
REVIEW Open Access

Addressing uncertainty in genome-scale
metabolic model reconstruction and
analysis
David B. Bernstein1†, Snorre Sulheim2,3,4†, Eivind Almaas3,5 and Daniel Segrè1,2,6*

* Correspondence: dsegre@bu.edu
†David B. Bernstein and Snorre
Sulheim contributed equally to this
work.
1Department of Biomedical
Engineering and Biological Design
Center, Boston University, Boston,
MA, USA
2Bioinformatics Program, Boston
University, Boston, MA, USA
Full list of author information is
available at the end of the article

Abstract

The reconstruction and analysis of genome-scale metabolic models constitutes a
powerful systems biology approach, with applications ranging from basic
understanding of genotype-phenotype mapping to solving biomedical and
environmental problems. However, the biological insight obtained from these
models is limited by multiple heterogeneous sources of uncertainty, which are
often difficult to quantify. Here we review the major sources of uncertainty and
survey existing approaches developed for representing and addressing them. A
unified formal characterization of these uncertainties through probabilistic
approaches and ensemble modeling will facilitate convergence towards consistent
reconstruction pipelines, improved data integration algorithms, and more accurate
assessment of predictive capacity.

Introduction
Genome-scale metabolic models (GEMs) aim to capture a systems-level representation

of the entirety of metabolic functions of a cell. They represent complex cellular meta-

bolic networks using a stoichiometric matrix, which enables sophisticated mathemat-

ical analysis of metabolism at the whole-cell level [1]. Not only do GEMs provide a

framework for mapping species-specific knowledge and complex ‘omics data to meta-

bolic networks, but coupled with constraint-based reconstruction and analysis

(COBRA) methods, such as Flux Balance Analysis (FBA), they facilitate the translation

of hypotheses into algorithms that can be used to generate testable predictions of

metabolic phenotypes [2–4]. These methods are now used to study biological systems

for many different applications, including in metabolic engineering, human metabolism

and biomedicine, and microbial ecology [5–11].

Over 100 well-curated GEMs exist for a range of prokaryotes and eukaryotes, offer-

ing an organized and mathematically tractable representation of these organisms’

metabolic networks [12, 13]. A detailed protocol has been described for the reconstruc-

tion of well-curated GEMs for new organisms [14]. Additionally, the increased
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availability of whole-genome sequencing in combination with the development of pipe-

lines for automatic model reconstruction has led to several frameworks that support

rapid model reconstruction for a large number of non-model organisms [15–19]. For

example, the US Department of Energy systems biology knowledgebase (KBase.us) cur-

rently enables the automatic generation of draft GEMs from over 80,000 sequenced ge-

nomes [20]. Thus, GEMs are rapidly becoming applicable for a wide range of biological

applications.

Despite the numerous reconstructions and wide range of applications, GEMs have

important limitations [21]. In this review, we focus on one major factor that currently

limits the successful application of GEMs: the inherent uncertainty in GEM predictions

that arises from degeneracy in both model structure (reconstruction) and simulation re-

sults (analysis). While GEM reconstructions typically only yield one specific metabolic

network as the final outcome, this one network is indeed one of many possible net-

works that could have been constructed through different choices of algorithms and

availability of information (Fig. 1). The process of GEM reconstruction is divided into

(1) genome annotation, (2) environment specification, (3) biomass formulation, and (4)

network gap-filling. Different choices in these first four steps can lead to reconstructed

networks with different structures (reactions and constraints). On top of these choices,

the final phenotypic prediction and biological interpretation is significantly affected by

(5) the choice of flux simulation method. This review moves through these five differ-

ent aspects of GEM reconstruction and analysis, outlining the key sources of uncer-

tainty in each. In addition, we review various approaches that have been developed to

deal with this uncertainty. We emphasize approaches that utilize probabilities or an en-

semble of models to represent uncertainty. A table associated with each section out-

lines the different approaches that have been summarized and the sources of

uncertainty that they address (Tables 1, 2, 3, 4 and 5).

Our ability to assess and communicate the sources of uncertainty associated with a

model can have great impact on the relevance of predictions and on the degree to

which these predictions can be constructively used for follow-up studies, as has been

noted for the field of systems biology in general [22]. This review is not an introduction

to genome-scale metabolic modeling or a survey of its applications, as these topics have

been covered elsewhere [5, 11, 23]. Rather, we hope that this text will serve as a road-

map facilitating the development of methods that further formalize a unified

characterization of uncertainty in GEM reconstruction and analysis.

Genome annotation
The first step towards a GEM reconstruction is the identification and functional anno-

tation of the genes encoding metabolic enzymes present in the genome (Table 1).

These annotations come from databases that employ homology-based methods for

mapping genome sequences to metabolic reactions. The use of these annotation data-

bases in GEM reconstruction pipelines in general is covered in several reviews [24–27].

It has been noted that the choice of a particular database significantly affects the struc-

ture of the reconstructed network [19]. This variability can be attributed to the limited

accuracy of homology-based methods [28], misannotations present in large databases

[29], the fact that many genes can only be annotated as hypothetical sequences of un-

known function [30, 31], and the high fraction of “orphan” enzyme functions that
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Fig. 1 (See legend on next page.)
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cannot be mapped to a particular genome sequence [32]. Some, but not all, of this vari-

ability can be mitigated by combining multiple databases to increase the coverage of

annotation when reconstructing a GEM [33, 34]. Furthermore, annotation for GEM re-

construction has an added layer of complexity beyond mapping genes to general ontol-

ogies or homologs. It is necessary to map genes to the metabolic reactions that they

enable. These mappings, referred to as gene-protein-reaction association rules, use

Boolean expressions to encode the nonlinear mapping between genes and reactions

(manifested in multimeric enzymes, multifunctional enzymes and isoenzymes). The re-

construction and interpretation of these rules adds additional uncertainty to the anno-

tation process. Even if a rule faithfully represents the functional possibilities encoded in

a set of genes, the cellular “interpretation” of the rule may be highly nuanced and com-

plex. For example, isoenzymes may not always compensate for each other’s deletion

due to different regulatory couplings [35], and alternative usage of the Boolean relation-

ship may best capture the cost of a gene deletion and its degree of evolutionary conser-

vation [36]. An innovative approach for representing gene-protein-reaction association

rules is to encode them into the stoichiometric matrix of the GEM [37]. This encoding

makes it possible to extend flux sampling approaches to gene sampling, facilitating the

quantification of uncertainty. These sampling approaches are discussed further in the

flux simulation section.

A few reconstruction pipelines try to circumvent the problem of incorrect or missing

functional annotation by using previously curated GEMs as annotation templates.

Using several different reconstruction pipelines—RAVEN [38, 39], AuReMe/Panto-

graph [40, 41], or MetaDraft [42]—the user can map annotations from one organism

directly to a curated model of a closely related organism by employing homology

searches between the two. In this way, well-curated metabolic reaction annotations

from an established GEM are propagated to new GEM reconstructions. Another recon-

struction pipeline, CarveMe, uses a curated network of all possible reactions, based on

the BiGG database [13], as the reference and “carves out” a subset of reactions to create

organism-specific models [43]. While these methods may provide more complete re-

constructions that require less gap-filling, they do not solve the fundamental issue of

the uncertainty in the mapping of homologs or provide an estimate of the uncertainty

associated with the presence of each reaction in the network.

Another approach is to directly incorporate uncertainty in functional annotation by

assigning several likely annotations to each gene rather than picking the single most

likely. In one likelihood-based approach, metabolic reactions are annotated probabilis-

tically by taking into account the overall homology score, BLAST e-value, and keeping

track of suboptimal annotations [44]. In this approach, metabolic reactions are assigned

a probability of being present in a GEM based on both the strength and the uniqueness

of the annotation. This approach has been developed into the ProbAnnoPy and

(See figure on previous page.)
Fig. 1 A general progression for genome-scale metabolic model reconstruction and analysis is represented by
five major steps. The central black arrows demonstrate a standard approach, which yields a single output from
each step. The gray arrows represent the uncertainty in this process, with the output of each step as an
ensemble of possible results. The new additions to the model at each step are shown in red: circles represent
metabolites, stars represent biomass components, arrows represent metabolic reactions, and bold arrows
represent a specific flux distribution
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ProbAnnoWeb pipelines that provide probabilistic annotations in the ModelSEED

framework [45]. Beyond using only homology from BLAST to inform annotation prob-

abilities, the CoReCo algorithm has additionally included homology scores based on

global trace graphs, which have been proposed as an improved approach for identifying

distant homologs [46]. The CoReCo algorithm also utilizes phylogenetic information to

improve the probabilistic annotation of GEMs for multiple organisms simultaneously.

Additional context information has also been incorporated into a probabilistic meta-

bolic reaction annotation approach in the GLOBUS algorithm [47]. Context-based in-

formation includes gene correlations from transcriptomics, co-localization of genes on

the chromosome and phylogenetic profiles, all of which are complementary to gene-

sequence homology for inferring functional protein annotations. The probabilistic

metabolic reaction annotations generated with these methods serve as a good starting

point for subsequent reconstruction steps. For example, the likelihood-based approach

mentioned here is used to implement a probabilistic gap-filling algorithm, further dis-

cussed in the gap-filling section [44].

Other concepts that have been used to generally improve gene functional annotation

could be further incorporated into GEM annotation pipelines. For example, functional

annotation of enzymes could be improved by the incorporation of enzyme active/cata-

lytic site information from databases such as M-CSA [48]. Additionally, the annotation

of specific classes of proteins, such as biosynthetic gene clusters [49, 50], transporters

[51, 52], and amino acid biosynthetic pathways [53], can be improved by using ap-

proaches tailored to identify features that are specific to those protein classes. In par-

ticular, transport reactions are difficult to properly annotate and can add significant

uncertainty to GEMs [14]. For example, the substrate specificity of automatically anno-

tated transport reactions can often be improved with experimental data [54]. Further-

more, incorrect transport reactions can cause ATP generating cycles that lead to

inaccuracies in GEM predictions [55]. Beyond traditional annotation approaches, ma-

chine learning has also been used to improve enzyme annotation by predicting EC

numbers directly from gene sequences, potentially picking up on subtle features that

would otherwise be missed by homology-matching-based approaches [56]. The

localization of reactions to specific compartments is an added layer of annotation that

is important for accurate GEM reconstruction, especially of eukaryotes [57, 58]. Also in

this case, machine learning approaches can be used to predict the specific subcellular

localization of proteins [59, 60]. New high-throughput genomics experimental methods

can also be used to simultaneously assess the function of many genes in a large number

of environments [54, 61]. Incorporating novel ideas from these methods into GEM re-

constructions may reduce the overall uncertainty of functional annotation.

Environment specification
To use a GEM for the prediction of expected phenotypes, or for the simulation of dy-

namic processes, one must define the chemical composition of the environment (Table

2). Establishing the list of environmentally available molecules is straightforward in

simple laboratory experiments, in which defined media with known chemical compos-

ition are used. In this context, databases such as Media DB [62] or KOMODO [63]

have cataloged a large number of defined media, greatly facilitating metabolic modeling.

Many laboratory experiments, however, are performed in undefined media containing
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ingredients such as “yeast extract” that cannot be easily listed and quantified. In nature,

microbes often exist in highly complex environments where the chemical inputs to the

system are undefined, vary with time, and are altered by other microbes in the environ-

ment. Furthermore, it is not sufficient to know the list of compounds present in the

cultivation medium, but one must also know at what rates the compounds can be con-

sumed by the organism to properly set the bounds on the uptake reactions of the meta-

bolic model. In principle, the composition of the environment can be determined

through experimental techniques such as exo-metabolomics, where measurements of

metabolites in the extracellular environment are used to infer cellular uptake and secre-

tion rates [64–68]. This approach can provide valuable information for reducing the

uncertainty in the environment specification. However, this data comes with its

own uncertainty that should be carefully addressed [69]. All of these factors lead

to a wide range of uncertainty arising in environment specification for metabolic

network analysis [70].

GEMs provide an opportunity to address the uncertainty associated with complex en-

vironments. GEM analysis algorithms, such as FBA, are computationally efficient and

can thus be run across a large ensemble of environments to quantify the sensitivity of

simulated fluxes to nutrient composition. Several studies have quantified this sensitivity

by identifying aspects of GEM predictions that are either strongly affected by or robust

to variation in the environmental composition [71–77]. Describing this sensitivity, or

robustness, provides a clearer picture of how uncertainty in the environment specifica-

tion may, or may not, propagate to specific GEM predictions. Early on, phenotype

phase plane analysis was developed to show the impact on optimal growth rate of vary-

ing the fluxes of two limiting resources [71, 72]. Moving beyond pairs of resources,

large ensembles of nutrients can be randomly sampled to assess the variability of all

intracellular fluxes. For example, Almaas et al. showed, using a well-curated Escherichia

coli GEM, that the overall distribution of metabolic fluxes is robust to the environmen-

tal composition; however, specific fluxes vary, with most discrete variations occurring

in a connected “high-flux backbone” of reactions [73]. Subsequent work highlighted the

evolutionary importance of an active core of reactions that carry flux in all environ-

ments [74]. Reed and Palsson further demonstrated that reactions with correlated

fluxes across environments are indicative of transcriptional regulatory structure [75].

These studies point to the non-trivial nature of the sensitivity of GEM predictions to

Table 1 Summary of approaches that address sources of uncertainty in genome annotation.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Comparison of pipelines Variability across databases [19]

Combining databases Variability across databases [33, 34]

Template GEMs Incomplete annotations in non-model
organisms

[38–43]

Probabilistic annotation Annotation errors [44, 45]

Probabilistic annotation + context
Information

Annotation errors [46, 47]

Specific databases and high-throughput
genomics

Annotation errors [48–54, 56, 59–
61]
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environment specification. Beyond the context of individual organisms, GEM analysis

has been used to demonstrate that varying the environment can alter the nature of

metabolic interactions between microbial organisms [78] and that certain environmen-

tal variables, such as the presence of oxygen, can have a significant impact on the inter-

action types that arise [79]. Variable environments can impact cellular metabolism

from individual reaction fluxes up to the level of microbial interactions. Thus, in appli-

cations where the environment is uncertain, ensemble or probabilistic approaches are

needed to fully capture potential phenotypes.

A more recent approach, inspired by the statistical physics concept of network perco-

lation, utilizes random sampling of nutrient compositions to quantify which metabolites

can be consistently produced by a given metabolic network across many environments

[80]. This approach introduced a probabilistic framework for representing the input

metabolites of a metabolic network, which could further facilitate random sampling of

environmental ensembles in future methods. While the current implementation of this

framework samples all environmental metabolites with equal probability, one could en-

visage future approaches which represent environmental uncertainties more accurately

by using biased distributions that incorporate any available knowledge. This approach

would fill the existing gap between assuming a single known environment and ran-

domly sampling environments uniformly. Additionally, environment sampling could be

used to vary the flux (in FBA) or concentrations (in dynamic FBA) of different environ-

mental components, in addition to their presence and absence, to assess the impact of

these quantities on metabolic network properties.

The specification of the environment for GEM analysis could be further improved

using “reverse ecology” methods that aim to infer the native environment from the

metabolic network structure either through constraint-based optimization [81–83] or

by defining “seed” metabolites that are needed as inputs for a metabolic network and

are therefore more likely to be found in that organism’s natural environment [84, 85].

Since these methods utilize the metabolic network structure to inform the environment

specification, they should be applied carefully as uncertainty in the network may propa-

gate into environment specification.

Biomass formulation
The cell biomass used in GEMs is an inventory list of all compounds essential for

growth of a given organism, weighted to represent the amount of each component

present in 1 g of dry-weight biomass. The reaction that transforms all biomass compo-

nents into a unit of biomass is used to represent growth in GEMs and is necessary to

Table 2 Summary of approaches that address sources of uncertainty in environment specification.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Media databases Inconsistent media definition [62, 63]

Experimental determination Undefined environment composition [64–68]

Phenotype phase plane Variable environment composition [71, 72]

Ensemble sampling Variable environment composition [73–79]

Probabilistic sampling Variable environment composition [80]

Reverse ecology Undefined environment composition [81–85]
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perform popular analyses such as FBA. Since several aspects of the biomass reaction

and its use have been reviewed before [86], we will focus on the uncertainty associated

with its formulation (Table 3).

The main source of uncertainty in the formulation of biomass composition is the lack

of direct experimental measurements for most organisms. In the absence of specific

data, the biomass composition from a model organism (e.g., E. coli for Gram-negative

or Bacillus subtilis for Gram-positive bacteria) is often used as template, despite the

significant uncharacterized variation in biomass composition likely to exist across dif-

ferent organisms. This trend has been verified by hierarchical clustering of biomass

compositions from 71 curated GEMs: rather than taxonomic relations, the clusters

were defined by the template biomass functions used in the model reconstruction [87].

Similarly, in a survey of plants, the biomass was only experimentally determined in 5 of

21 GEMs [88]. Furthermore, even within the same organism, the biomass composition

can change in response to changes in growth rate, nutrient availability, temperature,

and osmotic stress [89–95].

A number of studies have addressed the sensitivity of model predictions to changes

in biomass formulation. Because these studies differ both in how the biomass function

is changed and which model predictions are evaluated, they reach different conclusions.

Initially, Pramanik and Keasling used correlations between growth rate and macromol-

ecular abundances to estimate growth-rate-specific biomass compositions in E. coli [96,

97]. When the high growth-rate biomass composition was used to simulate fluxes in a

low growth-rate environment, or vice versa, the total deviation from measured fluxes

increased drastically compared to simulations with correct biomass specification [96].

Secondly, they showed that the predicted fluxes were sensitive to quantitative changes

in the fatty acid composition of the biomass [97]. More recent analyses of the effect of

changing the biomass composition in Saccharomyces cerevisiae have shown large influ-

ence on gene knock-out growth predictions [98], variable effect on substrate uptake

rates [99], and an effect on the flux distribution dependent on the identity of the limit-

ing nutrient [100]. In contrast, little effect was found on the predicted growth yield in

Pseudomonas putida [101]. To address the dependence of the biomass formulation on

the environment, within an individual organism, Schulz et al. propose two concepts for

the incorporation of, or interpolation between, multiple biomass functions correspond-

ing to different growth environments [102]. The first concept allows the GEM to

choose an optimal linear combination of existing biomass functions while the second

concept uses a hyperplane interpolation to predict the correct biomass function for the

selected growth environment. The authors use hypothetical biomass functions to show

that the choice of method has a clear impact on model predictions, but further evalu-

ation calls for experimental follow-up. Swapping the biomass between different organ-

isms can provide insight into the sensitivity of GEMS to strain specific biomass

formulations, which is an important consideration given the widespread use of template

biomass formulations. Leveraging three independent reconstructions of Arabidopsis

thaliana with substantially different biomass reactions, it was found that the fluxes in

central carbon metabolism were robust to replacement of the biomass reaction from

one of the other models [88]. In contrast, swapping biomass reactions between five dif-

ferent bacterial species resulted in up to 30% change in predicted essential reactions

[87].
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Although the effect of uncertainty and error in the biomass coefficients depends on a

large number of variables and how the effect is measured, it is clear that GEMs would

benefit from increased precision in the estimation of biomass coefficients, which would

ideally be organism and condition specific. The need for accurate estimates of the bio-

mass composition has recently been addressed by experimental protocols [103–105]

and the software BOFdat [106]. BOFdat provides a pipeline for computation of biomass

coefficients and reports that the macromolecular composition is the most important

factor in determining stoichiometric coefficients and should therefore be prioritized

above ‘omics datasets. One elegant feature of BOFdat is a genetic algorithm which sam-

ples ensembles of biomass formulations to identify carbohydrate and small-molecule

compositions such that model simulations optimally correspond with knock-out

phenotype data. Looking forward, approaches such as BOFdat could be used to repre-

sent uncertainty in the biomass composition by sampling from an ensemble of possible

biomass equations. Likewise, uncertainty in the stoichiometry of each biomass compo-

nent could be incorporated by probabilistically sampling each coefficient from an ap-

propriate distribution. Experimental data could be incorporated into this process to

guide and constrain the distributions that are sampled through a Bayesian approach.

Network gap-filling
Gap-filling is an important step in GEM reconstruction that transforms a draft network

into one that can produce biomass in the specified environment (Table 4). The idea of

gap-filling—that missing knowledge in metabolism may require algorithms to identify

reactions absent in the representation of a specific pathway, but likely present in the or-

ganism—has been around since the early days of metabolic network modeling [107].

Gap-filling algorithms in general have been reviewed previously [108], but in brief, they

utilize a universal database of possible reactions to augment an existing metabolic net-

work with the goal of enabling feasible growth states, e.g., by connecting dead-end me-

tabolites. Here we focus on the uncertainty associated with this process. Gap-filling is

inherently uncertain because the reactions added are generally not supported by gen-

omic evidence. Moreover, multiple solutions can often be found to satisfy the same

gap-filling problem. Due to this uncertainty, basic gap-filling algorithms are known to

be somewhat inaccurate [109], prompting recent benchmarking on randomly degraded

metabolic networks to highlight the variability in gap-filling performance [110]. Fur-

thermore, many GEMs contain significant inconsistencies even after the application of

gap-filling approaches, and their identification is important for ensuring model fidelity

[111].

Table 3 Summary of approaches that address sources of uncertainty in biomass formulation.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Alternative biomass formulations Variability in biomass within organisms [96–101]

Environment-dependent biomass formulation Variability in biomass within organisms [102]

Cross-organism biomass comparison Biomass differences across organisms [87, 88]

Experimental determination Undefined biomass composition [103–105]

Ensemble sampling Undefined biomass composition [106]
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The uncertainty in gap-filling solutions has prompted the development of various prob-

abilistic approaches to integrate data and prioritize solutions. An early innovation in prob-

abilistic gap-filling algorithms was the development of a method to evaluate the addition

of reactions to fill gaps based on a Bayesian network including sequence homology, op-

eron, and pathway-based information [112]. A similar approach is to use probabilistic

weights during the gap-filling process, such that more probable reactions incur a smaller

penalty when added to the metabolic network. The CROP algorithm is an example of

gap-filling based on growth phenotype data that implements weights based on various

sources of evidence, including manually curated experimental evidence, pathways known

to be associated with an organism, thermodynamics, and probabilistic estimates of en-

zyme function [113]. Another probabilistic approach has been developed to translate se-

quence homology into the likelihood that a metabolic reaction is present in a given

metabolic network (discussed in the “Genome annotation” section); these likelihoods can

then be used as probabilistic weights during the gap-filling procedure [44, 45].

Beyond probabilistic gap-filling methods, ensemble approaches have been developed

to represent the uncertainty in gap-filling solutions as an ensemble of possible gap-

filled GEMs. An early approach in this area prunes a universal metabolic network to

identify locally minimal gap-filling solutions that align with experimental data [114]. In

this approach, an ensemble of metabolic networks is generated by randomly assigning

the order in which reactions are pruned from an original universal metabolic network.

A similar pruning-based ensemble method, MIRAGE, additionally includes gene ex-

pression and phylogeny when weighting the order in which to remove reactions [115].

The idea of ensemble gap-filling was more fully developed by an approach that utilizes

growth phenotype data in a randomized order to generate an ensemble of gap-filling

solutions [116]. By randomly changing the sequence in which growth phenotype data

was presented to the gap-filling algorithm, Biggs and Papin generated an ensemble of

metabolic networks that equally agree with the given data. This study further demon-

strated that utilizing the ensemble gap-filling result can be more accurate than using

the individual results, or a global simultaneously gap-filled result. An additional ensem-

ble gap-filling approach is implemented in the CarveMe method. CarveMe generates

ensembles of gap-filled models by assigning random weights to reactions without gen-

omic evidence [43].

Finally, automated gap-filling methods are fundamentally limited by the underlying

database(s) of metabolic reactions that they utilize [117, 118]. Thus, uncertainty in this

database set can have a large impact on gap-filling performance. This is a major limita-

tion when considering the complexity of the true metabolic universe and the fact that

we likely do not know the proper annotations for all metabolic reactions. In light of this

limitation, a number of methods have been developed to predict possible metabolic re-

actions based on general reaction rules. Many of these approaches have been reviewed

previously in the context of predicting biosynthetic pathways for target compounds [25,

119, 120]. One of the earlier approaches, the BNICE framework, expands the metabolic

universe by learning generic reaction rules from the KEGG reactome [121]. This frame-

work was subsequently used to develop MINE and ATLAS, databases of theoretically

possible compounds and enzymatic reactions, respectively [122–124]. BNICE also sug-

gests three-level EC-numbers for hypothetical reactions, which can guide discovery of

proteins associated with de novo reactions. The theoretical number of reactions in the
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expanded ATLAS is more than 10-fold higher than the number of reactions in KEGG,

indicating that a large number of unexpected chemical transformations may be in-

volved in metabolism. As we grapple with uncertainty in metabolic network reconstruc-

tion, de novo methods such as these can help us address unknown unknowns and

provide exciting unanticipated insights. Moving forward, a combination of probabilistic

and ensemble methods for data integration and de novo reaction prediction will enable

the generation of gap-filled metabolic networks that represent uncertainty and can be

better used to guide model refinement.

Flux simulation
One of the most common and powerful uses of GEMs is the prediction of metabolic

phenotypes at steady state through the computation of expected fluxes through each

reaction. Because the rank of the stoichiometric matrix is almost always less than the

number of reactions, the linear system of equations associated with steady state is, in

general, underdetermined. Thus, there are an infinite number of solutions within the

multidimensional solution space (a space where each dimension corresponds to the flux

of a metabolic reaction) [125]. Any point within the solution space is a feasible solution

representing a metabolic phenotype. While there often is an emphasis on identifying

the correct solution in this solution space (i.e., an individual point closest to the out-

come of experimental measurements), choices and uncertainty in some of the above as-

pects of the computation necessarily lead to uncertainty in the prediction of the fluxes

themselves. In this section, we will review prior work addressing this uncertainty, with

an emphasis on methods geared towards embracing and reporting it (Table 5).

The flagship method for simulating metabolic fluxes in GEMs, FBA, uses linear pro-

gramming to identify a point (or a subspace) in the solution space that optimizes a pre-

defined cellular objective [23, 126–129]. Quite often, this objective is chosen to be the

maximization of biomass production. A fundamental question that has surrounded the

FBA approach since its early days is whether and under what conditions the assump-

tion that biological systems operate close to a predictable optimum is valid, and if so,

which objective function best represents the metabolic goals of a cell. Several studies

have explored this uncertainty associated with the choice of the objective function.

Schuetz et al. show that intracellular fluxes can be accurately predicted using FBA and

an appropriate cellular objective [130]. However, none of the 11 selected objectives

could provide the best predictability across different conditions when comparing pre-

dicted fluxes with 13C flux experiments in E. coli. It was early on demonstrated that

FBA with maximization of growth rate could predict the phenotype of E. coli wild-type

strains, supporting the assumption that unicellular organisms have evolved towards

Table 4 Summary of approaches that address sources of uncertainty in network gap-filling. While
all gap-filling approaches address uncertainty arising from missing annotations, here we point out
approaches that address uncertainty in the gap-filling solutions. Highlighted in bold are key
approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Evaluating gap-filling accuracy Degenerate solutions [109, 110]

Probabilistic gap-filling Degenerate solutions [44, 45, 112, 113]

Ensemble gap-filling Degenerate solutions [43, 114–116]

De novo reaction prediction Reaction database incompleteness [121–124]
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maximal growth [131]. Indeed, by minimizing the deviation from measured fluxes in

yeast, maximization of growth rate was identified as the most likely objective in

glucose-limited conditions [132]. Taking an inverse FBA approach, Zhao et al. pre-

dicted the objective function for E. coli strains evolved through 50,000 generations

[133]. Although they identified an infinite number of objective functions that could de-

scribe the measured flux ratios, maximization of biomass alone was not one of these

objectives [134]. A different study of these E. coli strains also provided nuance to our

understanding of evolutionary pressures by confirming that E. coli evolves towards

maximization of growth rate primarily by increasing substrate usage, but only if the an-

cestral strain is initially far from the optimum [135].

In a number of instances, the phenotypes of knock-out mutants are actually more ac-

curately predicted when taking into account suboptimal solutions (near but not exactly

on the FBA predicted optimum). For example, the increased accuracy of the MOMA

and related methods stems from the assumption that a knock-out strain is still steered

towards the wild-type optimum by the cellular regulatory network and may not neces-

sarily approach the knock-out optimum [136]. The PSEUDO method can further im-

prove the accuracy of knock-out flux predictions by assuming that the knock-out flux

is closest to a degenerate space of suboptimal solutions near the wild-type optimum,

representing regulatory variability around the wild-type solution [137]. The optimality

of solutions has been further investigated in a study leveraging 13C-measurements of 9

different bacteria, which found that metabolism operates close to a Pareto surface that

balances the trade-off between maximization of growth and ability to adapt to changing

conditions [138]. In summary, these results suggest that suboptimality may provide in-

creased robustness to stochastic variation and perturbation, a property with known im-

portance in biological systems [139, 140].

To avoid biased assumptions of the metabolic goal of a microorganism, one can

characterize the complete solution space to describe all possible phenotypes satisfying

the steady-state and flux constraints. It is important to note that, even at the optimum

predicted by FBA, the solution is rarely unique. The predicted flux vector must there-

fore be analyzed with caution. Flux variability analysis (FVA) can be used to estimate

the range of possible fluxes at the optimum [141], but since the range of each reaction

is estimated independently, the method provides no information on the correlations be-

tween fluxes. More sophisticated methods include enumeration of alternative optima

[142–145], or a full description of the solution space through flux coupling [146], ex-

treme pathway analysis [147], elementary flux modes (EFMs) [148], and elementary flux

vectors (EFVs) [149]. EFMs decompose the steady-state solution space into characteris-

tic support minimal vectors, while EFVs have the added benefit of incorporating flux

bounds to further constrain the space to a polyhedron. Although these methods pro-

vide an unbiased framework for identifying metabolic pathways, a representation of the

entire solution space is generally intractable for genome-scale models because of the

non-polynomial scaling with the number of reactions [150].

Random sampling provides a scalable approach to describe possible phenotypes in

the solution space. Monte-Carlo-based algorithms [151–153] have proven useful for a

large number of applications [154], from a general description of the distribution of

metabolic fluxes [73, 155, 156] to transcriptional regulation of key enzymes [157] or

comparison of bacterial strains [158]. However, verification of convergence is a key
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quality control of random sampling results currently lacking in analysis of GEMs [159].

The computational time required to reach convergence is a practical issue for large

models, but recent work shows that the sampling results can be estimated at a reduced

cost by using analytical methods and Bayesian inference [160]. Random sampling of the

flux space can also be probabilistically biased to better represent uncertainty. A recent

concept estimates the probability distribution of flux states that maximizes entropy

with an average growth rate equal to the experimental value [161, 162]. As stated in the

principle of maximum entropy, this probability distribution is the best representation

of available knowledge [163, 164]. Another recently developed approach, Bayesian FBA,

can be used to sample metabolic fluxes from a truncated multivariate normal distribu-

tion with prior distribution centered around zero [165]. In Bayesian FBA, prior know-

ledge such as measured growth and uptake rates, or 13C - flux data, can be elegantly

incorporated in calculations of posterior flux distributions in a generic Bayesian frame-

work that provides insight into the uncertainty associated with individual fluxes and

flux couplings.

The uncertainty in model predictions can be reduced by introduction of additional

constraints which reduce the size of the solution space [3, 125]. The most common

constraints are those associated with limits on nutrient uptake (as defined by the envir-

onment composition), thermodynamic irreversibility, and the presence of specific reac-

tions, such as the growth and non-growth associated maintenance [166, 167]. However,

these constraints have their own associated uncertainties. Uncertainty in growth and

non-growth associated maintenance derives both from the experimental growth data

used to estimate these values [14], and variability in the maintenance cost of cellular

processes in different environments and organisms [168]. The impact of this uncer-

tainty on GEM predictions has only been briefly touched upon [169, 170]. Taking into

account thermodynamic constraints on metabolic reaction fluxes is a powerful ap-

proach to improve model predictions, both by identifying subnetworks violating the

second law of thermodynamics and to infer the direction of metabolic reactions from

the calculated change in Gibbs free energy [55, 171–174]. However, the calculation of

Gibbs free energy for the large number of reactions present in GEMs requires approxi-

mate approaches, such as the group contribution method [175, 176].

Another branch of methods uses either transcriptome [177] or proteome [178, 179]

data to constrain reaction fluxes according to the abundance of proteins catalyzing the

respective metabolic reactions. While transcriptomics data have the benefit of increased

coverage of genes compared to proteomics (e.g., covers 60% of the enzymes in the

yeast-GEM) [178], the transcript levels do not necessarily correlate with enzyme abun-

dance [180, 181]. This may explain why Parsimonious enzyme usage FBA (pFBA),

which minimizes the total sum of the absolute values of fluxes [182], in general outper-

formed seven different transcriptome-based methods in predicting intracellular fluxes

for both S. cerevisiae and E. coli across three different conditions [177]. An additional

advantage of pFBA is that it does not require additional parameters, unlike the afore-

mentioned transcriptomics/proteomics approaches, which may require a large number

of parameters to properly integrate the data. Similar to pFBA, several other methods

use global constraints to improve model predictions. Of particular interest are Con-

strained Allocation Flux Balance Analysis (CAFBA) [183] which takes the growth-

dependent ribosome allocation into account, the global constraint of dissipation of
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Gibbs free energy [184], and the extension of pFBA to include reaction likelihoods

[185]. In any of these methods, particularly those that use additional data and parame-

ters, it is important to remember that additional data used to further constrain the flux

space comes with its own associated uncertainty, which must be taken into account

when integrating it into GEMs.

The steady-state assumption forms the basis of constraint-based analysis by requiring

mass-balance of all intracellular metabolites and defines the solution space discussed

throughout this section. This assumption is justified because transient changes in me-

tabolite concentrations occur rapidly compared to environmental and regulatory per-

turbations, leading to rapid convergence to a quasi-steady-state where metabolite

concentrations are constant [186, 187]. However, when considering the uncertainty in

stoichiometric coefficients, particularly in the biomass function, the steady-state as-

sumption is effectively relaxed [165, 188, 189]. The RAMP approach demonstrates that

relaxing the steady-state assumption can lead to more accurate predictions of intracel-

lular fluxes [189]. The RAMP solution converges to the FBA solution when the uncer-

tainty in stoichiometric coefficients approaches zero, demonstrating that this is a more

general approach. While only uncertainty in the coefficients of the biomass reaction is

explicitly tested in this work, RAMP’s general framework is not limited to this case and

can include uncertainty in reaction bounds or uncertainty in coefficients associated

with protein allocation or thermodynamics.

Discussion
In this review, we highlighted methods that use probabilistic approaches and ensemble

modeling to represent the uncertainty associated with constraint-based reconstruction

and analysis of GEMs. Formalizing the representation of uncertainty in GEMs would

improve confidence in modeling results. Although we concede that this is a difficult

task, we hope that this review will serve as a roadmap for how this issue can be further

addressed. We maintain that ensemble approaches (which are in essence discrete repre-

sentations of probability distributions) provide a strong framework that naturally cap-

tures the uncertainty arising from the many possible outcomes in each step of the

reconstruction and flux analysis process (Fig. 1). A practical step moving forward is the

development of a unified metabolic network reconstruction and analysis framework

that provides a probabilistic ensemble of results. Such a framework would require fur-

ther development of methods for the representation and analysis of GEM ensembles,

Table 5 Summary of approaches that address sources of uncertainty in flux simulation.
Highlighted in bold are key approaches related to probabilistic or ensemble-based methods

Approach Sources of uncertainty References

Alternative objective functions Undefined cellular objective [130–132, 134, 135]

Suboptimal solutions Undefined cellular objective [136–138]

Characterization of optimal solutions Degenerate otimal solutions [141–145]

Characterization of steady-state solution space Degenerate solution space [146–149]

Random sampling Degenerate solution space [151–160]

Random sampling with probabilistic biases Degenerate solution space [161, 162, 165]

Added constraints Degenerate solution space [55, 168–174, 177–179, 182–185]

Relaxed steady-state assumption Steady-state assumption [188, 189]
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such as the MEDUSA package [190], and continued development and integration of ap-

proaches that represent uncertainty encountered in each stage of the GEM reconstruc-

tion and analysis process. In future development of ensemble models of GEMs, one

should keep in mind that this approach is not a panacea [191]. It will be important to

accurately account for uncertainty in each step to avoid potential pitfalls, such as an in-

crease in false positive predictions given the sparse nature of the stoichiometric matrix.

For example, when incorporating de novo predicted reactions into network gap-filling

algorithms, the probabilistic weighting of these reactions would need to be carefully

tuned. Additionally, it will be important to further explore correlations between the re-

sults of the different steps in the reconstruction and analysis process to fully under-

stand uncertainty in this framework. For example, probabilistic genome annotation and

ensemble gap-filling can work synergistically to identify candidate genes for orphan

metabolic reactions. Conversely, uncertainty in metabolic network structure could be

propagated through methods that use the network structure to infer the biomass for-

mulation (such as BOFdat) or environment specification (such as reverse ecology). It is

also important to focus on understanding the sensitivity of modeling results to uncer-

tainty in specific parameters or steps in the pipeline. Generating an ensemble of results

can provide insight into which results are robust to uncertainty in different parameters

or model choices. Furthermore, clustering and classifying ensembles of results with ma-

chine learning algorithms can provide insight into which areas of genome-scale model-

ing are particularly sensitive and should be targeted for uncertainty reduction [192].

Ultimately, capturing all of the uncertainty in GEM reconstruction and analysis in

a single pipeline will be a difficult task, and an emphasis should be placed on

transparency and reproducibility such that all of the assumptions employed by a

particular approach can be easily accounted for [193]. The standardization of

model quality control provided by MEMOTE is an important contribution in this

direction [194]. A similar community-effort towards standardized assessment and

reporting of GEM uncertainties, as has been recently suggested by Carey et al.,

would be similarly highly beneficial [195].

Multiomics data integration is an increasingly important application of GEMS as bio-

logical studies are now collecting and analyzing multiple sources of high-throughput

data. GEMs can facilitate the integration of this data in a knowledge-based format that

provides mechanistic insight [20, 196]. Approaches and challenges in integrating ‘omics

data into GEMs have been reviewed previously, with a particular focus on the difficulty

of precise data integration due to GEMs’ lack of kinetic information [197]. It is import-

ant to consider how best to represent ‘omics data such that they can be integrated into

GEMs. In line with the main message of our review, Ramon et al. suggest that a Bayes-

ian perspective can aid the integration of ‘omics data by taking into account the uncer-

tainty in the metabolic network and experimental observations [197]. In this context,

‘omics data can be used to constrain both the prior and posterior distributions from

which ensembles of GEMs are sampled. Furthermore, GEMs can be used to simulate

disparate types of ‘omics data, even though the explicit calculation of likelihoods may

be intractable. Thus, the use of “simulation-based” Bayesian inference approaches is a

promising route for informing GEM structure and parameters from data [198]. How-

ever, scaling Bayesian approaches up to deal with the large space of possible GEM re-

constructions is an open, exciting and challenging research direction.
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While this review has been entirely focused on uncertainty in GEM approaches, it is

also important to remember that future efforts will need to creatively address major

open questions on how to integrate metabolic models with other layers of biological

complexity and their associated uncertainties. Several methods have been proposed to

extend the basis of GEMs to include some other layers, such as metabolism and expres-

sion (ME) models that incorporate the processes of gene transcription and translation

[199] or dynamic FBA that can simulate time courses of metabolic processes such as

microbial growth curves [186, 200, 201], and can be extended to include multiple or-

ganisms and spatial structure [202–206]. Moving beyond the steady-state assumption,

approaches based on kinetic models of metabolism can predict the concentrations of

metabolites and fluxes through individual pathways. Although these models require a

large number of kinetic parameters, beyond those required by GEMs, several methods

exist for inferring these parameters and representing their uncertainty [207–209]. Fi-

nally, whole-cell modeling can be used to simultaneously model multiple processes in

the cell and gain comprehensive insight into cellular physiology [210, 211]. However,

considerable uncertainty in the many parameters required for kinetic and whole-cell

modeling continues to limit their broad application [212, 213]. Thus, as new modeling

approaches arise, it is likely that genome-scale metabolic modeling, which strikes a pro-

ductive balance between scalability and scope with many successful applications [5–

11], will continue to play a key role in the landscape of mechanistic modeling of bio-

logical systems. Further embracing uncertainty in this field is an exciting opportunity

to continue to improve the application of this modeling framework.
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