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Abstract

The integration of single-cell RNA-sequencing datasets from multiple sources is
critical for deciphering cell-to-cell heterogeneities and interactions in complex
biological systems. We present a novel unsupervised batch effect removal
framework, called iMAP, based on both deep autoencoders and generative
adversarial networks. Compared with current methods, iMAP shows superior, robust,
and scalable performance in terms of both reliably detecting the batch-specific cells
and effectively mixing distributions of the batch-shared cell types. Applying iMAP to
tumor microenvironment datasets from two platforms, Smart-seq2 and 10x
Genomics, we find that iMAP can leverage the powers of both platforms to discover
novel cell-cell interactions.
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Background
Single-cell RNA-sequencing (scRNA-seq) technologies have profoundly changed our

understandings of cell-to-cell heterogeneities in various biological areas [1–3]. Com-

pared with individual scRNA-seq experiments, integration of datasets from multiple

sources can enlighten researchers on more reliable novel discoveries. However, inher-

ent technical differences among experiments may lead to inescapable batch effects,

confounding the biological variations [4–6]. Eliminating the unwanted technical varia-

tions among different datasets, but not diminishing those biological differences, is one

major challenge for batch effect removal methodologies.

A number of unsupervised batch effect removal methods for scRNA-seq datasets

have been developed in recent years, including a class that attempts to model the glo-

bal relationships between batch effects and gene expression profiles. For examples,

Combat [7] models the gene expressions as a function of batch origins, and LIGER [8]

extracts the batch-specific gene factors from the whole expression profiles. Another

class of methods is pioneered by the innovative idea of mutual nearest neighbors

(MNNs) [9] between different batches, with paired cells used as local anchors to help
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batch correction of their neighborhood. BBKNN [10], Scanorama [11], and Seurat v3

[12] follow this idea but search the MNNs in elaborated dimension-reduced spaces, in-

stead of the original expression vectors. Harmony [13] deploys a novel local correction

idea that preferentially clusters cells from different batches, thereby better matching the

distributions of the shared cell types across datasets. In theory, the former global cor-

rection methods may be beneficial to retain the dataset-specific biological variations,

but do not fully guarantee the integration of the shared cell types. The performance of

latter local corrections highly depends on the qualities of MNNs or matched local clus-

ters. This makes it hard to balance between the identification of the dataset-specific

cells and the mixture of the shared cell types. To address this major hurdle, here we de-

velop a new framework to take advantages of both two strategies while overcoming the

intrinsic challenges of them.

Our method, called iMAP—Integration of Multiple single-cell datasets by Adversarial

Paired-style transfer networks—is a deep learning-based framework for batch effect re-

moval of scRNA-seq datasets. Some studies such as scVI [14] and DESC [15] have

showed the potentials of deep networks, especially the autoencoder structures, on pro-

cessing scRNA-seq data, but autoencoder-based models usually have difficulties in

reconstructing the batch-corrected transcriptomes with high fidelity. iMAP combines

the powers of two kinds of state-of-art unsupervised deep network structures—autoen-

coders and generative adversarial networks (GANs) [16]. A novel autoencoder structure

is used to build low-dimensional representations of the biological contents of cells dis-

entangled from the technical variations. Then GANs are leveraged to remove the batch

effects from the original expression profiles. Compared with other methods, iMAP

could both match the distributions of the shared cell types and discern the batch-

specific cell types on the benchmark datasets. We also demonstrate the stability of

iMAP over the choice of hyperparameters and the effect of stochasticity and provide a

framework to interpret the working mechanisms of iMAP. iMAP is scalable on large

datasets with the notable speed advantage especially for datasets with cells more than

thousands. Finally, we applied iMAP to the integration of tumor-infiltrating immune

cell datasets sequenced by Smart-seq2 and 10x Genomics (10x) and discovered novel

cell-cell interactions by virtue of the powers of both platforms. iMAP is available as a

Python package on github (https://github.com/Svvord/iMAP).

Results
Overview of the iMAP algorithm

Our iMAP framework consists of two stages, including building the batch-ignorant rep-

resentations for all cells, and then guiding the batch effect removal of the original high-

dimensional expression profiles (the “Methods” section). We model the measured ex-

pression profile x of one single cell as a function of two independent factors: the bio-

logical variation and measuring process (Fig. 1a), whose effects would be disentangled

by an autoencoder-like deep neural network structure deployed in the stage I. This

structure includes three feed-forward multi-layer neural networks: one encoder E,

extracting low-dimensional representations of biological contents c from a cell’s expres-

sion profile x, and two generators G1, G2, reconstructing the expression profile from c

and one batch indicator (Fig. 1b). If we feed the generators with the true batch
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indicator b of one cell, they could reconstruct the original expression profile. By con-

trast, if a random batch indicator ~b is inputted, the generators should fabricate a

pseudo-cell but with the same biological content as the original true cell. This inspired

two loss functions: the reconstruction loss Lr and the content loss Lc (Fig. 1c). After

training, we expect the encoder to capture batch-ignorant representations from the

single-cell transcriptomes. By virtue of these representations and the adversarial net-

works, we could further remove the batch effects on the original high-dimensional ex-

pression profiles in the stage II, using a similar strategy as the pair-based neural style

transfer in the computer vision field [17]. iMAP extracts the MNN pairs from two

batches using the representations obtained from the previous stage, increasingly result-

ing in much larger number of high-quality MNN pairs compared with that using the

original expression profiles. One potential problem of MNN pairs is that they may not

fully cover the whole distributions of the shared cell types between two batches. There-

fore, iMAP regards the cells in the MNN pairs as initial seeds, and adopts a random

walk-based method to enroll new pairs, through successively selecting a cell from the

kNNs (k nearest neighbors) of the seeds within each batch (Fig. 1d). These extended

pairs are called rwMNN pairs. A GAN-based structure, composed of one generator G′

and one discriminator D′, is then trained only on these rwMNN pairs (Fig. 1e), while

all cells could be transformed to remove the batch effects using the trained generator.

Fig. 1 Overview of the iMAP algorithm. a The expression profiles modeled by a function of two
independent factors: biological variations and measuring processes. b Three feed-forward neural networks
deployed for the first stage of iMAP. c Information flows and two losses functions used in the first stage. Lr,
reconstruction loss; Lc, content loss. d A within-batch random walk-based procedure adopted to extend the
MNN pairs. These extended MNN pairs are called rwMNN pairs. e A GAN structure used to remove the
batch effects based on the rwMNN pairs
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We argue that the rwMNN pair is of vital importance for the GAN to correctly match

the complete cell expression distributions of two batches. In the case of multiple

batches, an incremental batch effect removal process is used (the “Methods” section).

Benchmark evaluations

We first adopted two publicly available well-controlled datasets to qualitatively and

quantitatively evaluate the performance of iMAP, in terms of both well-mixing the dis-

tributions of the shared cell types between different batches and identifying those

batch-specific cells. Current evaluation metrics of batch effect removal can be classified

as cluster-level and single cell-level indices, where the former ones, including ASW

(Average silhouette width) and ARI (Adjusted rand index), are easy to compute but

cannot reliably evaluate the mixture of cells from different batches within the local

neighborhood (Additional file 1: Fig. S1a). Therefore, we focused on the single cell-level

metrics. One famous single cell-level metric, kBET (k-Nearest neighbor batch-effect

test) [18] assesses the batch mixing by comparing the batch distribution within kNNs

of a cell with the global batch distribution, but it ignores the diversity of cell-type pro-

portions of different batches [13]. Another single cell-level metric, LISI (Local Inverse

Simpson’s Index) [13], overcomes the above difficulties and evaluates the mixing of

batches and separation of cell types using two indices, i.e., iLISI (integration LISI) and

cLISI (cell-type LISI). The possible drawback of LISI is that it is hard to summarize all

single cell-level LISI values into a simple statistic for comparing between various

methods. We then devised a novel evaluation procedure at the single-cell level, to

qualitatively visualize and quantitatively summarize the performance of batch effect re-

moval methods on both the effectiveness of mixing the shared cell types and discerning

the batch-specific cell types (the “Methods” section; Additional file 1: Fig. S1b). This

procedure includes two local classifiers for each single cell, the first of which would dis-

criminate those cells surrounded by others with the same cell type as “positive” and

otherwise “negative.” The second classifier would further pick out the “true positive”

cells from those positive ones. The “true positive” cells are the cells which have congru-

ous local batch distribution with the global batch distribution of its cell type. The pro-

portions of positive cells and true positive cells can be used as the summary metrics to

quantitatively compare overall performance of batch effect removal methods.

Our first benchmark dataset is composed of two batches, both sequenced using the

Smart-seq2 protocol, and consists of four kinds of human dendritic cells (DCs), i.e.,

CD1C DC, CD141 DC, plasmacytoid DC (pDC), and double negative cells (DoubleNeg)

[19] (Additional file 1: Table S1). Two types of biologically similar cells, CD1C DC from

batch1 and CD141 DC from batch2, were removed to ensure the two sub-datasets con-

tained batch-specific cells [6] (See Additional file 1: Fig. S2a for the complete “DC”

dataset). So, we named the processed dataset as “DC_rm.” iMAP clearly separates the

two batch-specific cell types, and well-integrates other batch-shared cell types (Fig. 2a).

We also performed batch effect removals and visualizations using nine leading batch ef-

fect removal methods, including Combat, LIGER, fastMNN, BBKNN, Harmony, Sca-

norama, Seurat v3, scVI, and DESC (Additional file 1: Table S2; the “Methods” section).

And it becomes challenging for some MNN pairs-based methods, such as Seurat v3,

fastMNN, Harmony, Scanorama, and BBKNN to reliably discriminate these two
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biologically similar but batch-specific cell types. In contrast, iMAP, Combat, scVI, and

DESC could clearly identify and separate them from others, although the former two

methods perform much better integration of two batches (Additional file 1: Fig. S3).

Quantitative analyses show that only iMAP and Combat give all LISI values closer to

the best theoretical values (Fig. 2b), and the proportions of true positive cells of them

Fig. 2 Benchmarks of batch effect removal methods. a Visualizations of iMAP batch effect removal results
on the “DC_rm” dataset. Three kinds of colors are used to illustrate the cell type, batch, and evaluation
information. b iLISI values for two cell types and cLISI values obtained by different methods on the “DC_rm”
datasets. The dashed lines (the same below) represent the best theoretical LISI values. c Quantitative
assessments of different batch effect removal methods on the “DC_rm” dataset. Two indices—proportion of
positive cells (surrounded by cells with the same cell type) and proportion of true positive cells (surrounded
by appropriate fractions of cells from different batches)—are adopted. d Visualizations of iMAP batch effect
removal results on the “cell_lines” dataset. e Distributions of LISI values on the “cell_lines” dataset. f
Quantitative assessments of different batch effect removal methods on the “cell_lines” dataset. See also
Additional file 1: Fig. S2, 3, 4, 5
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(iMAP: 97.6%; Combat: 97.4%) are larger than other methods (Fig. 2c). This demon-

strates that iMAP could effectively identify the batch-specific but biologically similar

cell types.

The second dataset consists of three sub-datasets, including the “Jurkat” and “293 T”

composed of cells from pure cell lines, and the “Mix” which is a 50/50 mix of cells from

those two cell lines (Additional file 1: Table S1). We named this dataset as “cell_lines.”

iMAP perfectly divides all cells into two components, each including one type of cells,

and within each component, cells from two batches, i.e., “Jurkat/Mix” or “293 T/Mix,”

are well-mixed (Fig. 2d). We also performed batch effect removals and visualizations

using other batch effect removal methods (DESC was not compared because it was not

optimized for processing datasets containing pure cell types) and compared their per-

formances with iMAP. All methods except Combat could discriminate these two cell

types, but with various separation capacities. fastMNN, LIGER, and Seurat v3 show in-

ferior division of two cell types. For the integration power, iMAP and Harmony are

notably stronger than others, while iMAP makes even better mixture than Harmony

(Additional file 1: Fig. S4). Quantitative metrics show that iMAP performs the best on

this dataset. cLISI values and iLISI values of iMAP are much closer to the best theoret-

ical lines (Fig. 2e). The proportion of true positive cells of iMAP is 94.2%, and the next

best value obtained by Harmony is 82.8%. All others give values less than 75% (Fig. 2f).

We also adopted kBET to evaluate the integration of batch-shared cell types, and iMAP

also gives the best performance (the “Methods” section; Additional file 1: Fig. S5).

These demonstrate the ability of iMAP to match the distributions of the same cell type

from different batches.

Integration of human pancreas datasets

Next, we used iMAP to integrate human pancreas cells sequenced by different plat-

forms, further assessing its performance and exploring its algorithmic properties. The

whole dataset, named as “panc,” contains five sub-datasets, including “inDrop,” “CEL-

seq,” “CEL-seq2,” “Smart-seq2,” and “Fluidigm C1,” indicating the characteristic

sequencing protocols they used [20–24] (Additional file 1: Table S1; the “Methods” sec-

tion). We still removed fractions of cells from some original datasets to ensure that cer-

tain batches included batch-specific cell types, for evaluating both the mixture of the

distributions of the shared cell types between different batches and identification of

those batch-specific cells. Particularly, we removed cells of two cell types with very

large number of cells (i.e., “acinar” and “alpha” cells) from the “inDrop” sub-dataset,

and “ductal” cells from the “CEL-seq” sub-dataset (See Additional file 1: Fig. S2b for

the complete “panc” dataset; see the “Methods” section for the exclusion criteria). The

updated dataset was named as “panc_rm.” We then performed integration using iMAP

and all nine benchmark methods, comparing their performances. As shown in Fig. 3a,

after integration by iMAP, the “acinar” and “alpha” cells are barely mixed with other

cells from “inDrop,” and so are the “ductal” cells for “CEL-seq.” At the same time, all

cell types are almost perfectly separated from others and the shared cell types from dif-

ferent platforms are well-mixed with each other. However, Harmony, LIGER, and Seu-

rat v3 improperly mix one or more of “acinar,” “alpha,” and “ductal” cells with other

cell types, while Combat, Scanorama, fastMNN, BBKNN, scVI, and DESC identify these
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batch-specific cell types, but with very limited integration of those shared cell types

(Additional file 1: Fig. S6). Quantitative evaluation also indicates iMAP shows superior

performance over all other methods, with 65.8% cells classified as true positive cells,

Fig. 3 Integration of human pancreas datasets. a Visualizations of iMAP batch effect removal results on the
“panc_rm” dataset. Three kinds of colors are used to illustrate the cell type, batch, and evaluation
information. b Quantitative assessments of different batch effect removal methods on the “panc_rm”
dataset. See also Additional file 1: Fig. S2, 5, 6. c The training process of the “panc_rm” dataset. The changes
of loss values versus epochs for all four loss functions of two stages are shown. d Running stability of iMAP.
We re-ran the iMAP on the “panc_rm” dataset for 20 times, and computed the proportions of positive and
true positive cells. The marked black points are the best results obtained by other methods. e Stage I
increasing the number of MNN pairs. f The rwMNN procedure boosting the proportion of true positive
cells. The “Smart-seq2” and “inDrop” sub-datasets of the “panc” dataset were used to compare the number
of MNN pairs. See also Additional file 1: Fig. S11. g Importance scores of selected genes for building the
representations of each cell in stage I. h Importance scores of selected genes for removing batch effects in
stage II
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whereas none of others could obtain over 50% of true positive cells (the next best

method Seurat v3 has 40.9% true positive cells) (Fig. 3b). This demonstrates that iMAP

can successfully integrate cells from multiple platforms with various numbers of cells

and diverse compositions of cell types.

In summary, on all three benchmark datasets, iMAP shows consistently better per-

formance over all other methods in terms of both the identification of the batch-

specific, even biologically similar cell types, and the integration of the shared cell types

across multiple batches. To further demonstrate the robustness of iMAP, we addition-

ally used iMAP and all other nine batch effect removal methods on two recently pub-

lished benchmark datasets [25], which sequenced thousands of cells from peripheral

blood mononuclear cells and brain tissue respectively, with over ten protocols, covering

most of single-cell and/or single-nucleus profiling methods (the “Methods” section; Add-

itional file 1: Table S1). iMAP could still provide solid performance on these two compli-

cated datasets (Additional file 1: Fig. S7). We also applied iMAP to remove batch effects

on five additional datasets with various numbers of cells, various numbers of batches, and

different sequencing platforms, where iMAP can all give solid integration performance

(Additional file 1: Fig. S8; Additional file 1: Fig. S9; Additional file 1: Table S1).

The stability and interpretability of iMAP

We further used the “panc_rm” dataset to demonstrate the stability of iMAP under the

effects of hyperparameters and stochasticity. iMAP as a deep learning-based framework

involves multiple hyperparameters necessary to be exploited for obtaining the optimal

performance for specific dataset, a critical one of which is the number of training

epochs. We examined the training process of the two stages of iMAP on the “panc_rm”

dataset (Fig. 3c), observing a sharp decrease of loss values during the first epochs of

stage I, which indicates that the network quickly reconstructed the expression profiles

and extracted the low-dimensional embeddings of biological contents. After about 50

epochs, the content loss displayed very limited fluctuations. The training for stage II

was much harder, especially for the generator. In the beginning the generator loss

showed large vibration, while all losses tended to be stable after about 50 epochs. We

conclude that the performance of iMAP may have limited changes if the number of

training epochs is about 50–200 for both two stages. iMAP is also robust to changes in

other hyperparameters (Additional file 1: Fig. S10; Additional file 1: Table S3). Then,

we sought to observe the effects of intrinsic stochasticity of iMAP on the performance

by re-running the entire iMAP procedure for 20 times on the “panc_rm” dataset. As ex-

pected, there existed inevitable fluctuations for both the proportions of positive and

true positive cells, although the lower bounds were much higher than the best results

obtained by other methods (Fig. 3d).

As we claimed before, the representations built by stage I would significantly increase

the number of MNN pairs between two batches and the rwMNN procedure would

exert huge influence over pair-based batch effect removal in the stage II and the final

integration results. We first compared the number of pairs between the “inDrop” and

“Smart-seq2” sub-datasets using the original expression profiles with that obtained by

representations from stage I. The number of MNN pairs obtained after stage I (with

the median 8610 over 20 repeat runs) was much higher than that obtained without
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stage I (median = 3034) (Fig. 3e), showing representations built by stage I of cells with

the same cell type but from different batches are more similar than the original expres-

sion profiles of them. We then inspected the effects of rwMNN, observing that the pro-

portion of true positive cells was sharply decreased after eliminating the random walk

procedures from stage II (the median value over 20 repeat runs was decreased from

59.5 to 37.6%) (Fig. 3f). This indicates that rwMNN can better sketch the distribution

of cells and assist GAN in capturing and removing the batch effects (see also Add-

itional file 1: Table S4 and Additional file 1: Fig. S11).

Finally, we tried to interpret the working mechanisms of our neural networks through

assigning importance scores for each gene, to evaluate its impacts on building the rep-

resentations and removing the batch effects of each cell [26] (the “Methods” section;

Additional file 1: Fig. S1c, d). The results showed that for the representations built by

the encoder in the stage I, the most important genes were usually cell type-specific, and

batch-neutral (Fig. 3g). For example, the gene GC was uniquely critical for representa-

tions of “alpha” cells, and we observed consistent importance scores across all five plat-

forms (median values for “inDrop,” “Smart-seq2,” “CEL-seq,” “CEL-seq2,” and

“Fluidigm C1” were 0.095, 0.095, 0.068, 0.076, and 0.098 respectively). In contrast, the

most important genes for batch effect removal of stage II were mainly determined by

batches, and most of them showed similar effects across all cell types (Fig. 3h). In sum-

mary, we provide a simple procedure to interpret our deep learning-based model and

further prove our two-stage frameworks could convincingly remove the batch effects of

scRNA-seq datasets.

Application of iMAP on large-scale datasets

To demonstrate iMAP’s scalability on datasets with a large number of cells, we ran

iMAP on the Tabula Muris dataset [27], containing over 100,000 cells, each sequenced

by the Smart-seq2 or 10x platform. iMAP could both reliably integrate cells from the

same tissues but sequenced by separate platforms and identify cells from platform-

specific tissues, such as brain, large intestine, skin, and pancreas, which were exclusively

obtained by Smart-seq2 (Fig. 4a; Additional file 1: Fig. S12a). We further confirmed the

integration power of iMAP by exploiting the cell types mixture within individual tissues.

For example, in the liver tissue, overall seven distinctive cell types were captured by these

two platforms, including five platform-specific cell types, i.e., B cell (Smart-seq2), duct epi-

thelial cell (10x), Kupffer cell (Smart-seq2), leukocyte (10x), and natural killer cell (Smart-

seq2) (Additional file 1: Fig. S12b). We observed that the above five platform-specific cell

types were well separated, and platform-shared cell types, i.e., endothelial cell of hepatic

sinusoid and hepatocyte, were integrated together (Fig. 4b). Besides the tissue-specific

cells, we also noticed some tissue-shared endothelial cells, mesenchymal cells, and im-

mune cells, indicating their great biological similarities across tissues (Fig. 4a). However,

iMAP still recognized distinctive endothelial cells from hepatic sinusoid, lung, and kidney

capillary (Fig. 4c), indicating the particular functions of these types of cells in biological

processes, such as cancer metastasis [28, 29].

Then, we evaluated the time cost of iMAP versus the number of cells by downsam-

pling from 500 to 100,000 cells of Tabula Muris (Fig. 4d; Additional file 1: Fig. S12c).

Initially, the time cost increased linearly with respect to the number of cells. As the
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number exceeded about thousands, the running time kept approximately constant, con-

sidering the inescapable instabilities of machines. We further used iMAP to integrate

two datasets with 320,642 cord blood and 335,616 bone marrow-derived cells from the

Human Cell Atlas, and iMAP can effectively remove the batch effects in a few minutes

on a standard Linux server (Additional file 1: Fig. S12d, e; Additional file 1: Table S1;

the “Methods” section). Finally, we simulated the effects of the number of batches on

time costs. As shown in Fig. 4e, the running time increased linearly as the number of

batches increased (the “Methods” section). In summary, iMAP could scale to large

datasets with great integration powers and minimal time increasement with respect to

the number of cells.

iMAP identified mixed immune cell subsets and underappreciated interactions

To examine the ability of iMAP to generate new biological insights, we applied iMAP

on a scRNA-seq dataset of tumor-infiltrating immune cells from colorectal cancer

Fig. 4 Integration of the large-scale Tabula Muris dataset. a Visualizations of iMAP batch effect removal
results on the Tabula Muris dataset. Platform-specific tissues and tissue-shared cell types are marked. b
Visualizations of cells from liver (subsets of a). Platform-specific cells are marked. c Visualizations of
endothelial cells (subsets of a). d, e Time performance of iMAP. We ran iMAP multiple times using
downsampled cells from Tabula Muris, to test the time cost versus the number of cells (d) and the number
of batches (e). See also Additional file 1: Fig. S12
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(CRC) [30], which provides single-cell transcriptomes of over 50,000 immune cells from

18 CRC patients using both Smart-seq2 and 10x platforms. iMAP was adopted to re-

move the batch effects between two platforms and across different patients (the

“Methods” section). The major cell types from both platforms were mostly correctly

Fig. 5 Applications of iMAP on CRC tumor-infiltrating immune cells. a Visualizations of major cell types and
integration performance of iMAP. b Comparisons of the number of detected genes, transcription factors
(TFs), ligand-receptor genes, and the percent of ribosome genes, noncoding RNAs between original 10x
data, corrected 10x data, and Smart-seq2 data. c Comparisons of the dropout-ratio distribution between
original 10x data, corrected 10x data, and Smart-seq2 data. d Re-analyzed of ILC subsets after batch effect
removal. We showed new defined clusters and platform distribution over clusters. e New refined CD8+ T
cell cluster with expression of key markers compared between original and corrected 10x data. f Significant
ligand-receptor pairs (p < 0.05) defined between cDCs and T cells. g Significant ligand-receptor pairs
detected between cDCs and Th1-like cells (CD4-CXCL13) by Smart-seq2 and corrected 10x data. h Selected
specific pairs identified between cDCs and Th1-like cells by corrected 10x data. See also Additional file 1:
Fig. S13
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separated and well-integrated as shown by the UMAP embeddings [31] plot (Fig. 5a,

Additional file 1: Fig. 13a). Of note, a small number of CD4+ effector T cells (CD4-

GNLY) were located close to CD8+ effector T cells (CD8-CX3CR1), mainly due to their

similarly high expression of cytotoxicity-related genes (such as NKG7, GNLY), and their

same tissue origin of blood (Additional file 1: Fig. S13a, b).

Given that we can obtain the whole corrected transcriptomes of cells sequenced by

10x, it is possible to compare data from Smart-seq2 with original 10x data and batch-

corrected 10x data on a global scale. As described previously, the number of detected

genes for each cell obtained by 10x is significantly lower than that obtained by Smart-

seq2 [30, 32]. However, after iMAP correction, we recovered the dropout genes by 10x

and boosted the number to be almost at the same level as Smart-seq2 (Fig. 5b). For ex-

ample, the median number of detected genes across cells from tumor was 3994 for cor-

rected 10x, which was close to the median number 4085 for Smart-seq2. Particularly,

the detected number of transcription factors and ligand-receptors were also promoted,

which may facilitate further analyses of regulatory and cell-cell interactions (Fig. 5b).

We next systematically checked the dropout-ratio of each gene across all cells in each

platform. As expected, the relationship between dropout-ratios of genes acquired by

10x and Smart-seq2 was strongly upper convex. Matching the distribution of gene ex-

pression by iMAP made the dropout-ratios between batches much more consistent

(Pearson’s correlation = 0.9) (Fig. 5c). Besides recovering the specific dropout genes by

10x, our method could also appropriately decrease the percentage of ribosome genes

and noncoding RNAs (Fig. 5b), which usually comprise a large number of the whole se-

quenced transcriptomes obtained by 10x [32]. It is worth noting that the corrected 10x

data were not just the same as that of Smart-seq2. For example, the variance of the

number of detected genes was similar to the original 10x data, both smaller than that

of Smart-seq2 (Fig. 5b). This may indicate iMAP could match the distribution of 10x

and Smart-seq2 on average, but does not press to match each single cell.

For specific cell subsets, we noticed certain previously annotated innate lymphoid

cells (ILCs), especially the NK-CD16 cells, from 10x were mixed with CD8+ effector

cells after batch correction (Fig. 5a; Additional file 1: Fig. S13b). Such mixture could be

caused by the high dropout-ratio of key marker genes for major cell types sequenced

by 10x, such as CD8A, CD8B for CD8+ T cells, and CD4 for CD4+ T cells (Add-

itional file 1: Fig. S13c). Another possibility could be the functional similarity of CD16+

NK cells to their T and NKT counterparts, with the main transcriptomic distinctiveness

of these NK cells being devoid of expression of T cell receptors and its associated

adapters and co-receptors [33]. To better characterize ILCs, we re-clustered the defined

ILCs from the original publication using batch effect-removed data and identified over-

all 5 clusters (Fig. 5d). The C3_NK-GZMK, C4_ILC3_SLC4A10, and C5-NK_CD103

were nearly identical to original annotations, and cells from 10x and Smart-seq2 were

appropriately integrated (Additional file 1: Fig. S13d). However, the original NK-CD16

cells were clearly divided into two clusters, with one of them, C1_CD8T, showing sig-

nificantly high expression of CD8A, CD8B, CD3D, CD3E, and CD3G (Fig. 5e). We fur-

ther found that this cluster was 10x-specific and mainly from the blood, and in the

original 10x data, these genes had already been detected sporadically (Fig. 5e). There-

fore, it was reasonable to assume these pre-defined ILCs may be CD8+ effector T cells,

although further evidence, such as TCR information should be considered. Considering
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that NK cells have attracted many research interests in recent years because of its enor-

mous potentials for cancer immunotherapy [34–36], it should be careful to discern

them from CD8+ effector T cells, especially with droplet-based sequencing

technologies.

Finally, we explored novel cell-cell interactions uncovered by corrected 10x data. We

focused on the interactions between DCs and T cells, because of the central roles of

DCs in the cell-cell interaction network of the CRC tumor microenvironment [30]. We

found that 10x could detect a comparable number of significant ligand-receptor pairs

between cDC subsets (cDC2-CD1C and cDC1-BATF3) and various kinds of T cell sub-

sets after batch effect removal (the “Methods” section; Fig. 5f). Among CD4+ T cells,

the Th1-like cells (CD4-CXCL13) had the largest number of interaction pairs with both

cDC2 and cDC1. Given the pivotal role of these cells in the CRC microenvironment

and immunotherapies [37], we further dissected the predicted ligand-receptor pairs be-

tween cDCs and Th1-like cells. We found a high overlap of significant pairs between

cDCs and Th1-like cells identified by Smart-seq2 and corrected 10x data (Fig. 5g).

However, many specific interaction pairs were only captured by corrected 10x data,

possibly because of the larger number of cells and distinctive proportions of cell types.

For example, cDCs could secrete chemokines, such as CXCL8, to recruit Th1-like cells

into tumor with the bonding of CXCR2. Additionally, the co-stimulatory ligand TNFS

F4 (OX40L) and its receptor TNFRSF4 (OX40) were also highly expressed in cDCs and

Th1-like cells, respectively. Their significant interaction may play an essential role in

Th1-like cell activations in the CRC microenvironment [38], which may impact the

anti-CD40 agonist treatment [30]. These observed novel interactions have the potential

to facilitate the process of Th1-like cell recruitment and activation. Furthermore, the

Th1-like cells in turn could interact with those cDCs through GAS6-AXL, IL24-

NOTCH2, and IL6-IL6 receptor pairs, suggesting complex interactions between these

cells within immune systems in tumors (Fig. 5h). Collectively, our iMAP may help tap

further potentials of 10x in terms of exploring novel cell-cell interactions.

Discussion
iMAP addresses the fundamental batch effect removal problem in the application of

single-cell transcriptomes. It takes the gene expression profile matrices from different

batches as inputs and outputs the corrected expression profiles. Our model combines

the powers of both autoencoders and GANs. We deploy a novel autoencoder structure

to help build disentangled batch-ignorant representations of cells. Autoencoders can re-

tain the biological contents of cells, which is necessary for identifying the batch-specific

cells, while it is difficult for them to well-mix the batch-shared cells. We further train

one GAN model using extended MNN pairs between batches. These pairs, named as

rwMNN pairs, searched by the representations of autoencoders and extended by a ran-

dom walk-based procedure, could better encapsulate the underlying distributions of the

shared cell types between batches. GANs trained on rwMNN pairs could perfectly mix

the distributions of the shared cell types. On multiple benchmark datasets, iMAP shows

superior performance in terms of both discerning the batch-specific cells and mixing

the batch-shared cell types.

iMAP shows minimal time cost increasement when the cell number exceeds thou-

sands, providing possible huge potentials to apply on very large-scale single-cell studies.
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The excellent time performance is achieved by elaborated algorithm design and power-

ful computational performance of GPUs (the “Methods” section). However, further im-

provements are still needed to decrease the time cost with respect to the number of

batches. The training of iMAP, like all other deep learning-based models, involves lots

of indispensable stochasticity and amounts of tunable hyperparameters implied in the

network architectures and optimization procedures. It may require fine-tuning some or

all of these parameters to obtain best performance on single specific application, al-

though the default settings could already give solid performance in our tested bench-

mark datasets. In our current model, one dataset is specified as the anchor, whose

expression profile would not be corrected. Further improvements may need to escape

the selection of anchor and recover more precise single-cell transcriptomes. Although

we propose a framework to interpret the working mechanism of iMAP, the two import-

ance scores are still primarily heuristic and we expect more advancements in the inter-

pretability of deep models for their applications on biological systems.

One main expectancy of integration of datasets from multiple sources is to fully

utilize the useful sides of each of the sources. We demonstrate the application of iMAP

on one study of CRC tumor-infiltrating immune cells. Cells were sequenced by two

complementary scRNA-seq platforms—Smart-seq2 and 10x. iMAP could bring down

the dropout-ratio of 10x to the level that is similar to that of Smart-seq2. This helped

discriminate a plausible CD8+ T effectors cell cluster from the previous annotated ILCs.

Because of the larger number of cells captured by 10x and boosted number of detected

ligand-receptor genes by iMAP, we discovered novel interactions between cDCs and

Th1-like T cells, such as OX40L-OX40, which may provide new insights for cancer im-

munotherapies. Finally, our method may be easily extended to tackle other types of

single-cell measurements. We expect this work to be further improved to suit the

multi-dimensional nature of the new single cell data.

Conclusion
We present a novel unsupervised deep learning-based framework, iMAP, to address the

essential batch effect removal problems in the application of scRNA-seq technologies.

By comparing with nine notable batch effect removal methods and testing over 10 real-

world datasets, we show that iMAP has superior and robust performance in terms of

both reliably discerning the batch-specific cells and effectively integrating the batch-

shared cell types. We also demonstrate the scalability of iMAP on the integration of

two mouse cell atlases. The time cost increase is minimum when the cell number ex-

ceeds thousands. iMAP could discover novel cell-cell interactions between cDC subsets

and T cell subsets when applied to the integration of tumor microenvironment datasets

sequenced by Smart-seq2 and 10x.

Methods
The iMAP model

The iMAP model was initially inspired by neural style transfer methodologies from the

computer vision field [17]. The essential objective of style transfer is to transfer natural

images to paints plausibly created by one specific artist, while retaining the underlying

image contents. Here we regarded different measuring processes of single-cell
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transcriptomes as specific “painting styles,” and then batch effect removal could be real-

ized by transforming all cells into the same batch style. GAN-based models are current

state-of-art frameworks for style transfer of images [39]. Although hitherto, available

style transfer models are designed specialized for images and not suitable for biological

datasets.

The most difficult challenge for batch effect removal is to balance the tradeoff be-

tween discerning identification of the batch-specific cell types and sufficient mixing of

the batch-shared cell types. To overcome this entangled matter, we formalize our iMAP

integration model into two stages, with one stage of representation learning and the

other stage of batch effect removal of the original expression profiles. Specially, we

elaborate a novel autoencoder structure in the first stage, to build representations of ef-

fects of biological variations disentangled from measurement noises on single-cell tran-

scriptomes. These representations could already discriminate the batch-specific cell

types and roughly mix those shared between batches. Further in the second stage, we

can successfully decipher and eliminate the batch effects on the expression profile of

each single cell, by virtue of the strong power of GANs for mixing cell distributions

from different batches. To make GANs easily capture and match different modes of

shared biological variations across batches, we only employ those cells with plausibly

similar biological content in the training process to avoid the possibly detrimental mix-

ture of the batch-specific cells and devise a specialized random walk procedure to fully

cover the underlying cell type distributions. Details were further explained below.

Stage I: Disentangled representations of biological variations and measuring processes

We modeled the measured expression vector as the coupled effects of true biological

variations and inevitable measurement noises. Although the measuring process may

have distinctive effects on different cell types, it is reasonable to assume the true bio-

logical variations are independent of measuring noises. Considering that distilling the

underlying biological contents from transcriptome measures is the critical step to re-

move the batch effects, we first designed a novel autoencoder structure to build repre-

sentations of biological variations, which are expected to be disentangled from

measuring noises.

Three forward neural networks are deployed in this stage, including one content en-

coder E, two generators (decoders) G1 and G2 (Fig. 1b). The inputs to the model in-

clude the expression vector of one cell denoted as x, and its batch indicator vector b.

One-hot encoding strategy is used to indicate the batch of the cell. For instance, in the

case of three batches, cells from the first batch have their batch indicator vector b = [1,

0, 0]T. The output of the encoder E is denoted as c = E(x), which is expected to exclu-

sively represent the biological contents of cells, and be ignorant of the measuring

process. The neural network G1 is deployed to generate the representation of measure-

ment noise G1(b), since the measurement noise cannot be fully captured by a simple

one-hot vector. Another generator G2 is further used to finish the reconstruction of the

original expression vector. The inputs to the generator G2 include both E(x) and b, be-

cause intuitively, it is possible for the generator to reconstruct the original measured

expression vector only if both the biological content and measurement noise are simul-

taneously provided. The final reconstructed expression vector is G(E(x), b) = f(G1(b) +
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G2(E(x), b)), where f is a non-linear transformation, and is used to match the range of

reconstructed vector with the original expression vector. The ReLU function f(x) =

max(0, x) can be the default candidate for non-negative expression vectors. The recon-

struction loss (ℇ represents expectation) can be formalized as:

Lr ¼ ℇx;b G E xð Þ; bð Þ − xj jj j2

The key to successfully extract biological contents of one cell is to disentangle the

biological representation c from the corresponding cell batch indicator b. We achieve

this by deliberately generating a random batch indicator vector ~b for each cell, where

randomly selected one element is set to 1 while others to 0. Well-trained generators G1

and G2, with E(x) and ~b as inputs, should fabricate one cell with the same content as x.

This inspired our content loss as:

Lc ¼ ℇx;~b E G E xð Þ; ~b� �� �
− E xð Þ�� ���� ��2

In summary, the overall loss function of the first stage is:

min
G;E

λcLc þ λrLr

where λc and λr are tunable hyperparameters to make tradeoffs between the content

and reconstruction loss. In our experiments, this loss function can be optimized at low

operating cost, to obtain sufficiently good representations, especially for the identifica-

tion of the batch-specific cells. However, the overwhelming researches in the field of

deep learning have confirmed that it is hard to generate images indistinguishable from

true ones by only optimizing the reconstruction loss of autoencoders [40], which in-

spired us to add the adversarial structures in the stage II, further removing the batch ef-

fects from the original expression profiles.

Stage II: Batch effect removal by GANs

Although in the ideal case, the representations built from the previous stage should be

independent of the batch effects, according to our trials, it is hard to retrieve the cor-

rected expression profiles only by the generators G1 and G2. Therefore, we further use

a GAN-based model to almost perfectly match the data distributions of the shared cell

types across different batches and then generate the corrected expression profiles in the

stage II. The basic idea here is to transform cells from all other batches to pseudo-cells

of one pre-selected “anchor” batch, and the pseudo-cells are expected to be indistin-

guishable from true cells of the anchor batch. By indistinguishableness, we do not pur-

sue perfect overlap with true cells for each single pseudo-cell, but endeavor to match

the distribution of pseudo-cells with the distribution of true cells with the same or

similar biological contents.

We adopt a specialized MNN pair-based strategy to guide the integration, for only

matching the distributions of cells from the shared cell types between two batches. An

MNN pair is defined as a set of two cells from two batches respectively, that each cell

is among the k nearest across-batch neighbors of the other cell [9]. We use the encoder

output E(x) from the stage I to define MNN pairs, because these representations are

supposed to be batch effect independent, resulting in a larger number of MNN pairs

than using the original expression vectors, as we shown in Fig. 3e. Other methods

Wang et al. Genome Biology           (2021) 22:63 Page 16 of 24



based on MNN pairs may regard these pairs as anchors and then use a weighted aver-

aging strategy to correct all other cells. One major potential drawback of the MNN

pairs is that it is hard to assure these pairs could cover the complete distributions of

cells from the shared cell types (Fig. 1d). We alternatively develop a novel random

walk-based strategy to expand the MNN pair list. As shown in Fig. 1d, suppose cell a1
from batch 1 and cell a2 from batch 2 are selected as an MNN pair. Among the k1
nearest neighbors of a1 from batch 1, we randomly pick one cell b1. The same proced-

ure would give one b2 cell from batch 2. Then, the set composed of b1 and b2 is

regarded as an extended MNN pair, and also the next seed pair for random walk ex-

pansion. This process is repeated m times. For all MNN pairs, we could generate these

kinds of new pairs. We call pairs obtained from this procedure as rwMNN pairs. The

generated rwMNN pairs can better cover the distributions of matched cell types, which

could facilitate the training of GANs (Fig. 3f). We argue that it is also beneficial to

adopt rwMNN pairs for other MNN-based methods (Additional file 1: Fig. S11).

Next, we use those rwMNN pairs, denoted as fðxð1Þ; xð2ÞÞig
M
i¼1 (the superscript index-

ing its batch origin) to train the GAN model. This model is composed of two neural

networks, one generator G′, mapping cell expression vector x(1) to a pseudo-cell expres-

sion vector G′(x(1)), and one discriminator D′, discriminating the pseudo cell from the

true expression vector x(2). The adversarial loss is:

min
G

0
max
D

0
ℇx 2ð Þ logD

0
x 2ð Þ

� �h i
þ ℇx 1ð Þ log 1 −D

0
G

0
x 1ð Þ

� �� �h i

After training, all cells including those not in the rwMNN list could be transformed

by the generator G′ to obtain the batch effect removal expression vectors.

Implementation details

We deploy a total of five neural networks. Compared with the network structures, the

specific number of neurons for each layer is of less importance for a reasonable number

of input dimensions. By default, the encoder E from the first stage is a d→ 1024→

512→ l three-layer (not including the input layer) network (d is the input dimension of

expression vectors, and l is the dimension of content representations). The decoder G1

is a n→ 512→ 1024→ d three-layer network (n is the number of batches), and the

decoder G2 is (n + l)→ 512→ 1024→ d. For all networks, the first two layers have a

Mish non-linear activation [41], while the last layer is a linear transformation. Two pa-

rameters λc = 3, λr = 1 are used to balance the reconstruction loss and content loss. For

the second stage, the generator G′ is a “shortcut connection” inspired by ResNet [42],

which means G′(x) = f(F(x) + x) (f is a ReLU function), and F itself is an autoencoder

structure, d→ 1024→ 512→ l→ 512→ 1024→ d (all layers are activated by Mish

except the middle one). Be default, l is set to 256. The discriminator D′ is again a

three-layer network d→ 512→ 512→ 1. To facilitate and stabilize the GAN training

process, adversarial losses are optimized via the WGAN-GP [43]. We adopt the Adam

optimizer [44] to train the networks, with the learning rate 0.0005 for first stage and

0.0002 for the second.

In the stage II, we need to enquire the kNNs within batch and MNN pairs between

batches for cells. This procedure may be compute-intensive. We randomly sample a

maximum of s = 3000 cells from each batch to calculate all necessary pairs. Then, a
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locality sensitive hashing-based Python package “annoy” is adopted to quickly find the

approximate nearest neighbors of each cell [45]. These make the time cost of the enquiry

process is approximately constant with respect to the number of cells in each batch. The

overall time cost depends only on the number of batches and network optimization pa-

rameters (such as the number of epochs for training). Hyperparameters used in this stage

include k1 = s/100, k = k1/2, m = 50. All hyperparameters can be tunable by the user, al-

though the default options could provide good enough results in most of our tested cases.

In order to deal with multiple datasets, we use an incremental matching manner. The

sub-dataset with the largest total variance is selected as the anchor, and all other sub-

datasets are processed in the decreasing order of their total variances. Every sub-dataset

integrated to the anchor is appended to the anchor. Intuitively, the preferential integra-

tion order should arrange those sub-datasets with larger number of cell types firstly. If

this information is available, we encourage the users to provide their own anchor and

integration ordering. However, we argue that iMAP can also perform well to some ex-

tent even if the anchor sub-dataset lacks specific cell types. We demonstrate this in the

“panc_rm” dataset, where the “inDrop” batch was selected as the anchor.

All jobs were run on a Linux server with 2x Intel(R) Xeon(R) CPU E5-2697 v4 @

2.30GHz, 256G of DDR4 memory, Nvidia GTX 1080Ti GPU.

Explanations of gene importance

The interpretability has gradually become more and more important in the machine

learning community, particularly for the applications on biological researches [46]. We

adopt SHAP [26], a well-designed game theory-based method to interpret the trained

neural networks of iMAP, through grading each gene to evaluate its importance for the

outputs of one cell. We provide two kinds of scores to interpreting gene’s importance,

each for building representations in the stage I and removing batch effects in the stage

II, respectively. Specially, a three-layer neural network is connected to the output of en-

coder from the stage I, and trained to classify the external cell type information, while

the encoder would not be trained further. Then SHAP is used to evaluate the im-

portance of each gene for the classification outputs (Additional file 1: Fig. S1c).

The other three-layer neural network is deployed to discriminate the batch-origin

of each cell, and SHAP is again used to assign each gene an importance value for

the classification of batch (Additional file 1: Fig. S1d). This importance value is

regarded as the surrogate for evaluating the importance of one gene in removing

batch effects. We expect these two importance scores could offer primary heuris-

tics about the working mechanisms of iMAP, and the roles of genes on represent-

ing biological variations and measuring noises.

Preprocessing scRNA-seq datasets

Preprocessing of scRNA-seq datasets were performed under the standard Scanpy

pipelines [47]. Low-quality cells were filtered if the library size or the proportion of

mitochondrial gene counts was too large. The input expression vectors for iMAP were

log-transformed TPM-like values. Prior to the first stage, we need to select highly vari-

able genes for each batch to help discover the true biological variations from the noisy

transcriptomes. Only those genes measured in all batches were considered. The Scanpy
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API “scanpy.pp.highly_variable_genes” was used to select highly variable genes in each

batch respectively, although users could also use their preferred highly variable genes

selection method. For the second stage, by default, we also used the selected highly

variable genes. It is also possible to deal with the whole transcriptome, as we did for

the “CRC” dataset. However, to make our default network structure, which is specially

designed for dealing with inputs of highly variable genes (usually about two thousand),

suitable to the whole transcriptome (usually about twenty thousand genes), we ran-

domly divided the whole transcriptome into ten parts, each with about two thousand

genes, and trained ten separate networks for each of them (Additional file 1: Table S5).

We did not take the pre-processing steps into account to measure the time cost shown

in Fig. 4d, e.

Benchmarks

Datasets

Three commonly used scRNA-seq datasets were employed to evaluate the performance

of different batch effect removal methods. The first dataset “panc_rm,” includes human

pancreas cells measured by 5 different platforms. To measure the ability of different

methods to detect the batch-specific cell types, we manually removed “ductal” cells

from the “CEL-seq” dataset and “acinar,” “alpha” cells from the “inDrop” dataset. The

“ductal” cell type has the largest number of cells in the “CEL-seq” sub-dataset. With

their removal, the primary variance of “CEL-seq” may be determined by the second and

third most numerous cell type, i.e., “acinar” and “alpha” cells. Then, we further removed

these two cell types from another “inDrop” sub-dataset which was selected as the inte-

gration anchor. The second dataset “cell_lines,” is composed of three sub-datasets all

sequenced by the 10x platform. Two of them are pure cell lines (“Jurkat” and “293 T”),

and “Mix” is the equal mixture of “Jurkat” and “293 T.” For the “Mix” dataset, we per-

formed the standard “Seurat” pipeline to cluster and annotate the cells. Those clusters

with high expression of XIST were set as “293 T” while others as “Jurkat.” The third

dataset “DC_rm,” consists of human DCs sequenced by the Smart-seq2 protocol. CD1C

DCs in batch 1 and CD141 DCs in batch 2 were also removed, which are biologically

similar.

Two recently published benchmark datasets “SCP424_PBMC” and “SCP425_cortex,”

which sequenced thousands of cells from peripheral blood mononuclear cells and brain

tissue respectively, with over ten protocols, covering most of single-cell and/or single-

nucleus profiling methods, were also included for comparison of different methods.

The log-10 K data, and meta information were downloaded from the Single Cell Portal

(https://singlecell.broadinstitute.org/single_cell; Additional file 1: Table S1). We also

tested the performance of iMAP on five additional datasets, with various numbers of

cells, and detailed information can be found in Additional file 1: Table S1.

To test the performance, especially the time cost of iMAP for large-scale datasets, we

ran iMAP on the Tabila Muris dataset, which consists of the mouse cells sequenced by

two platforms, e.g., Smart-seq2 and 10x. The “UpdateSeuratObject” function updated

the downloaded Seurat object to the version v3. The sequencing platforms were

regarded as the batches. Another dataset containing over 600,000 cells from Human
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Cell Atlas was also adopted to test the scalability of iMAP, and its detailed information

can be found in Additional file 1: Table S1.

The “CRC” dataset was used to test the applications of iMAP on the tumor microenvi-

ronments. Nearly 50,000 cells from human colon cancer were sequenced by either Smart-

seq2 or 10x platforms. Cells from different patients sequenced by Smart-seq2 show less

technical variations than those by 10x [30]. Therefore, we regarded all cells from Smart-

seq2 as a single batch, and every patient sequenced by 10x was a separate batch. Cell types

and tissue sources information were obtained from the original publication.

Benchmark methods

We compared our method with nine leading scRNA-seq batch effect removal methods:

ComBat, scVI, LIGER, fastMNN, BBKNN, Harmony, Scanorama, Seurat v3, and DESC.

See Additional file 1: Table S2 for detailed version information. Combat and BBKNN cor-

rection were performed using the scanpy API “scanpy.pp.combat” and “scnpy.exter-

nal.pp.bbknn.” scVI was run using the default parameters and obtained latent

representations were used for further analysis. The “optimizeALS” parameter of LIGER

was set to “k = 20.” We used the “SeuratWarpper” versions of fastMNN (“RunFastMNN”)

and Harmony (“RunHarmony”). Scanorama was run using the default parameter of “sca-

norama.correct.” The dimensions parameters of Seurat v3 were all set to “dim = 1:30.”

DESC was run with the default parameters, and especially the “louvain_resolution” was

set as 1.0. Because some methods cannot give the corrected expression values, we com-

pared them by using the UMAP embeddings. All embeddings were run by using the same

parameters of the Python package “umap-learn.”

Evaluation indices of batch effect removal

There exists an extensive list of batch effect removal evaluation indices in the literature

[6]. Some widely used include kBET (k-nearest neighbor batch-effect test) [18], LISI

(Local Inverse Simpson’s Index) [13], ASW (average silhouette width), and ARI (ad-

justed rand index). We argue that ARI and ASW are cluster-level indices and cannot

reliably evaluate the mixture of cells from different batch at a local single-cell level

(Additional file 1: Fig. S1a). kBET and LISI evaluate the batch mixing at a local level by

comparing the batch distribution with kNNs of a cell with the global batch distribution.

kBET has the advantage in evaluating the integration performance of batch-shared cell

types, one drawback of which, however, is that when it measures the batch mixture, it

is cell type ignorant. This may cause unfair results when the proportions of share cells

types are too discrepant in different batches [13]. LISI could evaluate both the capacity

of identification batch-specific cell types and the integration of batch-shared cell types,

but it is hard to summarize all single cell-level LISI values into a simple statistic for

comparing between various methods. kBET and LISI are nonetheless reliable metrics

when appropriated employed. So, we first used these two kinds of metrics to compare

different methods. For kBET, we computed the acceptance rates for each cell type sep-

arately and summarized the median value over all tested cells as the final output. For

the “DC_rm” and “panc_rm” datasets, only those cell types appearing in all batches

were taken into account, and since no cell type appears in all three sub-datasets of

“cell_lines,” we computed the acceptance rates for the integration of “Jurkat” and “Mix”
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and the integration of “293 T” and “Mix,” respectively. One important parameter k, the

number of nearest neighbors, has a large effect on the results of kBET, and follow-

ing the kBET paper, a series of k values, which are chosen as 5%, 10%, 15%, 20%,

and 25% of the total cell numbers, are adopted to run kBET. For LISI, we com-

puted the cLISI and iLISI values for each cell, with the ideal cLISI equal to one.

iLISI values of different methods are compared for each cell type separately, be-

cause the best values are cell type-specific, and determined by the number of

batches having this specific cell type [13].

Considering that these indices all have their own limitations in terms of simultan-

eously evaluating both cell type and batch mixing, we propose two new indices to

evaluate the batch mixture. Our evaluation procedure is also based on kNNs of a cell

and divided into two successive steps (Additional file 1: Fig. S1b). Firstly, we classify all

cells into “positive” and “negative” cells. “Positive” cells are those surrounded mostly by

cells from the same cell type. Be default, one cell is assigned as “positive” only if at least

50% cells of its kNNs are with the same cell type label, otherwise “negative” (k is set as

the minimum of 100 and the number of cells for this cell type). Then, those positive

cells are further discriminated into “true” and “false” positive cells by a second dichot-

omous classifier. “True” positive cells are those surrounded by appropriate proportions

of cells with different batches. We use the three-sigma rule of thumb to measure

whether the observed batch distribution of one positive cell’s neighborhood is consist-

ent with the global batch distribution. Considering a cell with cluster label y, the num-

ber of cells from cell type y in all n batches are N1, N2, ⋯, Nn respectively. We define

pi =Ni/∑jNj for i = 1, 2, ⋯, n. Then, by expectation, if we sample k cells from cell type

y, the number of cells from batch i is equal to kpi. We regard a positive cell as true

positive if the numbers of its neighbors from different batches are all within the range

of 3 standard deviation around the expectation. This is to say, suppose kNNs of one

true positive cell have the batch distribution k1, k2, ⋯, kN, then ki∈½ maxð0; kpi − 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpið1 − piÞ

p Þ; kpi þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpið1 − piÞ

p � for all i = 1, 2, ⋯, n. By these two classification pro-

cedures, we could automatically identify those cells that are not mixed well. We

use the proportions of positive and true positive cells as the quantitative indices to

evaluate the performance of batch effect removal of different methods. This two-

classifier system also provides an effective tool for visualizations of the batch effect

removal results.

Identification of significant ligand-receptor pairs

We used CellPhoneDB [48] to analyze the interactions between different cell types.

One pair with p value less than 0.05 was regarded as statistically significant.
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