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Abstract

Long-read sequencing technologies are overcoming early limitations in accuracy and throughput, broadening their
application domains in genomics. Dedicated analysis tools that take into account the characteristics of long-read data
are thus required, but the fast pace of development of such tools can be overwhelming. To assist in the design and
analysis of long-read sequencing projects, we review the current landscape of available tools and present an online
interactive database, long-read-tools.org, to facilitate their browsing. We further focus on the principles of error
correction, base modification detection, and long-read transcriptomics analysis and highlight the challenges that
remain.
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Introduction
Long-read sequencing, or third-generation sequencing,
offers a number of advantages over short-read sequenc-
ing [1, 2]. While short-read sequencers such as Illu-
mina’s NovaSeq, HiSeq, NextSeq, and MiSeq instruments
[3–5]; BGI’sMGISEQ and BGISEQmodels [6]; or Thermo
Fisher’s Ion Torrent sequencers [7, 8] produce reads of up
to 600 bases, long-read sequencing technologies routinely
generate reads in excess of 10 kb [1].
Short-read sequencing is cost-effective, accurate, and

supported by a wide range of analysis tools and pipelines
[9]. However, natural nucleic acid polymers span eight
orders of magnitude in length, and sequencing them
in short amplified fragments complicates the task of
reconstructing and counting the original molecules. Long
reads can thus improve de novo assembly, mapping cer-
tainty, transcript isoform identification, and detection of
structural variants. Furthermore, long-read sequencing of
native molecules, both DNA and RNA, eliminates ampli-
fication bias while preserving base modifications [10].
These capabilities, together with continuing progress in
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accuracy, throughput, and cost reduction, have begun to
make long-read sequencing an option for a broad range
of applications in genomics for model and non-model
organisms [2, 11].
Two technologies currently dominate the long-read

sequencing space: Pacific Biosciences’ (PacBio) single-
molecule real-time (SMRT) sequencing and Oxford
Nanopore Technologies’ (ONT) nanopore sequencing.
We henceforth refer to these simply as SMRT and
nanopore sequencing. SMRT and nanopore sequencing
technologies were commercially released in 2011 and
2014, respectively, and since then have become suitable
for an increasing number of applications. The data that
these platforms produce differ qualitatively from second-
generation sequencing, thus necessitating tailored analy-
sis tools.
Given the broadening interest in long-read sequenc-

ing and the fast-paced development of applications and
tools, the current review aims to provide a descrip-
tion of the guiding principles of long-read data anal-
ysis, a survey of the available tools for different tasks
as well as a discussion of the areas in long-read anal-
ysis that require improvements. We also introduce the
complementary open-source catalogue of long-read anal-
ysis tools: long-read-tools.org. The long-read-tools.org
database allows users to search and filter tools based on
various parameters such as technology or application.
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The state of long-read sequencing and data
analysis
Nanopore and SMRT long-read sequencing technologies
rely on very distinct principles. Nanopore sequencers
(MinION, GridION, and PromethION) measure the ionic
current fluctuations when single-stranded nucleic acids
pass through biological nanopores [12, 13]. Different
nucleotides confer different resistances to the stretch of
nucleic acid within the pore; therefore, the sequence of
bases can be inferred from the specific patterns of current
variation. SMRT sequencers (RSII, Sequel, and Sequel II)
detect fluorescence events that correspond to the addition
of one specific nucleotide by a polymerase tethered to the
bottom of a tiny well [14, 15].
Read length in SMRT sequencing is limited by the

longevity of the polymerase. A faster polymerase for the
Sequel sequencer introduced with chemistry v3 in 2018
increased the read lengths to an average 30-kb poly-
merase read length. The library insert sizes amenable
to SMRT sequencing range from 250 bp to 50 kbp.
Nanopore sequencing provides the longest read lengths,
from 500 bp to the current record of 2.3 Mb [16], with
10–30-kb genomic libraries being common. Read length
in nanopore sequencing is mostly limited by the ability to
deliver very high-molecular weight DNA to the pore and
the negative impact this has on run yield [17]. Basecall-
ing accuracy of reads produced by both these technologies
have dramatically increased in the recent past, and the raw
base-called error rate is claimed to have been reduced to
< 1% for SMRT sequencers [18] and < 5% for nanopore
sequences [17].
While nanopore and SMRT are true long-read sequenc-

ing technologies and the focus of this review, there are
also synthetic long-read sequencing approaches. These
include linked reads, proximity ligation strategies, and
optical mapping [19–28], which can be employed in syn-
ergy with true long reads.
With the potential for accurately assembling and re-

assembling genomes [17, 29–32], methylomes [33, 34],
variants [18], isoforms [35, 36], haplotypes [37–39], or
species [40, 41], tools to analyse the sequencing data
provided by long-read sequencing platforms are being
actively developed, especially since 2011 (Fig. 1a).
A search through publications, preprints, online repos-

itories, and social media identified 354 long-read analy-
sis tools. The majority of these tools are developed for
nanopore read analyses (262) while there are 170 tools
developed to analyse SMRT data (Fig. 1a). We categorised
them into 31 groups based on their functionality (Fig. 1b).
This identified trends in the evolution of research inter-
ests: likely due to the modest initial throughput of long-
read sequencing technologies, the majority of tools were
tested on non-human data; tools for de novo assembly,
error correction, and polishing categories have received

the most attention, while transcriptome analysis is still in
early stages of development (Fig. 1b).
We present an overview of the analysis pipelines for

nanopore and SMRT data and highlight popular tools
(Fig. 1c). We do not attempt to provide a comprehensive
review of tool performance for all long-read applications;
dedicated benchmark studies are irreplaceable, and we
refer our readers to those when possible. Instead, we
present the principles and potential pitfalls of long-read
data analysis with a focus on some of the main types
of downstream analyses: structural variant calling, error
correction, detection of basemodifications, and transcrip-
tomics.

Basecalling
The first step in any long-read analysis is basecalling, or
the conversion from raw data to nucleic acid sequences
(Fig. 1c). This step receives greater attention for long
reads than short reads where it is more standardised and
usually performed using proprietary software. Nanopore
basecalling is itself more complex than SMRT basecall-
ing, and more options are available: of the 26 tools related
to basecalling that we identified, 23 relate to nanopore
sequencing.
During SMRT sequencing, successions of fluorescence

flashes are recorded as a movie. Because the template is
circular, the polymerase may go over both strands of the
DNA fragment multiple times. SMRT basecalling starts
with segmenting the fluorescence trace into pulses and
converting the pulses into bases, resulting in a contin-
uous long read (also called polymerase read). This read
is then split into subreads, where each subread corre-
sponds to 1 pass over the library insert, without the linker
sequences. Subreads are stored as an unaligned BAM file.
From aligning these subreads together, an accurate con-
sensus circular sequence (CCS) for the insert is derived
[42]. SMRT basecallers are chiefly developed internally
and require training specific to the chemistry version
used. The current basecalling workflow is ccs [43].
Nanopore raw data are current intensity values mea-

sured at 4 kHz saved in fast5 format, built on HDF5.
Basecalling of nanopore reads is an area of active research,
where algorithms are quickly evolving (neural networks
have supplanted HMMs, and various neural networks
structures are being tested [44]) as are the chemistries for
which they are trained. ONT makes available a produc-
tion basecaller (Guppy, currently) as well as development
versions (Flappie, Scrappie, Taiyaki, Runnie, and Bonito)
[45]. Generally, the production basecaller provides the
best accuracy and most stable performance and is suit-
able for most users [46]. Development basecallers can be
used to test features, for example, homopolymer accu-
racy, variant detection, or base modification detection,
but they are not necessarily optimised for speed or overall
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Fig. 1 Overview of long-read analysis tools and pipelines. a Release of tools identified from various sources and milestones of long-read sequencing.
b Functional categories. c Typical long-read analysis pipelines for SMRT and nanopore data. Six main stages are identified through the presented
workflow (i.e. basecalling, quality control, read error correction, assembly/alignment, assembly refinement, and downstream analyses). The
green-coloured boxes represent processes common to both short-read and long-read analyses. The orange-coloured boxes represent the
processes unique to long-read analyses. Unfilled boxes represent optional steps. Commonly used tools for each step in long-read analysis are within
brackets. Italics signify tools developed by either PacBio or ONT companies, and non-italics signify tools developed by external parties. Arrows
represent the direction of the workflow

accuracy. In time, improvements make their way into the
production basecaller. For example, Scrappie currently
maps homopolymers explicitly [47].
Independent basecaller with different network struc-

tures are also available, most prominently Chiron [48].
These have been reviewed and their performance evalu-
ated elsewhere [13, 46, 49]. The ability to train one’s own
basecalling model opens the possibility to improve base-
calling performance by tailoring the model to the sample’s
characteristics [46]. As a corollary, users have to keep
in mind that the effective accuracy of the basecaller on
their data set may be lower than the advertised accuracy.
For example, ONT’s basecallers are currently trained on
a mixture of human, yeast, and bacterial DNA; their per-
formance on plant DNA where non-CG methylation is
abundant may be lower [50]. As the very regular updates
to the production Guppy basecaller testify, basecalling
remains an active area of development.

Errors, correction, and polishing
Both SMRT and nanopore technologies provide lower per
read accuracy than short-read sequencing. In the case of
SMRT, the circular consensus sequence quality is heav-
ily dependent on the number of times the fragment is
read—the depth of sequencing of the individual SMRT-
bell molecule (Fig. 1c)—a function of the length of the
original fragment and longevity of the polymerase. With
the Sequel v2 chemistry introduced in 2017, fragments
longer than 10 kbp were typically only read once and had
a single-pass accuracy of 85–87% [51]. The late 2018 v3
chemistry increases the longevity of the polymerase (from
20 to 30 kb for long fragments). An estimated four passes
are required to provide a CCS with Q20 (99% accuracy)
and nine passes for Q30 (99.9% accuracy) [18]. If the errors
were non-random, increasing the sequencing depth would
not be sufficient to remove them. However, the random-
ness of sequencing errors in subreads, consisting of more
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indels than mismatches [52–54], suggests that consensus
approaches can be used so that the final outputs (e.g. CCS,
assembly, variant calls) should be free of systematic biases.
Still, CCS reads retain errors and exhibit a bias for indels
in homopolymers [18].
On the other hand, the quality of nanopore reads is

independent of the length of the DNA fragment. Read
quality depends on achieving optimal translocation speed
(the rate of ratcheting base by base) of the nucleic acid
through the pore, which typically decreases in the late
stages of sequencing runs, negatively affecting the quality
[55]. Contrary to SMRT sequencing, a nanopore sequenc-
ing library is made of linear fragments that are read only
once. In the most common, 1D sequencing protocol, each
strand of the dsDNA fragment is read independently,
and this single-pass accuracy is the final accuracy for the
fragment. By contrast, the 1D2 protocol is designed to
sequence the complementary strand in immediate suc-
cession of up to 75% of fragments, which allows the
calculation of a more accurate consensus sequence for the
library insert. To date, the median single-pass accuracy
of 1D sequencing across a run can reach 95% (manufac-
turer’s numbers [56]). Release 6 of the human genomic
DNA NA12878 reference data set reports 91% median
accuracy [17]. 1D2 sequencing can achieve a median con-
sensus accuracy of 98% [56]. An accurate consensus can
also be derived from linear fragments if the same sequence
is present multiple times: the concept of circularisation
followed by rolling circle amplification for generating
nanopore libraries is similar to SMRT sequencing, and
subreads can be used to determine a high-quality consen-
sus [57–59]. ONT is developing a similar linear consensus
sequencing strategy based on isothermal polymerisation
rather than circularisation [56].
Indels and substitutions are frequent in nanopore data,

partly randomly but not uniformly distributed. Low-
complexity stretches are difficult to resolve with the cur-
rent (R9) pores and basecallers [56], as are homopolymer
sequences. Measured current is a function of the partic-
ular k-mer residing in the pore, and because transloca-
tion of homopolymers does not change the sequence of
nucleotides within the pore, it results in a constant signal
that makes determining homopolymer length difficult. A
new generation of pores (R10) was designed to increase
the accuracy over homopolymers [56]. Certain k-mers
may differ in how distinct a signal they produce, which
can also be a source of systematic bias. Sequence quality
is of course intimately linked to the basecaller used and
the data that has been used to train it. Read accuracy can
be improved by training the basecaller on data that is sim-
ilar to the sample of interest [46]. ONT regularly release
chemistry and software updates that improve read quality:
4 pore versions were introduced in the last 3 years (R9.4,
R9.4.1, R9.5.1, R10.0), and in 2019 alone, there were 12

Guppy releases. PacBio similarly updates hardware, chem-
istry, and software: the last 3 years have seen the release
of 1 instrument (Sequel II), 4 chemistries (Sequel v2 and
v3; Sequel II v1 and v2), and 4 versions of the SMRT-LINK
analysis suite.
Although current long-read accuracy is generally suf-

ficient to uniquely determine the genomic origin of the
read, certain applications require high base-level accuracy,
including de novo assembly, variant calling, or defining
intron-exon boundaries [54]. Two groups of methods to
error correct long-reads can be employed: methods that
only use long reads (non-hybrid) and methods that lever-
age the accuracy of additional short-read data (hybrid)
(Fig. 2). Zhang et al. recently reviewed and benchmarked
15 of these long-read error correction methods [60], while
Fu et al. focused on 10 hybrid error correction tools
[61]. Lima et al. benchmarked 11 error correction tools
specifically for nanopore cDNA reads [62].
In non-hybridmethods, all reads are first aligned to each

other and a consensus is used to correct individual reads
(Fig. 2a). These corrected reads can then be taken forward
for assembly or other applications. Alternatively, because
genomes only contain a small subset of all possible k-mers,
rare k-mers in a noisy long-read data set are likely to rep-
resent sequencing errors. Filtering out these rare k-mers,
as the wtdbg2 assembler does [63], effectively prevents
errors from being introduced in the assembly (Fig. 2a).
Hybrid error correction methods can be further clas-

sified according to how the short reads are used. In
alignment-based methods, the short reads are directly
aligned to the long reads, to generate corrected long reads
(Fig. 2a). In assembly-based methods, the short reads are
first used to build a de Bruijn graph or assembly. Long
reads are then corrected by aligning to the assembly or by
traversing the de Bruijn graph (Fig. 2a). Assembly-based
methods tend to outperform alignment-based methods in
correction quality and speed, and FMLRC [64] was found
to perform best in the two benchmark studies [60, 61].
After assembly, the process of removing remaining

errors from contigs (rather than raw reads) is called ‘pol-
ishing’. One strategy is to use SMRT subreads through
Arrow [65] or nanopore current traces through Nanop-
olish [66], to improve the accuracy of the consensus
(Fig. 2b). For nanopore data, polishing while also tak-
ing into account the base modifications (as implemented
for instance in Nanopolish [66]) further improves the
accuracy of an assembly [46]. Alternatively, polishing can
be done with the help of short reads using Pilon [67],
Racon [68], or others, often in multiple rounds [50, 69, 70]
(Fig. 2b). The rationale for iterative hybrid polishing is that
as errors are corrected, previously ambiguously mapped
short reads can be mappedmore accurately. While certain
pipelines repeat polishing until convergence (or oscilla-
tory behaviour, where the same positions are changed
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Fig. 2 Paradigms of error correction (a) and polishing (b). Errors in long reads and assembly are denoted by red crosses. Non-hybrid methods only
require long reads, while hybrid methods additionally require accurate short reads (purple)

back and forth between each round), too many iterations
can decrease the quality of the assembly, as measured
by the BUSCO score [71]. To increase scalability, ntE-
dit foregoes alignment in favour of comparing the draft
assembly’s k-mers to a thresholded Bloom filter built from
the sequencing reads [72] (Fig. 2b).
Despite continuous improvements in the accuracy of

long reads, error correction remains indispensable in
many applications. We identified 62 tools that are able
to carry out error correction. There is no silver bullet,
and correcting an assembly requires patience and careful
work, often combining multiple tools (e.g. Racon, Pilon,
and Nanopolish [50]). Adding to the difficulty of the
absence of an authoritative error correction pipeline, cer-
tain tools do not scale well for deep sequencing or large
genomes [50]. Furthermore, most tools are designed with
haploid assemblies in mind. Allelic variation, repeats, or
gene families may not be correctly handled.

Detecting structural variation
While short reads perform well for the identification of
single nucleotide variants (SNVs) and small insertion and
deletions (indels), they are not well suited to the detection

of larger sequence changes [73]. Collectively referred to
as structural variants (SVs), insertions, deletions, dupli-
cations, inversions, or translocations that affect ≥ 50 bp
[74] are more amenable to long-read sequencing [75, 76]
(Fig 1c). Because of these past technical limitations, struc-
tural variants have historically been under-studied despite
being an important source of diversity between genomes
and relevant for human health [77, 78].
The ability of long reads to span repeated elements

or repetitive regions provides unique anchors that facili-
tate de novo assembly and SV calling [73]. Even relatively
short (5 kb) SMRT reads can identify structural vari-
ants in the human genome that were previously missed
by short-read technologies [79]. Obtaining deep cover-
age of mammalian-sized genomes with long reads remains
costly; however, modest coverage may be sufficient: 8.6×
SMRT sequencing [14] and 15–17× nanopore sequenc-
ing [80, 81] have been shown to be effective in detect-
ing pathogenic variants in humans. Heterozygosity or
mosaicism naturally increase the coverage requirements.
Evaluating the performance of long-read SV callers is

complicated by the fact that benchmark data sets may be
missing SVs in their annotation [73, 77], especially when it
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comes only from short reads. Therefore, validation of new
variants has to be performed via other methods. Devel-
oping robust benchmarks is an ongoing effort [82], as is
devising solutions to visualise complex, phased variants
for critical assessment [82, 83].
For further details on structural variant calling from

long-read data, we refer the reader to two recent reviews:
Mahmoud et al. [73] and Ho et al. [77].

Detecting basemodifications
In addition to the canonical A, T, C, and G bases, DNA
can contain modified bases that vary in nature and fre-
quency across organisms and tissues. N-6-methyladenine
(6mA), 4-methylcytosine (4mC), and 5-methylcytosine
(5mC) are frequent in bacteria. 5mC is the most common
base modification in eukaryotes, while its oxidised deriva-
tives 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxycytosine (5caC) are detected in cer-
tain mammalian cell types but have yet to be deeply
characterised [84–88]. Still, more base modifications that
result from DNA damage occur at a low frequency [87].
The nucleotides that compose RNA are even more var-

ied. Over 150 modified bases have been documented
to date [89, 90]. These modifications also have func-
tional roles, for example, in mRNA stability [91], tran-
scriptional repression [92], and translational efficiency

[93]. However, most RNA modifications remain ill-
characterised due to technological limitations [94]. Aside
from the modifications to standard bases, base analogues
may also be introduced to nucleic acids, such as the
thymidine analogue BrdU which is used to track genomic
replication [95].
Mapping of nucleic acid modifications has traditionally

relied on specific chemical treatment (e.g. bisulfite conver-
sion that changes unmethylated cytosines to uracils [96])
or immunoprecipitation followed by sequencing [97]. The
ability of the long-read platforms to sequence native
nucleic acids provides the opportunity to determine the
presence of many more modifications, at base resolution
in single molecules, and without specialised chemistries
that can be damaging to the DNA [98]. Long reads thus
allow the phasing of base modifications along individual
nucleic acids, as well as their phasing with genetic vari-
ants, opening up opportunities in exploring epigenetic
heterogeneity [34, 99]. Long reads also enable the analysis
of base modifications in repetitive regions of the genome
(centromeres or transposons), where short reads cannot
be mapped uniquely.
In SMRT sequencing, base modifications in DNA or

RNA [100, 101] are inferred from the delay between
fluorescence pulses, referred to as interpulse duration
(IPD) [98] (Fig. 3). Base modifications impact the speed

Fig. 3Methods to detect base modifications in long-read sequencing. Base modifications can be inferred from their effect on the current intensity
(nanopore) and inter-pulse duration (IPD, SMRT). Strategies to call base modifications in nanopore sequencing and the corresponding tools are
further depicted
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at which the polymerase progresses, at the site of mod-
ification and/or downstream. Comparison with the sig-
nal from an in silico or non-modified reference (e.g.
amplified DNA) suggests the presence of modified bases
[102, 103]. It is notably possible to detect 6mA, 4mC,
5mC, and 5hmC DNA modifications, although at differ-
ent sensitivity. Reliable calling of 6mA and 4mC requires
25× coverage per strand, whereas 250× is required
for 5mC and 5hmC, which have subtler impacts on
polymerase kinetics [102]. Such high coverage is not
realistic for large genomes and does not allow single-
molecule epigenetic analysis. Coverage requirements can
be reduced by conjugating a glucose moeity to 5hmC,
which gives a stronger IPD signal during SMRT sequenc-
ing [102, 103]. Polymerase dynamics and base modifi-
cations can be analysed directly via the SMRT Portal,
or for more advanced analyses with R-kinetics, kinet-
icsTools or basemods [104]. SMALR [99] is dedicated
to the detection of base modifications in single SMRT
reads.
In nanopore sequencing, modified RNA or DNA bases

affect the flow of the current through the pore differ-
ently than non-modified bases, resulting in signal shifts
(Fig. 3). These shifts can be identified post-basecalling
and post-alignment with three distinct methods: (a) with-
out prior knowledge about the modification (de novo)
by comparing to an in silico reference [105], or a con-
trol, non-modified sample (typically amplified DNA) [105,
106]; (b) using a pre-trained model [66, 107, 108] (Fig. 3,
Table 1); and (c) directly by a basecaller using an extended
alphabet [45, 109].
De novo approaches, as implemented by Tombo [105]

or NanoMod [106], allow the discovery of modifications

and modified motifs by statistically testing the deviation
of the observed signal relative to a reference. However
these methods suffer from a high false discovery rate and
are not reliable at the single-molecule level. The com-
parison to a control sample rather than an in silico ref-
erence increases the accuracy of detection, but requires
the sequencing of twice as many sample as well as high
coverage to ensure that genomic segments are covered
by both control and test sample reads. De novo calling
of base modifications is limited to highlighting regions of
the genomes that may contain modified bases, without
being able to reveal the precise base or the nature of the
modification.
Pre-trained models interrogate specific sites and clas-

sify the data as supporting a modified or unmodified
base. Nanopolish [66] detects 5mC with a hidden Markov
model, which in signalAlign [107] is combined with a
hierarchical Dirichlet process, to determine the most
likely k-mer (modified or unmodified). D-NAscent [95]
utilises an approach similar to Nanopolish to detect
BrdU incorporation, while EpiNano uses support vector
machines (SVMs) to detect RNA m6A. Recent meth-
ods use neural network classifiers to detect 6mA and
5mC (mCaller [108], DeepSignal [110], DeepMod [111]).
The accuracy of these methods is upwards of 80% but
varies between modifications and motifs. Appropriate
training data is crucial and currently a limiting fac-
tor. Models trained exclusively on samples with fully
methylated or unmethylated CpGs will not perform opti-
mally on biological samples with a mixture of CpG
and mCpGs, or 5mC in other sequence contexts [66,
105]. Low specificity is particularly problematic for low
abundance marks. m6A is present at 0.05% in mRNA

Table 1 Tools and strategies to detect base modifications in Nanopore data (HMM hidden Markov model, HPD hierarchical Dirichlet
process, CNN convolutional neural network, LSTM long short-termmemory, RNN recurrent neural network, SVM support vector machine)

Tool Base modifications Strategy Reference

Guppy 5mCpG, 5mC (Dcm), 6mA (Dam) Basecall [45]

Taiyaki – Basecall [45]

RepNano BrdU Basecall [109]

D-Nascent BrdU HMM [95]

Nanopolish 5mCpG HMM [66]

Megalodon 6mA, 5mCpG HMM [45]

signalAlign 6mA, 5mC, 5hmC HMM-HDP [107]

DeepSignal 6mA (Dam), 5mCpG Neural network (CNN + classifier) [110]

DeepMod 6mA, 5mCpG Neural network (LSTM-RNN) [111]

mCaller 6mA, 5mCpG Neural network classifier [108]

Tombo 6mA (DNA), 5mC (RNA, DNA), de novo Statistical test [105]

NanoMod de novo Statistical test [106]

EpiNano m6A (RNA) SVM [112]
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[113, 114]; therefore, a method testing all adenosines in
the transcriptome with sensitivity and specificity of 90%
at the single-molecule, single-base level would result in an
unacceptable false discovery rate of 98%.
Direct basecalling of modified bases is a recent addition

to ONT’s basecaller Guppy, currently limited to 5mC in
the CpG context. A development basecaller, Taiyaki [45],
can be trained for specific organisms or base modifica-
tions. RepNano can basecall BrdU in addition to the four
canonical DNA bases [109]. Two major bottlenecks in the
creation of modification-ready basecallers are the need for
appropriate training data and the combinatorial complex-
ity of adding bases to the basecalling alphabet. There is
also a lack of tools for the downstream analysis of base
modifications: most tools output a probability that a cer-
tain base is modified, while traditional differential methy-
lation algorithms expect binary counts of methylated and
unmethylated bases.

Analysing long-read transcriptomes
Alternative splicing is a major mechanism increasing the
complexity of gene expression in eukaryotes [115, 116].
Practically, all multi-exon genes in humans are alterna-
tively spliced [117, 118], with variations between tis-
sues and between individuals [119]. However, fragmented
short reads cannot fully assemble nor accurately quan-
tify the expressed isoforms, especially at complex loci
[120, 121]. Long-read sequencing provides a solution by
ideally sequencing full-length transcripts. Recent studies
that used bulk, single-cell, or targeted long-read sequenc-
ing suggest that our best transcript annotations are still
missing vast numbers of relevant isoforms [122–126]. As
noted above, sequencing native RNA further provides the
opportunity to better characterise RNA modifications or
other characteristics such as poly-A tail length. Despite
its many promises, analysis of long-read transcriptomes
remains challenging. Few of the existing tools for short-
read RNA-seq analysis are able to appropriately deal with
the high error rate of long reads, necessitating the devel-
opment of dedicated tools and extensive benchmarks.
Although recently, the field of long-read transcriptomics
is rapidly expanding, we tallied 36 tools related to long-
read transcriptome analysis (Fig. 1b).
Most long-read isoform detection tools work by clus-

tering aligned and error-corrected reads into groups and
collapsing these into isoforms, but the detailed imple-
mentations differ between tools (Fig. 4). PacBio’s Iso-Seq3
[127, 128] is the most mature pipeline for long-read tran-
scriptome analysis, allowing the assembly of full-length
transcripts. It performs pre-processing for SMRT reads,
de novo discovery of isoforms by hierarchical cluster-
ing and iterative merging, and polishing. Cupcake [129]
provides scripts for downstream analysis such as col-
lapsing redundant isoforms and merging Iso-Seq runs

from different batches, giving abundance information as
well as performing junction analysis. In the absence of a
reference genome, Iso-Seq can assemble a transcriptome,
but transcripts from related genes may be merged [130]
as a trade-off for correcting reads with a high error rate.
Furthermore, the library preparation for Iso-Seq usually
requires size fractionation, which makes absolute and rel-
ative quantification difficult. The per-read cost remains
high, making well-replicated differential expression study
designs prohibitively expensive.
Alternative isoform detection pipelines such as Iso-

Con [130], SQANTI [131], and TALON [132] attempt
to mitigate the erroneous merging of similar transcripts
of the Iso-Seq pipeline. IsoCon and SQANTI specifically
work with SMRT data while TALON is a technology-
independent approach. IsoCon uses the full-length tran-
scripts from Iso-Seq to perform clustering and partial
error correction and identify candidate transcripts with-
out losing potential true variants within each cluster.
SQANTI generates quality control reports for SMRT Iso-
Seq data and detects and removes potential artefacts.
TALON, on the other hand, relies heavily on the GEN-
CODE annotation. Since both IsoCon and TALON focus
on the human genome, they may not perform equally
well with genomes from non-model organisms. A num-
ber of alternative isoform annotation pipelines for SMRT
and/or nanopore data have recently emerged, such as
FLAIR [133], Tama [134], IDP [122], TAPIS [135], Man-
dalorion Episode II [36, 57], and Pinfish [136]. Some of
them use short reads to improve exon junction annota-
tion. However, their accuracy has not yet been extensively
tested.
In addition to high error rates, potential coverage biases

are currently not explicitly taken into account by long-
read transcriptomic tools. In ONT’s direct RNA sequenc-
ing protocol, transcripts are sequenced from the 3′ to the
5′ end; therefore, any fragmentation during the library
prep, or pore blocking, results in truncated reads. In
our experience, it is common to see a coverage bias
towards the 3′ end of transcripts, which can affect iso-
form characterisation and quantification. Methods that
sequence cDNA will also show these coverage biases due
to fragmentation and pore-blocking (for nanopore data),
compounded by non-processivity of the reverse tran-
scriptase [124], more likely to stall when it encounters
RNA modifications [137]. Finally, the length-dependent
or sequence-dependent biases introduced by protocols
that rely on PCR are currently not well characterised nor
accounted for.
To quantify the abundance of transcripts or genes,

several methods can be used (Fig. 4). Salmon’s [138] quasi-
mapping mode quantifies reads directly against a refer-
ence index, and its alignment-based mode instead works
with aligned sequences. The Wub package [139] also
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Fig. 4 Types of transcriptomic analyses and their steps. The choice of sequencing protocol amongst the six available workflows affects the type,
characteristics, and quantity of data generated. Only direct RNA sequencing allows epitranscriptomic studies, but SMRT direct RNA sequencing is a
custom technique that is not fully supported. The remaining non-exclusive applications are isoform detection, quantification, and differential
analysis. The dashed lines in arrows represent upstream processes to transcriptomics

provides a script for read counting. The featureCounts
[140] function from the Subread package [141, 142]
supports long-read gene level counting. The FLAIR [133]
pipeline provides wrappers for quantifying FLAIR iso-
form usage across samples using minimap2 or Salmon. Of
course, for accurate transcript-level quantification, these
methods rely on a complete and accurate isoform annota-
tion; this is currently the difficult step.
Two types of differential analyses can be run: gene level

or transcript level (Fig. 4). Transcript-level analyses may
be further focused on differential transcript usage (DTU),
where the gene may overall be expressed at the same level
between two conditions, but the relative proportions of
isoforms may vary. The popular tools for short-read dif-
ferential gene expression analysis, such as limma [143],
edgeR [144, 145], and DESeq2 [146], can also be used for
long-read differential isoform or gene expression analyses.
DRIMSeq [147] can perform differential isoform usage
analysis using the Dirichlet-multinomial model. One dif-
ference between short- and long-read counts is that for the
latter, counts per million (cpm) are effectively transcripts
per million (tpm), whereas for short reads (and random
fragmentation protocols), transcript length influences the

number of reads, and therefore, cpms need scaling by
transcript length to obtain tpms. The biological interpre-
tation of differential isoform expression strongly depends
on the classification of the isoforms, for example, whether
the isoforms code for the same or different proteins or
whether premature stop codons make them subject to
nonsense-mediated decay. This is currently not well inte-
grated into the analyses.

Combining long reads, synthetic long reads, and
short reads
Assemblies based solely on long reads generally pro-
duce highly complete and contiguous genomes [148–150];
however, there are many situations where short reads
or reads generated from synthetic long-read technology
further improve the results [151–153].
Different technologies can intervene at different scales:

short reads ensure base-level accuracy, high-quality 5–
15-kb SMRT reads generate good contigs, while ultra-
long (100 kb+) nanopore reads, optical mapping or
Hi-C improve scaffolding of the contigs into chro-
mosomes [11, 17, 154–157]. Combining all of these
technologies in a single genomic project would be
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costly. Instead, combinations of subsets are frequent, in
particular, nanopore/SMRT with short-read sequencing
[50, 152, 153, 158], although other combinations can be
useful. Nanopore assembly of wild strains of Drosophila
melanogaster supported by scaffolds generated from Hi-
C corrected two misalignments of contigs in the reference
assembly [154]. Optical maps helped resolve misassembly
of SMRT-based chromosome level contigs of three plant
relatives of Arabidopsis thaliana, where unrelated parts of
the genome were erroneously linked [155].
For structural variation or base modification detec-

tion, obtaining orthogonal support from SMRT and
nanopore data is valuable to confirm discoveries and
limit false positives [77, 108, 159]. The error profiles
of SMRT and nanopore sequencing are not identical—
though both technologies experience difficulty around
homopolymers—combining them can draw on their
respective strengths.
Certain tools such as Unicycler [160] integrate long- and

short-read data to produce hybrid assemblies, while other
tools have been presented as pipelines to achieve this
purpose (e.g. Canu, Pilon, and Racon in the ont-assembly-
polish pipeline [45]). Still, combining tools and data types
remains a challenge, usually requiring intensive manual
integration.

long-read-tools.org: a catalogue of long-read
sequencing data analysis tools
The growing interest in the potential of long reads
in various areas of biology is reflected by the expo-
nential development of tools over the last decade
(Fig. 1a). There are open-source static catalogues
(e.g. github.com/B-UMMI/long-read-catalog), custom
pipelines developed by individual labs for specific pur-
poses (e.g. Search results from GitHub), and others that
attempt to generalise them for a wider research commu-
nity [46]. Being able to easily identify what tools exist—or
do not exist—is crucial to plan and perform best-practice
analyses, build comprehensive benchmarks, and guide
the development of new software.
For this purpose, we introduce long-read-tools.org, a

timely database that comprehensively collates tools used
for long-read data analysis. Users can interactively search
tools categorised by technology and intended type of
analysis. In addition to true long-read sequencing tech-
nologies (SMRT and nanopore), we include synthetic
long-read strategies (10X linked reads, Hi-C, and Bionano
optical mapping). The fast-paced evolution of long-read
sequencing technologies and tools also means that certain
tools become obsolete. We include them in our database
for completeness but indicate when they have been super-
seded or are no longer maintained.
long-read-tools.org is an open-source project under the

MIT License, whose code is available through GitHub

[161]. We encourage researchers to contribute new
database entries of relevant tools and improvements to
the database, either directly via the GitHub repository or
through the submission form on the database webpage.

Discussion
At the time of writing, for about USD1500, one can
obtain around 30 Gbases of ≥ 99% accurate SMRT CCS (1
Sequel II 8M SMRT cell) or 50–150 Gbases of noisier but
potentially longer nanopore reads (1 PromethION flow
cell). While initially, long-read sequencing was perhaps
most useful for assembly of small (bacterial) genomes,
the recent increases in throughput and accuracy enable
a broader range of applications. The actual biological
polymers that carry genetic information can now be
sequenced in their full length or at least in fragments of
tens to hundreds of kilobases, giving us a more complete
picture of genomes (e.g. telomere-to-telomere assem-
blies, structural variants, phased variations, epigenetics,
metagenomics) and transcriptomes (e.g. isoform diversity
and quantity, epitranscriptomics, polyadenylation).
These advances are underpinned by an expanding col-

lection of tools that explicitly take into account the
characteristics of long reads, in particular, their error
rate, to efficiently and accurately perform tasks such
as preprocessing, error correction, alignment, assem-
bly, base modification detection, quantification, and
species identification. We have collated these tools in the
long-read-tools.org database.
The proliferation of long-read analysis tools revealed

by our census makes a compelling case for complemen-
tary efforts in benchmarking. Essential to this process is
the generation of publicly available benchmark data sets
where the ground truth is known and whose characteris-
tics are as close as possible to those of real biological data
sets. Simulations, artificial nucleic acids such as synthetic
transcripts or in vitro-methylated DNA, resequencing,
and validation endeavours will all contribute to establish-
ing a ground truth against which an array of tools can be
benchmarked. In spite of the rapid iteration of technolo-
gies, chemistries, and data formats, these benchmarks will
encourage the emergence of best practices.
A recurrent challenge in long-read data analysis is scal-

ability. For instance in genome assembly, Canu [69] pro-
duces excellent assemblies for small genomes but takes
too long to run for large genomes. Fast processing is cru-
cial to enable parameter optimisation in applications that
are not yet routine. The recently released wtdbg2 [63],
TULIP [70], Shasta [162], Peregrine [163], Flye [164], and
Ra [165] assemblers are orders of magnitude faster and
are quickly being adopted. Similarly, for mapping long
reads, minimap2’s speed, in addition to its accuracy, has
contributed to its fast and wide adoption. Nanopolish
[66] is popular both for assembly correction and base

https://github.com/B-UMMI/long-read-catalog
https://github.com/search?q=long+read+pipeline
https://long-read-tools.org
https://long-read-tools.org
https://opensource.org/licenses/MIT
https://github.com/shaniAmare/long_read_tools
https://long-read-tools.org
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modification detection; however, it is slow on large data
sets. The refactoring of its call-methylation func-
tion in f5c tool greatly facilitates work with large genomes
or data sets [166].
Beyond data processing speed, scalability is also

impacted by data generation, storage, and integration.
Nanopore sequencing presents the fastest turnaround
time. Once DNA is extracted, sequencing is underway
in a matter of minutes to hours, and the PromethION
sequencer provides adjustable high throughput with indi-
vidually addressable parallel flow cells. All other library
preparation procedures are more labour intensive, and
sequencing may have to await pooling to fill a run, and
flow cells need to be run in succession rather than in
parallel. The raw nanopore data is however extremely
voluminous (about 20 bytes per base), leading to substan-
tial IT costs for large projects. SMRTmovies are not saved
for later re-basecalling, and the sequence and kinetic
information takes up a smaller 3.5 bytes per base. Fur-
thermore, hybrid methods incorporating strengths from
other technologies such as optical mapping (Bionano,
OpGen) and Hi-C add to the cost and analytical complex-
ity of genomic projects. For these, manual data integration
is a significant bottleneck, but the rewards are worth
the effort.
Despite increasing accuracy of both SMRT and

nanopore sequencing platforms, error correction remains
an important step in long-read analysis pipelines. Pub-
lished assemblies that omit careful error correction are
likely to predict many spurious truncated proteins [167].
Hybrid error correction, leveraging the accuracy of short
reads, is still outperforming long-read-only correction
[60]. Modern short-read sequencing protocols require
small input amounts (some even scale down to single cells)
so sample amount is usually not a barrier to combin-
ing short- and long-read sequencing. Removing the need
for short reads, and higher coverage via improvements
in non-hybrid error correction tools and/or long-read
sequencing accuracy, would reduce the cost, length, and
complexity of genomic projects.
The much anticipated advances in epigenet-

ics/epitranscriptomics promised by long-read sequencing
are still in development. Many modifications, including
5mC, do not influence the SMRT polymerase’ dynam-
ics sufficiently to be detected at a useful sensitivity
(5mC requires 250× coverage). In this case, software
improvements are unlikely to yield significant gains, and
improvements in sequencing chemistries are probably
required [168]. Nanopore sequencing appears more
amenable to the detection of a wide array of base mod-
ifications (to date: 5mCG, BrdU, 6mA), but the lack
of ground truth data to train models and the combi-
natorial complexity of introducing multiple alternative
bases are hindering progress towards a goal of seamless

basecalling from an extended alphabet of canonical and
non-canonical bases. Downstream analyses, in particular,
differential methylation, exploiting the phasing of base
modifications, as well as visualisation, suffer from a
dearth of tools.
The field of long-read transcriptomics is equally in

its infancy. To date, the Iso-Seq pipeline has been
used to build catalogues of transcripts in a range of
species [128, 169, 170]. Nanopore reads-based transcrip-
tomes are more recent [10, 171–173], and work is still
needed to understand the characteristics of these data
(e.g. coverage bias, sequence biases, reproducibility). Cer-
tain isoform assembly pipelines predict a large number
of unannotated isoforms requiring validation and clas-
sification. Even accounting for artefacts and transcrip-
tional noise, these early studies reveal an unexpectedly
large diversity in isoforms. Benchmark data and stud-
ies will be required in addition to atlas-type sequencing
efforts to generate high-quality transcript annotations
that are more comprehensive than the current ones. Long
reads theoretically confer huge advantages over short
reads for transcript-level differential expression, how-
ever the low-level of replication and modest read counts
obtained from long-read transcriptomic experiments are
currently limiting. Until throughput increases and price
decreases sufficiently, hybrid approaches that use long
reads to define the isoforms expressed in the samples
and short reads to get enough counts for well-powered
differential expression may be successful; these do
not yet exist.
Long-read sequencing technologies have already

opened exciting avenues in genomics. Taking on the
challenge of obtaining phased, accurate, and complete
(including base modifications) genomes and transcrip-
tomes that can be compared will require continued efforts
in developing and benchmarking tools.
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