On the absolute measurement scale, EPICabso-

lute [15] was the best performer. Our analysis also showed different evaluation results

under the absolute and relative measurement scales. To our best knowledge, no previ-

ous deconvolution benchmark has documented this phenomenon.

Based on the results obtained in the present investigation, we offer suggestions for

best practices of deconvolution analysis and evaluations. For the benchmarking data

generation, we recommended that researchers (1) use the negative binomial model as

the primary simulation model for in silico mixture data generation; (2) reference real

biological composition data when building weight matrices,; (3) consider at least two

evaluation metrics: one is used for checking linear concordance between estimation

and ground truth, and the other one is used for checking estimation deviances; (4)

when unknown biological content is involved, beware of the influence caused by differ-

ent measurement scales (absolute vs. relative); and (5) construct multi-factor conditions

on a large scale to ensure the robustness and comprehensiveness of the benchmark.

For deconvolution analysis, we suggest that researchers (1) use the quantification unit

(countNorm, cpm, or tpm) that is normalized by library sizes; (2) check for the com-

positional information from previous publications. When the targeted tissue type has a

relatively stable composition over several samples, consider using deconvolution

methods that are robust to non-orthogonal weight matrices such as CIBERSORT [9],

CIBERSORTx [10], and MuSiC [17]. When an unknown cellular component is ex-

pected (i.e., tumor sample) and the researcher needs to derive absolute proportion, con-

sider using methods like EPIC [15], which is specifically tailored for deconvolution with

unknown content; and (3) when referencing benchmark paper to select the optimal

method, beware of different technical factors that may derive different estimation ac-

curacies such as the resolution of analysis (number of cellular components), the vari-

ance of proportions across samples (weight matrix property), reference selection,

evaluation metric selection, and measurement scale selection.

In addition to the suggestions listed above, previous benchmark publications also

clarified the impact of signature matrices [1], multicollinearity issue [9], spill-over

effects [3, 23], minimal detection fraction [3], background predictions [3], marker/

signature gene selection [3], and the variance between reference and mixture

sources [4]. Some deconvolution methods can derive both cell type-specific expres-

sion and composition signals [2]. Besides benchmarks focusing on cellular compos-

ition information, more benchmarks that derive accuracies of estimating cell type-

specific expression are still needed. In this study, we used customized references

that only contain cell types in the mixture source. However, previous studies have

shown the impact of reference selection on deconvolution analysis [4]. Therefore,
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the joint impact of reference selection and mixture sample properties still need to

be investigated.

For the future advancement of deconvolution analysis on RNA-seq data, we suggest

that more efforts be put into the refinement of simulation models to generate more au-

thentic in silico testing environments that mimic diverse application scenarios. In this

study, the weight matrix property was revealed as the most important factor affecting

deconvolution analysis, which was overlooked in prior research. Therefore, more stud-

ies on the cellular compositional information and its corresponding effects on deconvo-

lution analysis are needed. All these improvements in simulation and benchmarking

strategies will further enhance the efficiency of deconvolution method development.

Methods
Data processing

Raw SRA files were downloaded from the GEO repository, processed by SRA Toolkit

(2.10.0) [24]; reads were aligned to the human reference GRCh38 (v95, hard masked)

using alignment tool STAR (2.6.1) [25]; and quantification was performed using RSEM

(1.3.1) [26] with default parameter settings. Quantification matrices with the count,

tpm, and fpkm units were loaded into R (3.6.1) [27] for feature ID transformation, du-

plication removal, and low-abundant gene removal. For low-abundant gene removal,

we relied on two parameters: minimum sample threshold (GSE113590 [28]—4; other

datasets—5) and minimum expression threshold (10 counts, 1 tpm, and 1fpkm). For in-

stance, the filtering parameter (5, 10) is used to retain genes with more than 10 counts

in at least 5 samples. GSE113590 only has 4 samples per cellular category, and we set

the minimum sample threshold as 4. In the Sim1, we performed filtering independently

on each dataset with a minimum sample threshold set at 5. For Sim2 and Sim3, we first

concatenated samples into one matrix and then performed filtering with a minimum

sample threshold set at 10. For the information of datasets involved in Sim1, Sim2, and

Sim3, please refer to Table 1.

Marker gene selection

For the marker gene selection, we selected genes that are highly expressed in the targeted

cell type and lowly expressed in other cell types. The expression threshold is set at the

80th percentile for high expression (the targeted group) and 50th percentile for low ex-

pression (other groups). To successfully derive marker genes with a larger number of cel-

lular components, we gradually relaxed the criteria by decreasing parameter p, which is

the percentage of samples that pass the criteria (initial value of p = 0.95) by a step param-

eter (default value s = 0.03) until there are at least two marker genes determined.

Signature gene selection

We performed differential expression testing on all cell type pairs using DESeq2 [29].

We selected genes with padj ≤ 0.01 and ∣ log 2FoldChange ∣ ≥ 10.

Reference generation

The reference profiles for deconvolution analysis were constructed from purified

homogeneous samples. For Sim1 and Sim2, we used a total of ten cell types listed in
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Table 1. For instance, RNA-seq profiles of purified T cells, B cells, and monocytes were

used as references for deconvolution methods in Sim1. For Sim3, we used up to ten im-

mune components in the reference and excluded the unknown component (HCT 116)

in the reference.

Benchmarking framework construction

Three benchmarking frameworks are constructed to study the impact of different tech-

nical and biological factors on deconvolution analysis (Fig. 1, Table 1, and Additional

file 2: Table S2). We created simulated mixture data M (N by J) by multiplying compo-

nent source profiles S (N by K) to the predefined weight matrix W (K by J). Here, N is

the number of genes, J is the number of samples, and K is the number of cellular com-

ponents. The noise term ε is used to model sample-to-sample variability where the

value of ε determines the noise level. All simulated mixtures were based on purified

homogeneous profiles, and only samples derived from homogeneous sources were

picked into the component source profiles. We avoided using heterogeneous samples

identified as “whole blood,” “whole white blood,” or “pbmc,” for the source profile gen-

eration. Those heterogeneous samples are only used in the variance analysis (Fig. 2c, e,

g) to deduce the upper boundary of the noise in the real data.

M ¼ S �W þ ε

Sim1

In Sim1, we aimed at understanding the impact of noise from different aspects such as

noise structure and noise level (Additional file 1: Figure S1). Sim1 consists of two sub

frameworks: Sim1_simModel and Sim1_libSize, where Sim1_simModel focuses on the

noise structure, and Sim1_libSize focuses on the noise caused by varied library sizes. We

used GSE60424 [30], GSE64655 [31], and GSE51984 [32] data to generate Sim1.

Sim1_simModel

In this benchmarking framework, we mainly focused on the impact of the simulation

model that was used to generate noise in the in silico mixtures. We selected three

models for this study, which are the normal, log-normal, and negative binomial models.

For each simulation model, we generated ten gradients of noise, and the noise level is

controlled by a corresponding variance parameter. In Sim1_simModel, the library size

of negative binomial model-based simulations was set at 12M.

Normal model:

M ¼ 2log2ðS�Wþ1ÞþNð0;σptÞ

Log-normal model:

M ¼ S �W þ 2Nð0;σptÞ

In both log-normal and normal simulation models, the level of noise is controlled by

the product of a constant parameter σ and a perturbation level parameter pt. In this

study, we set σ to 10 based on previous publications [9] and set pt as an element of a

length-10 set {0, 0.1, 0.2, …, 0.9}. By tuning the pt value, we were able to generate mix-

tures with 10 levels of noise.
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Negative binomial model:

μi0 ¼ ri0 � Lj

μi j ¼ Gammaðshape ¼ 1
σ2i

; scale ¼ μi0
shape

Þ

σ i ¼ ð1:8� pt þ
1ffiffiffiffiffiffi
μi0

p Þ � expðδ
2
Þwhereδ∼Nð0; 0:25Þ

vi j ¼ Poissonðμi jÞ

We followed the simulation process suggested by Law et al. [19] and used pt to con-

trol the noise level for simulation. All variables are scalars unless specifically indicated.

ri0 is the expected genomic feature proportion of gene i in a cellular component. Lj is

the library size of sample j, and μi0 is the expected gene expression in the simulation.

In the negative binomial model, two layers of variance are added from the gamma dis-

tribution and poisson distribution. We derived gene expression value μij from gamma

sampling to model the biological variance. In the gamma distribution, the variance is

determined by the shape parameter σi. We used pt, an element in a length 10 set {0.1,

0.2, … , 0.9, 1}, to regulate the value of σi to control the noise level in the negative bino-

mial simulation. Then, we performed poisson sampling to model technical variance and

get the final simulated expression value vij.

Reference mixture variance

To ensure the universality of our conclusion on different datasets, we applied the Sim1

framework on 3 blood datasets to generate reference and in silico mixtures (Additional

file 1: Figure S1). Different from previous studies that concatenate samples derived

from different datasets, we generated 3 sets of simulated mixtures and 3 sets of refer-

ences independently and then used combinations of mixtures and references to gener-

ate 9 replicated testing environments for each noise level. For one testing environment,

there are 9 (3 times 3) deconvolution results, and 6 of them have mixture-reference

pairs derived from different data sources. For simplicity, we only presented the aver-

aged performance across 9 mixture-reference pairs, but the impact of mixture-

reference variance is considered in this analysis. The abovementioned mixture-

reference variance modeled in Sim1 is named as other noise sources in Additional file

2: Table S2.

Quantification units

To understand the impact of quantification units over different application scenarios,

we generated simulations of the most commonly used RNA-seq quantification units:

count, countNorm, cpm, and tpm. For a single sample, the unit transformation is as

follows:

cpmi ¼
CountiX

i′
Counti′

� 106
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countNormi ¼ CountiX
i′

Counti′
� LMedian

tpmi ¼
Counti

Li
� ð 1

X
i′

Counti′
Li′

Þ � 106

Here, i is the index of the targeted gene, LMedian is the median library size, and i′ re-

fers to any gene in the profile. cpm and countNorm are normalized by library size. tpm

is normalized by both library size and feature length.

Sim1_libSize

In this testing framework, we mainly focused on bias derived from varied library sizes

(Table 1 and Additional file 1: Figure S1b). We first simulated mixtures based on the

negative binomial model with the same noise gradient in Sim1_simModel. The library

size is controlled by the library size parameter Lj in the negative binomial model. For

every simulation dataset that consists of 20 simulated profiles, we set the library size of

the first ten samples as 12 million reads and the remaining ten samples as 24 million

reads.

Sim2

In this benchmarking framework, we studied the impact of the cellular component

number and the mathematical property of the weight matrix (Table 1 and Additional

file 1: Figure S2a). Mixtures are generated based on the negative binomial model with

the noise close to p1 level. For component number, we generated six sets of mixtures

constructed from 5 components up to 10 components. The cellular components used

in each gradient and the raw data source for Sim2 are listed in Table 1. For the weight

matrix, we generated 4 types of weight matrices: “orthog,” “real,” “dominant,” and “uni-

form.” We used GSE60424 [30], GSE64655 [31], GSE51984 [32], and GSE115736 [33]

data to generate Sim2.

Weight simulations

For the weight simulation, we mainly relied on random sampling from the uniform dis-

tribution. We make use of different sets of range parameters (min and max) to generate

four types of weight matrices: orthog, real, dominant, and uniform. After the initial

sampling, all weights will be rescaled so that the weights of all components sum to 1.

“Orthog” refers to the idealized weight matrix with a small condition number, which

provides a relatively optimal mathematical condition for deconvolution analysis. We

first simulated 1000 matrices (K by J) by randomly sampling weights from a uniform

distribution and then rescaled sampled weights so that the weights from all cellular

components sum to 1. Among the 1000 proportion matrices (K by J; K refers to the cel-

lular component number, and J refers to the sample number), we picked the one weight

matrix that has the smallest condition number.

“Real” refers to the weight matrix that mimics immune cell compositions in the real

whole blood sample. We sampled weights from the uniform distribution with min and

max values defined by previous observations of blood samples [21]. A small
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modification on the weights of myeloid DC and CD4 T cells was made to compensate

for other missing cell types in the blood and the investigation of multicollinearity issue.

The exact modification is available in our source code at https://github.com/LiuzLab/

paper_deconvBenchmark (DOI:https://doi.org/10.5281/zenodo.4521514). We simulated

1000 weights (K by 1000, K refers to the cellular component number) where the

weights of each cellular component are sampled from the predefined range. In the ini-

tial weight matrix, we picked J (equals to the sample number) number of columns

whose sum is closest to 1 and retrieved a K by J weight matrix. The above filtering

process is added to avoid violation of the predefined range after rescaling. After weight

simulation, the range of each component is checked and only weights that satisfied

both sum-to-1 and predefined range is selected.

“Dominant” refers to a weight matrix with one major component and K-1 minor

components. The major component was sampled from the uniform distribution within

the range of 0.9–0.99. Minor components were sampled within the range
1 − pmajor

K − 1 to
1 − pmajor

K − 1 þ 0:01. After the initial simulation, all weights are rescaled to meet the sum-to-

1 restriction.

“Uniform” refers to a weight matrix with all components have weights at a

similar level. All cellular components are sampled within the range 1
K to 1

K þ 0:0

4 . After the initial simulation, all weights are rescaled to meet the sum-to-1

restriction.

Sim3

In this benchmarking framework, we studied the impact of unknown biological content

and measurement scales (Table 1 and Additional file 1: Figure S2b). To study unknown

biological content, we generated mixtures with tumor spike-ins (HCT 116) [34]. In total,

we created three sets of tumor spike-ins: small, large, and mosaic. Tumor proportions are

sampled from uniform distributions and only differ in parameters used to set minimum

and maximum values in the sampling. “Small” tumor spike-ins are sampled within the

range of 0.2–0.3, “large” tumor spike-ins are sampled within the range of 0.7–0.8, and

“mosaic” tumor spike-ins are sampled within the range of 0.05–0.95. We then added three

sets of tumor spike-in proportions to the weight matrices generated in the Sim2 and

rescaled them to have proportions of all components sum to 1. After defining weights, we

performed in silico mixing in the count unit and then normalized it to other quantifica-

tion units (cpm, tpm, and countNorm). To study the impact of the measurement scale,

we generated two sets of evaluations where one used absolute proportions of immune

components as the ground truth and the other used relative proportions of immune com-

ponents as the ground truth. The toy example of the absolute measurement scale and the

relative measurement scale is in Additional file 2: Table S4. We used GSE60424 [30],

GSE64655 [31], GSE51984 [32], GSE115736 [33], and GSE118490 [34] data to generate

Sim3.

Assessment of deconvolution performance

To evaluate the performances of deconvolution methods, we used Pearson correlation

coefficient and mean absolute deviance as evaluation metrics. Evaluation metrics of one

cell type in a mixture set are calculated based on the following equations:
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Pearson correlation coefficient (r):

XJ

j¼1

x j − x
� �

y j − y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XJ

j¼1

x j − x
� �2 XJ

j¼1

y j − y
� �2

vuut

Mean absolute deviance (mAD):

XJ

j¼1

j x j − y j j

J

where j is the sample index, and J is the total number of mixture samples in a dataset.

xj is the estimated cellular proportion of sample j, and yj is the ground truth of sample

j. When a deconvolution returns NA values, we directly assign the highest penalty for

the evaluation metrics: r = −1, and mAD = 1, which is the worst possible value. NA

values can arise from two sources: deconvolution algorithm and correlation coefficient

calculation. For instance, we found that in the Sim1 analysis, CAMfree (reference-free

deconvolution method) [14] will return NAs when it fails to converge. To consider this

type of failure in the final comparisons, we converted NAs to − 1 or 1, which is the

worst correlation outcome (Additional file 1: Figure S3) and the worst mAD outcome

(Additional file 1: Figure S4). Correlation calculation can also produce NA values when

the denominator of the Pearson’s correlation coefficient equation is zero. This type of

error usually occurred in Sim2 and Sim3, in which methods like LinSeed [18] and

DeconvRNASeq [16] returned all zero estimations for a single cell type (Additional file

1: Figure S13).

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02290-6.

Additional file 1: Figures S1–S18, the outline of simulation frameworks, evaluation results based on three
benchmarking frameworks, variance analysis based on real and simulated data.

Additional file 2: Tables S1–S4, organized description of the benchmarking framework, tested factors, tested
methods, and measurement scales.

Additional file 3: Data description with the GEO accession number.

Additional file 4: Review history.

Acknowledgements
We thank the handling editor and anonymous reviewers for their constructive comments, and we thank R. Li for
editing this manuscript.

Review history
The review history is available as Additional file 4.

Peer review information
Barbara Cheifet and Alison Cuff were the primary editors of this article and managed its editorial process and peer
review in collaboration with the rest of the editorial team.

Authors’ contributions
H.J. designed, planned, and conducted the data analysis and wrote the manuscript. Z.L. supervised the analysis and
wrote the manuscript. All authors read and approved the final manuscript.

Jin and Liu Genome Biology          (2021) 22:102 Page 21 of 23

https://doi.org/10.1186/s13059-021-02290-6


Funding
This work has been supported by the National Institute of General Medical Sciences R01-GM120033, Cancer Prevention
Research Institute of Texas RP170387, Houston Endowment, Chao Family Foundation, and Huffington Foundation.

Availability of data and materials
All raw sequencing data in .sra format can be downloaded from GEO. The corresponding GEO accession number for
each analysis is listed in Table 1. We also put the data description of all raw data source in Additional file 3. All codes
are available under the MIT license at the https://github.com/LiuzLab/paper_deconvBenchmark [35] (DOI:https://doi.
org/10.5281/zenodo.4521514).

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, USA. 2Jan
and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, USA. 3Department of Pediatrics,
Baylor College of Medicine, Houston, USA.

Received: 2 July 2020 Accepted: 9 February 2021

References
1. Vallania F, et al. Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and

reduces biological and technical biases. Nat Commun. 2018;9(1):4735.
2. Avila Cobos F, Vandesompele J, Mestdagh P, De Preter K. Computational deconvolution of transcriptomics data from

mixed cell populations. Bioinformatics. 2018;34(11):1969–79.
3. Sturm G, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-

oncology. Bioinformatics. 2019;35:i436–45.
4. Schelker M, et al. Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun.

2017;8:2032.
5. Weber LM, et al. Essential guidelines for computational method benchmarking. Genome Biol. 2019;20:125.
6. Avila Cobos F, Alquicira-Hernandez J, Powell JE, Mestdagh P, De Preter K. Benchmarking of cell type deconvolution

pipelines for transcriptomics data. Nat Commun. 2020;11(1):5650.
7. Li B, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol. 2016;17:

1–16.
8. Mohammadi S, Zuckerman N, Goldsmith A, Grama A. A critical survey of deconvolution methods for separating cell

types in complex tissues. Proc IEEE. 2017;105:340–66.
9. Newman AM, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:1–10.
10. Newman AM, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat

Biotechnol. 2019;37:773–82.
11. Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18:1–15.
12. Zhong Y, Wan Y-W, Pang K, Chow LML, Liu Z. Digital sorting of complex tissues for cell type-specific gene expression

profiles. BMC Bioinformatics. 2013;14:89.
13. Liebner DA, Huang K, Parvin JD. MMAD: microarray microdissection with analysis of differences is a computational tool

for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics. 2014;30:682–9.
14. Chen L. CAMTHC: convex analysis of mixtures for tissue heterogeneity characterization; 2019.
15. Racle J, de Jonge K, Baumgaertner P, Speiser DE, Gfeller D. Simultaneous enumeration of cancer and immune cell types

from bulk tumor gene expression data. Elife. 2017;6:1–25.
16. Gong T, Szustakowski JD. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples

based on mRNA-Seq data. Bioinformatics. 2013;29:1083–5.
17. Wang X, Park J, Susztak K, Zhang NR. Bulk tissue cell type deconvolution with multi-subject single-cell expression

reference. Nat Commun. 2019;10(1):380.
18. Zaitsev K, Bambouskova M, Swain A, Artyomov MN. Complete deconvolution of cellular mixtures based on linearity of

transcriptional signatures. Nat Commun. 2019;10(1):2209.
19. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts.

Genome Biol. 2014;15:R29.
20. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital

gene expression data. Bioinformatics. 2009;26:139–40.
21. Inc., S. T. Frequencies of cell types in human peripheral blood. 2019. url: https://www.stemcell.com/media/files/wallcha

rt/WA10006-Frequencies_Cell_Types_Human_Peripheral_Blood.pdf.
22. Calderon D, et al. Landscape of stimulation-responsive chromatin across diverse human immune cells. Nat Genet. 2019;

51:1494–505.
23. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:1–14.
24. Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2011;39:2010–2.
25. Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
26. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC

Bioinformatics. 2011;12:323.
27. R Core Team. R: a language and environment for statistical computing. (2019).

Jin and Liu Genome Biology          (2021) 22:102 Page 22 of 23

https://github.com/LiuzLab/paper_deconvBenchmark
https://doi.org/10.5281/zenodo.4521514
https://doi.org/10.5281/zenodo.4521514
https://www.stemcell.com/media/files/wallchart/WA10006-Frequencies_Cell_Types_Human_Peripheral_Blood.pdf
https://www.stemcell.com/media/files/wallchart/WA10006-Frequencies_Cell_Types_Human_Peripheral_Blood.pdf


28. Simoni Y, et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature.
2018;557:575–9.

29. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15:1–21.

30. Linsley PS, Speake C, Whalen E, Chaussabel D. Copy number loss of the interferon gene cluster in melanomas is linked
to reduced t cell infiltrateand poor patient prognosis. PloS One. 2014;9(10):e109760.

31. Hoek KL, et al. A cell-based systems biology assessment of human blood to monitor immune responses after influenza
vaccination. PLoS One. 2015;10:1–24.

32. Pabst C, et al. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo.
Blood. 2016;127:2018–27.

33. Choi J, et al. Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans. Nucleic
Acids Res. 2019;47:D780–5.

34. Wagner S, et al. Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant
colorectal cancer. Oncogene. 2019;38:1717–33.

35. Jin H, Liu Z. A benchmark for RNA-seq deconvolution analysis under dynamic testing environments. Source code.
(2021). https://github.com/LiuzLab/paper_deconvBenchmark.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jin and Liu Genome Biology          (2021) 22:102 Page 23 of 23

https://github.com/LiuzLab/paper_deconvBenchmark

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Results
	Using simulation to generate diverse deconvolution testing environments
	Selection of simulation model affecting deconvolution evaluation
	The negative binomial model recapitulates noise structures of real data
	Library size normalization is required to ensure the deconvolution accuracy
	Impact of cellular component number and weight matrix on deconvolution analysis
	Impact of the unknown component on deconvolution analysis

	Discussion
	Methods
	Data processing
	Marker gene selection
	Signature gene selection
	Reference generation
	Benchmarking framework construction
	Sim1
	Sim1_simModel

	Reference mixture variance
	Quantification units
	Sim1_libSize
	Sim2

	Weight simulations
	Sim3

	Assessment of deconvolution performance

	Supplementary Information
	Acknowledgements
	Review history
	Peer review information
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher’s Note

