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Abstract

Nanopore sequencing has been widely used for the reconstruction of microbial
genomes. Owing to higher error rates, errors on the genome are corrected via neural
networks trained by Nanopore reads. However, the systematic errors usually remain
uncorrected. This paper designs a model that is trained by homologous sequences for
the correction of Nanopore systematic errors. The developed program, Homopolish,
outperforms Medaka and HELEN in bacteria, viruses, fungi, and metagenomic datasets.
When combined with Medaka/HELEN, the genome quality can exceed Q50 on R9.4
flow cells. We show that Nanopore-only sequencing can produce high-quality
microbial genomes sufficient for downstream analysis.
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Background
Third-generation long-read sequencing is an essential technology for the reconstruction
of complete genomes inmany species within the biosphere. OxfordNanopore Technology
(ONT) is one of the major providers in third-generation sequencing, which is being used
for the telomere-to-telomere reconstruction of the human genome [1, 2]. Although the
ultra-long reads of ONT have demonstrated their power in assembly contiguity through
large and complex repeat regions, their assembly accuracy (∼ 85–92%) has been criti-
cized when compared with Illumina or PacBio High-Fidelity (HiFi) sequencing (∼ 99%),
owing to the omission of important protein-coding genes [3]. As a consequence, hybrid
Illumina/Nanopore sequencing and assembly are required for producing a high-quality
genome which possesses both satisfactory contiguity and accuracy [4].
The accuracy of Nanopore sequencing has improved year by year thanks to new base-

calling algorithms (e.g., from Albacore, Guppy, to Bonito) and flow cells (e.g., from R9.4
to R10.3). For instance, the production basecaller (Guppy v3.6) has claimed a 1–2%
increase in accuracy (∼ 97%) over its previous version. However, the genome quality
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of Nanopore-only sequencing is far from satisfactory owing to a substantial number of
systematic errors. Consequently, all the long-read assemblers (e.g., Canu, miniasm, Flye,
Shasta) require a polishing stage for further improving the genome quality [5–8]. At
the beginning, signal-based polishing (e.g., Nanopolish) was adopted, whereas potential
erroneous loci are re-basecalled from raw signals [9]. However, this method is time-
consuming and disk-demanding for both the processing and storing of a huge amount
of signals. Currently, read-based polishing has become mainstream as only reads rather
than signals are required. Thanks to the advances in combinatorial and deep learning
algorithms, these programs are not only faster, but their accuracy is also higher than
signal-based approaches. Below, we focus on two state-of-the-art read-based polishing
pipelines: Racon/Medaka and MarginPolish/HELEN.
Racon is one of the most popular polishing programs [10]. It first carefully selects high-

quality parts of the reads, which are used for polishing the genome via partial order
alignment (POA) with vectorization. Although many errors are corrected by Racon, a
substantial amount of systematic errors are remaining in the genome because the cor-
rect allele is a minority at these loci (Additional file 1: Fig. S1). As a consequence,
Oxford Nanopore Inc. developed Medaka, which is based upon a bidirectional long-
short-term memory (LSTM) trained for erasing systematic errors uncorrected by Racon.
To date, polishing first by Racon and subsequently followed up by Medaka is the officially
recommended protocol (i.e., Pomoxis) for genomes assembled solely from Nanopore
sequencing.
Recently, a new polishing pipeline named MarginPolish/HELEN has drawn attention

by displaying competitive accuracy when compared with the Racon/Medaka pipeline
[8]. MarginPolish uses a hidden Markov model to collect alignment statistics and then
generates a weighted POA graph for consumption by HELEN. Subsequently, HELEN
incorporates a multi-task recurrent neural network (RNN) that utilizes both the contex-
tual genomic features and POA weights to predict with high accuracy a nucleotide base
and run length for each genomic position.
However, these polishing protocols still fail to guarantee that a high-quality genome

can be produced. In reality, only a ∼ Q30 (99.9%) consensus accuracy can be reliably
obtained, implying that quite a few genes would be missed in downstream analysis [3,
11]. This unsatisfactory quality is partly due to species-specific DNAmodifications. The-
oretically, these errors could be avoided by training a basecaller specific for each species
(e.g., Taiyaki) [11]. But in a practical sense, it is infeasible to train thousands of models for
all the species in the biosphere. In metagenomic sequencing, training of a basecaller for
a specific species is not an option. We observed that systematic errors are often uncor-
rected by existing polished tools, which are mainly indel errors in homopolymers and
lead to reading frame shifts in protein-coding genes. These systematic errors, though dif-
ficult to be fixed solely from reads, can be easily corrected via the homologous sequences
extracted from closely related genomes (Additional file 1: Fig. S2). Consequently, existing
polishing models can be further improved according to the degree of conservation within
the homologous regions.
This paper develops a novel polishing tool (named Homopolish), which is based upon

a support vector machine (SVM) trained for distinguishing between sequencing errors
and strain variations using homologous sequences. Due to its carefully engineered fea-
tures, the results indicate that Homopolish outperforms the state-of-the-art Medaka and
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HELEN pipelines over a variety of microbial genomes, including metagenomic, bacterial,
viral, and fungal genomes.

Results
Homopolish is based on an SVM trained for distinguishing Nanopore systematic errors
(indels in particular) from interstrain variations according to the degree of conservation
among homologs (see Fig. 1 and the “Methods” section). The homologs are extracted
from closely related genomes and mapped onto the draft genome. A set of carefully engi-
neered features are then generated from the homologous alignments for classification by
the SVM (i.e., errors correction or variation retention).
Herein, we compare Homopolish with two state-of-the-art polishing pipelines

(Racon/Medaka and MarginPolish/HELEN) [8, 10]. These programs are evaluated using
public and in-house sequenced metagenomic/isolate datasets, including bacteria, virus,
and fungi (Additional file 2: Tables S1-S3, see the “Methods” section). The Nanopore
reads of all datasets are first assembled into draft genomes using Flye or MetaFlye (Addi-
tional file 2: Tables S4-S6) [7, 12]. These draft genomes are then first corrected by either
Racon or MarginPolish for the removal of random sequencing errors. Subsequently,
the remaining systematic errors are polished by Medaka, HELEN, and Homopolish.
The accuracy of the polished genome is measured by (median) Q scores, number of
mismatches, number of insertions, and number of deletions calculated via fastmer [13].

Comparison of genome quality on R9.4 metagenomic datasets

We first compareMedaka over Racon, Homopolish (R) over Racon, HELEN overMargin-
Polish, and Homopolish (M) overMarginPolish through the use of a metagenomic dataset
(Zymo Microbial Community Standard) sequenced by R9.4 flow cells [14]. Figure 2
lists the Q scores of all programs regarding seven bacteria within the metagenomic
sample, with the numbers of insertions, deletions, and mismatches being found in

Fig. 1 Illustration of Homopolish workflow. Homopolish retrieves closely related genomes by screening
MinHash sketches of NCBI RefSeq microbial genomes. Homologs within these genomes were extracted by
genome alignments. An SVM was trained for the removal of errors and retention of variations by mining
features from the homologous pileup
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Fig. 2 Comparison of genome quality on the R9.4 metagenomic dataset. Comparison of genome quality (Q
score) polished by Racon, Medaka, Homopolish (R), MarginPolish, HELEN, and Homopolish (M) on the
metagenomic dataset from Zymo Microbial Community Standard. Medaka and Homopolish (R) are run after
Racon. HELEN and Homopolish (M) are invoked after MarginPolish. Homopolish (M) and Homopolish (R)
achieve the highest accuracy in most bacteria

Additional file 2: Table S7. Homopolish (R) and Homopolish (M) (∼ Q38–Q50) out-
perform Medaka (∼ Q36–38) and HELEN (∼ Q37–Q46) in most bacteria. Homopolish
(M) achieves Q50 (99.999%) in Enterococcus faecalis, Pseudomonas aeruginosa, and
Salmonella enterica. The only exception is Bacillus subtilis (Q36.78 for Homopolish
and Q37.21 for Medaka), which is due to mismatches uncorrected by Homopolish,
although indels are greatly reduced (Additional file 1: Fig. S3). In general, systematic
errors are greatly reduced byMedaka, HELEN, andHomopolish in comparisonwith those
removed by Racon and MarginPolish. Moreover, the results based upon MarginPolish
(i.e., HELEN and Homopolish (M)) are superior to those based upon Racon (i.e., Medaka
and Homopolish (R)).
As mismatch errors are not corrected by Homopolish, Homopolish could in principle

achieve even higher accuracy when combined with Medaka or HELEN. Figure 3 plots
the median Q scores of invoking Homopolish after Medaka and HELEN polishing. The

Fig. 3 Genome quality of combining Homopolish with Medaka or with HELEN in the metagenomic dataset.
Comparison of genome quality (Q score) polished by Medaka, Medaka+Homopolish, HELEN, and
HELEN+Homopolish on the metagenomic dataset. Medaka and HELEN can be both further improved by
Homopolish
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accuracy of Medaka and HELEN is both further improved by Homopolish (Q40–Q90).
For instance, Homopolish after Medaka now reaches Q50 on S. enterica and exceeds Q40
for most bacteria. In general, Homopolish with HELEN (Q41–Q90) outperforms that
with Medaka (Q39–Q50). In particular, Homopolish after HELEN achieves Q90 on P.
aeruginosa and Q50 on both E. faecalis and S. enterica.
Table 1 lists the numbers of mismatches, insertions, and deletions of the P. aeruginosa

genome polished by all programs, whereas those of the other six bacteria can be found in
Additional file 2: Table S7. The quality of the draft genome (assembled and polished by
Flye) is only approximately Q26, and the errors are dominated by 14,394 insertions. Racon
removed quite a few insertion errors at the cost of producing many false deletion errors
(from 439 up to 2417). Medaka corrected most of the deletion errors produced by Racon
(from 2417 down to 324), as well as a few mismatches (from 622 to 476). Homopolish
significantly erasedmost insertion and deletion errors (from 538 and 2417 down to 24 and
128, respectively) left by Racon. These phenomena are largely the same whenHomopolish
is compared with HELEN over MarginPolish. HELEN is superior at correcting mismatch
errors and outperforms Medaka in all metrics. Again, Homopolish cleans the majority
of indel errors left by MarginPolish. When Homopolish is combined with either Medaka
or HELEN, the genome quality can be further elevated to Q50 and Q90, respectively,
because both mismatch and indel errors are significantly removed by each program. The
advantage of combining Homopolish with either Medaka or HELEN can also be seen in
other bacteria (Additional file 2: Table S7).

Comparison of polishing accuracy on bacterial isolates

Next, we compared these programs over a set of bacterial isolates sequenced at an ear-
lier stage (see the “Methods” section). These data were mainly sequenced prior to 2018
and basecalled by Albacore and/or early Guppy basecaller, which exhibit a lower quality
when compared with the previous metagenomic dataset (called by Guppy 2.2). Theoret-
ically, old sequencing data can be re-basecalled using new algorithms (e.g., Guppy 4.0
or Bonito). But for practical purposes, particularly for labs outsourcing the sequencing
and assembly, this is very troublesome as re-basecalling is computationally demanding

Table 1 Q scores and numbers of mismatch, insertion, and deletion errors of P. aeruginosa in the
metagenomic dataset

Methods Avg. Q score MedianQ score Mismatches Insertions Deletions

Flye 26.39 26.5 738 14394 439

Racon 4x 32.78 33.19 622 538 2417

Racon 4x +
Medaka

36.54 37.96 476 704 324

Racon 4x +
Hompolish

39.43 43.01 622 24 128

MarginPolish 34.93 35.85 449 1096 637

MarginPolish +
HELEN

41.48 46.99 149 78 256

MarginPolish +
Homopolish

40.74 50 440 7 126

Racon 4x +
Medaka +
Homopolish

40.55 46.99 474 4 120

MarginPolish +
HELEN +
Homopolish

42.81 90 205 5 146
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without GPU. We show that Homopolish can improve the quality of Nanopore-only
genomes produced by an old basecaller (e.g., Albacore) without the need of re-basecalling.
Figure 4 plots the Q scores of all programs across seven isolates. Similarly, Homopol-
ish (Q26–Q33) outperforms Medaka with Racon (Q23–Q29) in nearly all datasets except
for Klebsiella pneumoniae in which mismatches (not corrected by Homopolish) are the
major error source (Additional file 1: Fig. S4). In comparison with HELEN over Margin-
Polish (Q20–Q27), Homopolish (M) also demonstrates superior accuracy (Q26–Q37)
across all isolates. Unexpectedly, the accuracy of HELEN is not only lower than Medaka
but also lower than its preprocessor MarginPolish in most datasets (i.e., Escherichia coli,
K. pneumoniae, Elizabethkingia anophelis, and Shewanella algae), which conflicts with
the previous metagenomic results. We hypothesize that HELEN may overfit the previous
metagenomic dataset since the majority of its training data come from the same source
(ZymoBIOMICS) [14].
Similarly, we have evaluated whether Homopolish can achieve even higher accuracy

when combined with either Medaka or HELEN over these isolates. Figure 5 illustrates
the Q scores of Homopolish run after Medaka or HELEN correction. When combined
with Medaka, Homopolish obtains a much higher accuracy (Q29–Q38), significantly bet-
ter than those of original Medaka (Q23–Q29). Although Homopolish with HELEN also
improves accuracy fromQ20–Q27 to Q24–Q35, it is inferior to that withMedaka. Table 2
lists the Q scores, number of mismatches, insertions, and deletions polished by each pro-
gram of E. anophelis SUE, while those of other isolates can be found in Additional file 2:
Table S8. The initial genome quality of Flye is low, containing 18,718 insertions and
5039 deletions. Although Racon, Medaka, MarginPolish, and HELEN reduce the inser-
tion errors, the number of deletion errors all increase (i.e., from 5039 to 7891–11,753),
implying quite a few false-positive corrections. On the contrary, only Homopolish does
not introduce more false deletions into the draft genome (i.e., from 5039 to 435–443). In
particular, HELEN performs the worst due to increasing indel errors from its preproces-
sor MarginPolish in most isolates (Additional file 2: Table S8). Overall, only Homopolish
can reduce most indel errors without much side effects. When combined with Medaka
for removing both mismatch and indel errors, Homopolish achieves an expected higher

Fig. 4 Comparison of genome quality on the R9.4 isolate dataset. Comparison of genome quality (Q score)
polished by Racon, Medaka, Homopolish (R), MarginPolish, HELEN, and Homopolish (M) on seven bacterial
isolates. Medaka and Homopolish (R) are run after Racon. HELEN and Homopolish (M) are invoked after
MarginPolish
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Fig. 5 Genome quality of combining Homopolish with Medaka or with HELEN in the isolate dataset.
Comparison of genome quality (Q score) polished by Medaka, Medaka+Homopolish, HELEN, and
HELEN+Homopolish on the isolate dataset. Although Homopolish can improve Medaka or HELEN, the
degree of improvement is decreased from common (e.g., E. coli) to rare species (e.g., P. vulgaris)

accuracy (from Q33 to Q36). However, the combination with HELEN (Q34) is not better
than running Homopolish directly on top of MarginPolish (Q37).

Comparison of correction accuracy on viral and fungal genomes

To demonstrate the capability of Homopolish on polishing other microbial genomes,
these programs were further tested on one viral genome (Lambda phage) and one fun-
gal genome (S. cerevisiae). As shown in Table 3, the quality of the draft viral genome
is approximately Q24. Racon with Medaka improved the quality to Q36. Homopolish
achieved the highest accuracy when combined with either Racon or Medaka (∼ Q38–
39). Again, the accuracy of HELEN is not only the worst, but it is also lower than the
original draft genome (from ∼ Q24 to ∼ Q20), owing to new mismatches and deletion
errors falsely corrected. As for the fungal genome (S. cerevisiae), the quality of the initial

Table 2 Q scores and numbers of mismatch, insertion, and deletion errors of E. anophelis SUE in the
isolate dataset

Methods Avg. Q score MedianQ score Mismatches Insertions Deletions

Flye 22.25 22.2 1363 18718 5039

Racon 4x 23.57 23.57 1163 6097 11215

Racon 4x +
Medaka

26.43 26.48 566 1114 7891

Racon 4x +
Hompolish

33.11 33.57 1224 384 443

MarginPolish 25.57 25.61 389 1055 10198

MarginPolish +
HELEN

23.89 23.91 669 4614 11753

MarginPolish +
Homopolish

35.8 37.21 447 222 435

Racon 4x +
Medaka +
Homopolish

35.32 36.38 611 216 407

MarginPolish +
HELEN +
Homopolish

33.57 34.44 723 342 774
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Table 3 Q scores and numbers of mismatch, insertion, and deletion errors on Lambda phage and
Saccharomyces cerevisiae

Species Methods Avg. Q score MedianQ score Mismatches Insertions Deletions

Lambda
phage

Flye 24.17 24.17 7 177 2

Racon 4x +
Medaka

36.44 36.44 4 5 2

Racon 4x +
Hompolish

39.07 39.07 4 1 1

Racon 4x +
Medaka +
Homopolish

38.4 38.4 4 2 1

MarginPolish +
HELEN

19.95 19.95 123 16 144

MarginPolish +
Homopolish

37.31 37.31 6 2 1

MarginPolish +
HELEN +
Homopolish

21.99 21.99 169 10 18

S. cere-
visiae

Flye 20.43 20.52 2715 75290 8459

Racon 4x +
Medaka

22.89 23.55 2345 44979 3232

Racon 4x +
Hompolish

27.84 30.64 4683 10556 1042

Racon 4x +
Medaka +
Homopolish

28.72 32.58 2374 9917 928

MarginPolish +
HELEN

20.38 20.71 3123 45701 26865

MarginPolish +
Homopolish

28.7 32.68 2007 9547 1817

MarginPolish +
HELEN +
Homopolish

24.86 26.09 3449 8997 15572

genome was approximately Q20. Correction via Racon withMedaka improved the quality
to Q23. The highest accuracy is once more achieved by Homopolish when combined with
either Medaka or MarginPolish (∼ Q32). Similarly, HELEN obtained the lowest accuracy
in comparison with the others. These results indicate that Racon, Medaka, and Homopol-
ish are robust to polished viral, bacterial, and fungal genomes while HELEN is less reliable
when compared with the others.

Comparison of genome quality on R10.3 flow cells

Finally, we evaluated Racon, Medaka, HELEN, and Homopolish on one public metage-
nomic dataset (Zymo Microbial Community Standard). The accuracy of the R10.3 flow
cell is higher than the R9.4 version, albeit at the cost of reduced throughput. Figure 6
plots the Q scores of Racon, Medaka, HELEN, and Homopolish for the seven bacte-
ria in the R10.3 metagenomic dataset. Additional file 2: Table S9 lists the numbers of
mismatches, insertions, and deletions of each program as applied to these bacteria. The
quality of draft genomes ranged from Q28 to Q42, which is indeed better than that of
R9.4 (Q22–Q26) (Additional file 2: Table S7). Unexpectedly, the genomes polished by
Racon were not improved (Q27–Q40) when compared with the draft genome assembled
by Flye. TheMedaka-polished genomes exhibited significantly higher quality (Q30–Q50).
HELEN obtained the highest quality of two strains (i.e., Q90 on E. faecalis and Q36 on
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Fig. 6 Comparison of genome quality on the R10.3 metagenomic dataset Comparison of genome quality (Q
score) polished by Racon, Medaka, HELEN, and Homopolish on the R10.3 metagenomic dataset from Zymo
Microbial Community Standard. HELEN was run after MarginPolish. Medaka was run after Racon, and
Homopolish was invoked after Medaka

S. aureus) when compared with others. Homopolish further improved the Medaka-
polished genomes to Q33–Q90 and obtained the highest quality of four strains (e.g., Q90
on E. faecalis and P. aeruginosa). When testing Homopolish and Medaka over the public
(E. coli K12MG1655 sequenced by R10.3 flow cell (Additional file 2: Table S9), Homopol-
ish also improved Medaka from Q46 to Q90. Consequently, these results suggest that
Homopolish can also improve the genome quality of Medaka on R10.3 flow cells.

Discussion
Limitations of homologous polishing

Homopolish relies on homologous sequences retrieved from closely related genomes for
the correction of Nanopore systematic errors. Thus, the efficiency is related to the abun-
dance of related genomes in NCBI (i.e., common or rare). When polishing rare species
(e.g., Proteus vulgaris CCU063 in Fig. 5), although Homopolish still improved the quality
of these two genomes (e.g., Q27 to Q32), the degree of improvement is lower than polish-
ing common species (e.g., Q26 to 38 in K. pneumoniae). In the bacterial isolate dataset,
the genome quality declines from common (e.g., Q38 in E. coli), less common (e.g., Q35
in S. algae), to rare species (e.g., Q29 in P. vulgaris).
Second, the trained model aims to remove errors within conserved regions and retain

strain variations free of selection pressure. As a result, the errors within non-coding
regions may tend to be uncorrected. Table 4 compares the numbers of errors in coding
and non-coding regions before and after running Homopolish. Although the correction
ratios in the coding regions are higher as expected (70–95%), the errors in the non-coding
regions are reduced at various degrees (28–97%). The large variance of correction ratios
in non-coding regions is possibly due to species-specific selection pressures. Therefore,
the efficacy of Homopolish in non-coding regions will depend on the underlying selection
pressure of each species. We note that Homopolish has not been tested on non-compact
genomes, in which non-coding regions represent an important part of the genome. These
genomes, in fact a large proportion of eukaryotic genomes, could not be corrected to the
same level as the small and compact microbial genomes.
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Table 4 Comparison of the numbers of errors in coding and non-coding regions before and after
running Homopolish using the Zymo R9.4 dataset

Coding regions errors Non-coding regions errors

Before After Correction ratio Before After Correction ratio

B. subtilis 446 80 82.06% 232 165 28.88%

E. faecalis 244 21 91.39% 176 34 80.68%

S. aureus 306 38 87.58% 100 17 83.00%

L. monocytogenes 160 19 88.13% 80 26 67.50%

P. aeruginosa 666 30 95.50% 279 8 97.13%

S. enterica 469 66 85.93% 118 13 88.98%

E. coli 544 163 70.04% 201 141 29.85%

DFAST was used for the annotation of coding/non-coding regions in each genome

Third, the correction efficacy of Homopolish may be reduced on plasmids shaped by
mobile genetic elements (e.g., integrons), which exhibit little or no structural conservation
across plasmids. As a consequence, the homologs can not be obtained because no closely
related plasmids can be found by Mash. Moreover, the MinHash sketches used for the
identification of closely related genomes are compiled from nearly complete genomes.
When polishing highly fragmented assembly (e.g., due to low sequencing coverage), the
species identification stage (i.e., Mash screen) becomes less reliable. Consequently, the
user should specify the genus or species name when using Homopolish for correcting
highly fragmented assembly.

Preservation of strain variations

Because the correction material of Homopolish is homologs instead of reads, the genome
variability (e.g., phylogenetic distance) between the polished and related genomes might
decrease. To prove that the strain variations are well preserved, we compare the whole-
genome phylogenies before and after Homopolish correction using common and rare
species. The twenty most closely related genomes (> 99%Mash identity) of two common
species (P. aeruginosa and S. enterica in the Zymo dataset) were retrieved for whole-
genome phylogeny reconstruction (see the “Methods” section). Although their genetic
distance is very close, the phylogenies remain the same before and after Homopolish
(Additional file 1: Figs. S15 and S16). Similarly, the phylogenies of two rare species (P. vul-
garis CCU063 and GOKU) and their closely related genomes are also unchanged after
Homopolish (Additional file 1: Figs. S12 and S13). Therefore, the phylogenetic distance
between the polished and related genomes is well preserved.
Furthermore, most bacterial genomes contain pseudogenes (e.g., genes inactivated by

true indels), which should not be corrected by homologs. We compared the pseudogenes
(annotated by DFAST [15]) in the genomes polished by Medaka, Homopolish, and the
truth genome (Additional file 1: Figs. S17 and S18). The Racon-Medaka pipeline produces
excessive amounts of pseudogenes (e.g., 151–5298 in R9.4) due to quite a few uncorrected
errors. On the contrary, the genomes polished by Homopolish yield not only much fewer
pseudogenes (e.g., 10–126 in R9.4) but the numbers are also quite close to those of truth
genomes (e.g., 12–136 in R9.4). Further investigation reveals that the minor discrepancies
between Homopolished genomes and the truth genome (e.g., 62 vs 69 in Bacillus) are due
to pseudogenes that have been missed before running Homopolish (e.g., misassembly).
Consequently, most pseudogenes are successfully preserved by our method.
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Reference-free versus reference-based quality assessments

The assessment of genome quality is affected not only by uncorrected errors but also by
misassemblies and structural variations (e.g., IS movement), which are too large to be cor-
rected by existing polishing programs. In the isolate dataset, the references reconstructed
via hybrid Illumina/Nanopore assembly are not the true underlying genomes, which also
reduces the accuracy of reference-based assessment (e.g.,Q scores by fastmer). Hence, we
compared the (CheckM) genome completeness of Medaka and Homopolish, which is a
widely used reference-free assessment [16] (Additional file 1: Fig. S10). The completeness
of Homopolish (∼ 97–100%) is not only higher than that of Medaka (∼ 81–95%) but also
quite close to that of truth genomes (∼ 97–100%). The same phenomenon can be also
seen in the metagenomic dataset (Additional file 1: Fig. S11), implying the improvement
of Homopolish is consistent in both reference-free and reference-based assessment.
Nevertheless, although reference-free assessments (e.g., CheckM/BUSCO/ideel) are

less affected by misassemblies/structure variations, they are not sensitive enough to
reflect the true accuracy of each program. We have observed that many genomes can
obtain nearly 100% (CheckM) completeness even with only ∼ Q30 accuracy. On the
other hand, reference-based assessments (e.g., fastmer), albeit affected by misassem-
blies/variations, can measure the accuracy at a higher resolution. We found that the
median Q score is a relatively fair assessment of genome quality, which provides both
sufficient resolution and robustness to misassemblies/structural variations.

Future directions

While state-of-the-art polishing models are trained from Nanopore reads or signals (e.g.,
Nanopolish,Medaka, HELEN), we have shown that homologs conserved in closely related
genomes provide valuable features for the detection of Nanopore systematic errors (e.g.,
frameshift being extremely rare within coding regions). Additionally, because Nanopore
signals may be disturbed by species-specific DNA modifications, the construction of
a universal model for polishing all species remains challenging. This work suggests
that having a model aware of species-specific errors is possible, as long as both reads
and homologs are incorporated into the underlying training framework (e.g., RNN in
Medaka).
In terms of speed, because existing polishing algorithms (i.e., Medaka and HELEN) rely

on the deep neural network, GPU acceleration is often required. Alternatively, a CPU
is sufficient for Homopolish, as it is based upon an SVM (e.g., ∼ 5 min for polishing a
bacterial genome). Although the neural network is theoretically suitable for learning non-
trivial features, a set of manually inspected features in our model may be used by other
developers for distinguishing Nanopore systematic errors.
The results indicated that the accuracy of R10.3 is indeed better than R9.4 on the same

metagenomic dataset (Additional file 2: Tables S7 vs S9). Nevertheless, due to the use of
an old version of Guppy (v2.2) basecaller in the R9.4 dataset, the read accuracy was still
low (∼ Q9–Q10). However, recently, the accuracy of Nanopore reads has been signifi-
cantly improved (e.g.,∼Q13–14 byGuppy v3.6 over R9.4 flow cells), which should further
enhance the genome quality as well (results not shown). In terms of the final genome qual-
ity, the accuracy gap between R9.4 and R10.3 is rather small (i.e., both can exceed Q50).
As the throughput of R10.3 is currently lower than that of R9.4, R9.4 may still be preferred
in sequencing projects requiring a large sequencing yield.
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Conclusion
This paper developed an SVM-based polishing model (named Homopolish) for the cor-
rection of Nanopore systematic errors using homologous sequences. In comparison with
the state-of-the-artMedaka andHELEN, Homopolish displayed superior accuracy in bac-
teria, fungus, and virus on R9.4/R10.3 flow cells. The reported genome quality is expected
to be further improved when using the latest basecaller (Guppy 4.0 or Bonito). Homopol-
ish is currently only capable of polishing microbial genomes but not the majority of
eukaryotic genomes, which require retraining themodel and revising themethodology. In
conclusion, we have proved that high-quality microbial genomes can be obtained through
Nanopore-only sequencing using simply R9.4 flow cells, thus eliminating the need for
Illumina hybrid sequencing.

Methods
Homopolish corrects Nanopore systematic errors by an SVM trained for distinguishing
sequencing errors from strain variations using homologous sequences. The genome to
be polished is first screened against the virus, bacteria, or fungus genomes compressed
in MinHash sketches, which are precompiled from NCBI RefSeq database using Mash
[17]. Subsequently, closely related genomes are retrieved and aligned against the draft
genome to extract conserved homologous sequences. Several features (e.g., homologous
allele counts, homopolymer lengths, and homologous similarity) were extracted from
the homologous alignments. Finally, an SVM is trained for distinguishing Nanopore sys-
tematic errors from interstrain variations. Only the systematic errors will be corrected
according to the predicted base, while strain variations will be retained.

Retrieval of homologous sequences via MinHash sketches

Given a genome G to be polished, Homopolish first identifies, downloads, and extracts
homologous sequences from closely related genomes. In practice, whole-genome align-
ment against the entire NCBI RefSeq genome database is time-consuming and infeasible.
Instead, these genomes are compressed into a reduced representation called Mash
sketches [17]. Specifically, the microbial genomes in the NCBI RefSeq are downloaded
and compiled into 1000 sketches per genome. The similarity of G against all RefSeq
genomes can be thus estimated by Mash in seconds. Only the genomes with identity
at least p (default 95%) are considered. Next, top t (default 20) genomic sequences are
automatically downloaded from NCBI, which takes around 1 min for retrieving 20 bac-
terial genomes. Alternatively, Homopolish allows the user to specify the genus and/or
species name of genome G, and t random genomes of the same genus and species will
be downloaded from NCBI. To obtain the homologous sequences, these closely related
genomes will be aligned against the genome G via minimap2 (with options asm5) [18],
The alignment of these homologs against G (i.e., homologous pileup) will be further
analyzed.
The genome quality (Q scores) with respect to parameter t (top t similar genomes) has

been tested using fourteen bacteria (Additional file 1: Fig. S14). Although this parame-
ter can be optimized for particular species (e.g., t = 5 is highest in Pseudomonas), we
did not see much difference after fine tuning. When t > 20, the quality of most species
deteriorates. Therefore, the default value (t = 20) was chosen as it balances well for both
common or rare species.
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Feature engineering andmodel training

A total of twelve features are extracted from the homologous alignment profile for distin-
guishing Nanopore systematic errors from interstrain variations. An SVM is trained for
classifying each locus in the draft genome into errors or variations according to the twelve
features. Only errors will be corrected while variations will be retained.

Feature engineering

At each locus of genomeG, twelve features are extracted from the homologous alignment
profile for distinguishing Nanopore systematic errors from interstrain variations. Note
that we do not polish mismatch errors as they frequently occur in different strains of the
same species. Besides, mismatches are less destructive within coding regions in compar-
ison with indel errors. The first nine features are matched allele counts of A, T, C, G;
inserted allele counts of A, T, C, G (Additional file 1: Fig. S5(a)); and deletion allele counts
in homologous sequences (Additional file 1: Fig. S5(b)). These nine features aim to reflect
the degree of conservation measured by allele frequencies within homologs (e.g., a sin-
gle allele with 100% frequency indicates a very conservative locus). The 10th feature is
termed homologous coverage (similar to read coverage), which reflects the confidence of
homologous allele counts (i.e., higher coverage stands for higher confidence). The above
ten features are min-max normalized into [0,1] intervals.
The eleventh feature encodes homopolymer length flanking the base being predicted.

Additional file 1: Fig. S6(a) illustrates an insertion error at the start of consecutive five
adenine bases (i.e., length five homopolymer). This feature is important asmost Nanopore
systematic errors are indels within homopolymers. Unexpectedly, we observed one-hot
encoding of this feature achieves superior accuracy than naive min-max normalization
(see Additional file 1: Fig. S7). We hypothesize this might owing to the side effects of
basecalling algorithms (e.g., Guppy) overfitting particular lengths of homopolymers [19].
Hence, the length of homopolymer may be better encoded as a categorical instead of a
numerical feature. To limit this feature with fixed dimensions, the homopolymer length
is a skewed distribution (Additional file 1: Fig. S6(b)), whereas the majorities are lengths
shorter than three and very few exceed ten. Consequently, the homopolymer length is
one-hot encoded into ten categories {1, 2, 3, . . . , 8, 9, ≥ 10}.
The last feature aims to estimate the degree of conservation via homologous sequence

similarity, which is manually inspected by Integrated Genomics Viewer [20]. The minor
(instead of the major) allele among the homologous sequences is sometimes the true
allele, which violates the assumption of the first ten allele count features, which will lead to
false corrections. Further investigation indicated that the homologous sequences flanking
these minor alleles are more similar to the ground-truth genome. For example (see Addi-
tional file 1: Fig. S8(a)), homologous sequence 1, though carrying minor allele, is perfectly
identical to the ground-truth genome, while the other sequences are relatively dissimi-
lar. This feature is also implemented by SNP calling algorithms (e.g., haplotype counts in
freebayes and CNN in DeepVariant [21, 22].
In reality, because the ground-truth genome is not known in advance, the similarity of

flanking sequences can only be estimated by aligning onto the draft genome G. Unfortu-
nately, we observe the sequence similarity measured by G is sometimes indistinguishable
between the major/minor alleles. For instance (in Additional file 1: Fig. S8(b)), the homol-
ogous sequences flanking the major (e.g., 2 and 3) and minor (e.g., 1 and 4) alleles both
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differ with the draft genome G by one insertion. Thus, their identities against the draft
genome are completely the same. Interestingly, these ambiguous loci are mainly found
in pairs and proximity (e.g., two insertion loci in Additional file 1: Fig. 8(a)(b)), and
their major/minor alleles are mutually exclusive. Although we cannot explain this phe-
nomenon, the minor (yet more similar with truth genome) alleles are usually the correct
base, whereas the major alleles are not. As a result, the major and minor alleles at these
paired loci are encoded as one and two, respectively, whereas other unpaired loci are
encoded as zero. The SVM will be trained and learned to preserve the minor allele due to
interstrain variations.

Model training

We aim to train an SVM able to distinguish between sequencing errors and strain varia-
tions. Instead of solving a binary classification problem, we found the accuracy is better by
dividing errors and variations into seven classes: insertion of A, insertion of T, insertion
of C, insertion of G, deletion, no insertion, and no deletion. The first five classes indi-
cate errors to be corrected while the last two suggest variations to be retained. Because
the deletion and insertion classes carry strong features in different dimensions (Addi-
tional file 1: Fig. S9), the accuracy can be improved by separating these distant classes in
the feature space.
The class frequencies are quite imbalanced across the seven classes, whereas the no

deletion class dominates all the others (≈ 30 million) (Additional file 2: Table S10).
We remove duplicated feature vectors belonging to the no deletion class. The level of
imbalance is greatly reduced although the samples of no deletion class are still the major-
ity (∼ 38 thousand). The training data of the R9.4 model (basecalled by Guppy 2.2)
include the following seven strains: P. aeruginosa, E. coli, S. aureus, E. faecalis, K. pneu-
moniae, P. vulgaris VGH117, and P. vulgaris GOKU, whereas the other seven bacterial
strains, one fungus, and one virus are validation datasets not used during development.
The training data of the R10.3 model includes four species: P. aeruginosa, E. coli, S.
aureus, and E. faecalis, whereas the remaining four species are validation datasets. A
total of 66,036 non-redundant samples in the training data were further split into a
training and a test sets in a nine-to-one ratio. Subsequently, an SVM with the radial
basis function (RBF) kernel (c = 1.0) is trained and evaluated in the test set. The
macro average of precision, recall, and F1-score, as well as confusion matrix, of the
test set can be found in Additional file 1: Fig. S20. During prediction, the genome is
chopped into 10-kbp segments, which can be polished in a multithreaded environment in
parallel.

Collection and assembly of public datasets

The majority of datasets used in this study were retrieved from the public database. Two
public metagenomic datasets (R9.4 and R10.3) of ZymoBIOMICS Microbial Community
Standard were downloaded from Loman Lab [14] (Additional file 2: Table S3). Each Zymo
metagenomic dataset includes eight bacteria and two yeasts. Lactobacillus was excluded
because of unusually low quality (∼ Q20) possibly due to the wrong reference. The two
yeasts were removed owing to highly fragmented assembly caused by low sequencing cov-
erage. The reference genomes were obtained according to the ZymoBIOMICS instruction
manual (Catalog No.D6300).
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The Nanopore reads and reference genome of E. coli K12 sequenced by R10.3
were downloaded from [23]. The Nanopore reads of lambda phage virus were down-
loaded from NCBI Short Read Archive (SRA) (SRR12602365), whereas the reference
genome (NC_001416.1) was obtained from RefSeq. The Nanopore reads of S. cere-
visiae CEN.PK113-7D were downloaded from the SRA (SRR5989372), and the reference
genome (GCA_000269885.1) was retrieved from RefSeq. The Nanopore reads of the
public bacteria, virus, and fungus were first trimmed by PoreChop and assembled
by Flye (v2.7) [7]. The metagenomic dataset was assembled by MetaFlye (v2.7) [12]
(Additional file 2: Table S5).

Hybrid assembly of six common and rare species

To compare the correction power on common and rare species, six additional bacterial
isolates, P. vulgaris CCU063, P. vulgaris GOKU, K. pneumoniae SAWA, E. anophe-
lis SUE, S. algae HIDE, and S. algae VGH117, were sequenced using both Illumina
(MiSeq) and Nanopore (GridIon) platforms with ∼ 100-300 coverage (Additional file 2:
Tables S1 and S2). The ground-truth genomes of the six bacteria were constructed by
a hybrid assembly of Nanopore and Illumina reads via Unicylcer [4] (Additional file 2:
Tables S4). The Nanopore-only genomes of the six isolates were assembled by Flye (v2.7)
[7](Additional file 2: Table S6), whereas plasmids are excluded.

Polishing workflow of Nanopore-only genomes

All the genomes assembled solely by Nanopore reads were first polished by either
four rounds of Racon or MarginPolish for removal of random sequencing errors. The
remaining systematic errors were then removed by either Medaka (v1.0.1), HELEN, or
Homopolish. The quality of polishing genome (Q score), as well as numbers of insertions,
deletions, and mismatches, were calculated by fastmer [13]. The genome completeness of
polished genomes was computed by CheckM [16].

Analysis of phylogeny, pseudogenes, and coding region bias

The protein-coding genes and pseudogenes in each genome were annotated by DFAST
[15]. The numbers of sequencing errors within coding and non-coding regions were com-
puted by bedtools (v2.2.28). For comparison of the whole-genome phylogenies of two
common (K. pneumoniae and S. enterica) and two rare (P. vulgaris) species before and
after running Homopolish, we retrieved 20most closely related genomes withMash iden-
tity > 95%. Whole-genome phylogenies of each common or rare and its closely related
genomes were reconstructed by REALPHY [24]. The phylogenetic tree was visualized via
Interactive Tree Of Life (iTOL) [25].
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