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Abstract

Inferring the demographic histories of populations has wide applications in
population, ecological, and conservation genomics. We present Stairway Plot 2, a
cross-platform program package for this task using SNP frequency spectra. It is based
on a nonparametric method with the capability of handling folded SNP frequency
spectra (that is, when the ancestral alleles of the SNPs are unknown) of thousands of
samples produced with genotyping-by-sequencing technologies; therefore, it is
particularly suitable for nonmodel organisms.

Introduction
Demographic history is one of the most important forces shaping the polymorphic pat-

tern of genomes. Conversely, DNA polymorphisms can be used to infer histories of

population events, including, but not limited to, expansion, shrinking, bottleneck, mi-

gration, split, and admixture. In recent years, several methods have been developed to

infer population size changes over time without the need for specifying parameters of

the underlying population model [1–8], which are referred to as nonparametric or

model-flexible methods. Among them, Stairway Plot [5, 9] (aka Stairway Plot 1) has

proven applicable to relatively large samples (hundreds) using unphased sequence data

produced by a wide range of sequencing technologies, such as low-depth sequencing

[5] and RAD-seq [10], which makes it attractive to infer recent population histories of

nonmodel organisms. However, as most of the methods mentioned above still require

polarized SNP data for unfolded SFSs, i.e., the ancestral allele of each SNP needs to be

known, which poses difficulties to its application to nonmodel organisms [11]. Here,

we present Stairway Plot 2, which, compared to Stairway Plot 1, achieves significant

improvement in terms of (1) the application to both folded and unfolded SFSs, (2)

overfitting control, (3) speed, (4) support for masking out part of the SFSs, and (5)

usage convenience.
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Results
Stairway Plot 2 can now be applied to both folded and unfolded SFSs and, therefore, no

longer requires inferring the ancestral alleles as a prerequisite. For folded SFSs, the

composite likelihood function is defined (see the “Methods” section). For the reason of

the identifiability of the demographic model [12], the maximum number of epochs used

in the underlying multi-epoch model [5, 13, 14] need to be equal to or smaller than the

counts of the observed folded SNP type (i.e., η s), including the number of mono-

morphic sites. We compared the performance of Stairway Plot 2 using either unfolded

SFSs or folded SFSs with the same single SFS and found that the final estimations, i.e.,

the median of the inference ensemble of subsampled SFSs (by default 200), are similar

in general (Fig. 1a, Additional file 1: Fig. S1). In contrast, the variations (defined by the

95% confidence intervals of the inference ensemble) in ancient history inference for the

folded SFSs can be wider than those in the unfolded SFSs due to loss of information.

On the other hand, loss of information may help to mitigate model overfitting. There-

fore, the impact of the loss of information can be complex and depends on the under-

lying demography. We can investigate the impact by comparing the mean squared

error (MSE) of the estimations with folded or unfolded SFSs (Additional file 1: Fig. S2).

For example, Additional file 1: Fig. S2A compared the MSE of 200 subsample estima-

tions with either folded or unfolded SFSs used in Fig. 1a. For most of the history, espe-

cially for more ancient histories, the estimations with unfolded SFS have a similar or

smaller MSE, while in some periods those with folded SFS have a smaller MSE. Please

note that in the figures, we used log-scale for both the time (x-axis) and effective popu-

lation size (y-axis), which emphasizes more recent histories and smaller population

sizes.

Controlling overfitting is essential for demographic history inference because the

overfitted model not only underperforms but may also suggest artificial fluctuations in

the population size [6, 11, 15, 16]. Controlling overfitting is especially relevant for

model-flexible methods, as they typically search a wider model space and involve more

parameters than model-fixed methods, such as ∂a∂i [17]. Inspired by the random for-

ests [18] method, Stairway Plot 2 controls overfitting by setting constraints on the pa-

rameters and model space. First, SFS bootstrapping is replaced by SFS subsampling

[19]. A subsample (by default 2/3) of the observed sites is used to create an SFS train-

ing set and train the multi-epoch model, and the remaining sites are used to create an

SFS testing set and test the goodness of fit of the trained model. Second, the number of

“breakpoints”, which define the boundaries of each epoch, is further constrained. For a

sample of n sequences, there are a total of n − 2 potential break points. By default,

Stairway Plot 2 tests the goodness of fit of the trained models (with the ensemble of

testing SFSs) using ¼, ½, ¾ or all of the n − 2 breakpoints, and the best-fit model is

used for producing the final inference. Users have the option to add/use alternative

numbers or fine-tune the numbers to find the optimal one that has the best goodness

of fit for the testing SFSs.

To evaluate this new procedure, we compared the performance of Stairway Plot 2

with several other model-flexible methods, namely, Stairway Plot 1 [5], PSMC [1],

MSMC [2], MSMC2 [8, 20], and SMC++ [4], using simulated sequences assuming sev-

eral demographic models (Fig. 1b, Additional file 1: Fig. S3, S4). In the comparison,

MSMC and MSMC2 used phased and polarized data, Stairway Plot 1 and SMC++ used

Liu and Fu Genome Biology          (2020) 21:280 Page 2 of 9



Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06

Stairway Plot 2 unfolded

a

b

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06

Stairway Plot 2 folded

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

Stairway Plot 2 folded

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

Stairway Plot 1 unfolded

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

PSMC

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

SMC++

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

MSMC−4hap

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

MSMC−10hap

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

MSMC2−4hap

Year

N
e

100 1000 10000 1e+05 1e+06

10
00

10
00

0
1e

+
05

1e
+

06
1e

+
07

MSMC2−10hap

Fig. 1 (See legend on next page.)
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unphased and polarized data, and Stairway Plot 2 and PSMC used unphased and

unpolarized data. As Stairway Plot 1 and Stairway Plot 2 typically produce an ensemble

of estimations, based on which the final estimation and confidence intervals are de-

rived, while all other methods produce a single estimation for each simulated sample,

to make the comparison fairer, only one estimation for each simulated sample was used

for Stairway Plot 1 and Stairway Plot 2. For each demographic model, a sample of 100

diploids (200 haploids) was simulated for each simulation, and 200 independent simula-

tions were conducted. For the extensions of the PSMC, we observed that 1) MSMC is

not stable when using high haplotype size (hap = 10); 2) MSMC2 and SMC++ outper-

forms MSMC and PSMC as to estimating recent histories (Additional file 1: Fig. S3,

S4). Stairway Plot 1 and Stairway Plot 2 better infer recent histories than PSMC,

MSMC, SMC++, and MSMC2. Stairway Plot 2 also performs better than Stairway Plot

1, even though folded SFSs were used for Stairway Plot 2, while unfolded SFSs were

used for Stairway Plot 1. The artificial bottlenecks sometimes produced by Stairway

Plot 1 near the inference limit of ancient histories (e.g., in Additional file 1: Fig. S4b)

were also well mitigated by Stairway Plot 2 (see Additional file 1: Fig. S4a). Stairway

Plot 2 can also provide a more robust estimation of the inference variation (e.g., confi-

dence intervals) compared to other methods, regarding the overlapping of the 2.5% to

97.5% inference range with the true models.

Java programs have also been rewritten for Stairway Plot 2 to improve efficiency.

A speed increase of 10 × or more compared to Stairway Plot 1 was often achieved

based on our simulation studies. For example, on a single thread of an Intel Xeon

Gold 5122 CPU @ 3.60 GHz, the time required for Stairway Plot 1 to produce the

results (unfolded, 200 subsample estimations) for Fig. 1b was 19,096 min. In con-

trast, only 900 min were required for Stairway Plot 2 (unfolded, 800 subsample es-

timations), that is, a 21-fold speed increase. With the same setting for producing

results for Additional file 1: Fig. S3 and S4, Stairway Plot 1 required 15,839 and

9619 min, while Stairway Plot 2 required 704 and 540 min: a 22-fold and 18-fold

speed increase, respectively, were achieved. With the faster speed, Stairway Plot 2

can handle a sample size of thousands of sequences given that an HPC cluster is

available. To demonstrate its capability, we applied Stairway Plot 2 to the SFSs of

1747 Finnish individuals using 650M neutral SNPs from the Genome Aggregation

Database (gnomAD) [21] (Fig. 2a). The result suggests a bottleneck between 40

and 200 thousand years ago (kya) based on the 95% confidence interval, likely due

to out-of-Africa migration. It also suggests a recent 2-fold population growth ap-

proximately 2 kya and a shallow bottleneck between 4 and 10 kya with a bottom

approximately 6 kya, which may be related to ancient migration events following

the retreat of glaciation.

(See figure on previous page.)
Fig. 1 Comparison of demographic inferences with simulation. a Comparison of Stairway Plot 2 with folded
or unfolded SFSs using the same average SFS from 200 simulations. b Comparison of Stairway Plot 2 with
folded SFSs vs. Stairway Plot 1, PSMC, SMC++, MSMC, and MSMC2, using the same simulated sequences
from 200 simulations assuming a zig-zag model [2]. Each simulation simulates 100 diploids with 10
chromosomes; each chromosome is 10 MB. Only one estimation for each simulated sample was used for
Stairway Plot 1 and Stairway Plot 2. MSMC and MSMC2 group samples with every 4 haplotypes (4hap) or
every 10 haplotypes (10hap). Black line: true model. Thick orange line: median of 200 estimations. Thin
orange lines: 2.5% and 97.5% confidence limits for 200 estimations
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Stairway Plot 2 now officially supports masking out part of the SFSs, for example, sin-

gletons. Because calling singletons is often more complicated than calling SNPs with

higher frequencies, inference with SFSs without singletons may help to identify inferred

population events that are dominated by singleton information and, therefore, less reli-

able. We applied this technique to the Finnish data. We found that the bottlenecks 40–

200 kya and 4–10 kya bottleneck and population growth ~ 2 kya are still supported,

but the bottom of the 4–10 kya bottleneck shifts to 7–8 kya (Fig. 2b).

Conclusions
In summary, Stairway Plot 2 is a significant improvement over Stairway Plot 1. By mod-

eling folded SFSs and using an unsupervised learning strategy for model selection, it

provides a more accurate inference of demographic histories. It is especially suitable for

nonmodel organisms, as the challenging steps of phasing and SNP polarization are no

longer needed. The software, along with its source codes and instruction, is freely avail-

able at https://github.com/xiaoming-liu/stairway-plot-v2.

Fig. 2 Inferred demographic history of the Finnish population based on 1747 individuals. a Stairway Plot 2
inference with folded SFSs. b Stairway Plot 2 inference with folded SFSs and masking singletons. Orange
line: median of 200 inferences based on subsampling. Dark gray lines: 75% confidence interval of the
inference. Light gray lines: 95% confidence interval of the inference
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Methods
Brief introduction of the Stairway Plot method

The flexible multi-epoch model used in the skyline plot method [13, 14] is imple-

mented for the Stairway Plot, which divides time into a series of blocks with each block

starting and ending at the exact time of a particular coalescent event in the sampled se-

quences. The population size is assumed to remain constant within each block and to

be able to change from one block to the next. A maximum of n − 1 time blocks can be

defined given a sample of n DNA sequences, with block k corresponding to the k-co-

alescent time. Those n − 1 time blocks can be approximated to any demographic his-

tory. The Stairway Plot estimates a series of θk, k = 2, 3, …, n, maximizing the

likelihood of the observed SFS. θk = 4Nkμ, where Nk is the effective size of the popula-

tion during time block k, and μ is the mutation rate per bp per generation. In practice,

adjacent blocks of time can be fused into one block to reduce the parameters to be esti-

mated. More details of the algorithm can be found in [5].

One of the major improvements for Stairway Plot 2 is removing the requirement of

polarizing SNPs by modeling folded SFS, and better model selection by using an un-

supervised learning strategy. The major challenges are (1) whether the Stairway Plot

framework will work with half the number of observations with folded SFS and (2)

whether the loss of information can be compensated by better model selection strategy.

The results showed that the Stairway Plot framework works with folded SFS and per-

forms well with the new model selection strategy. This is partially contributed to the

ensemble step: although each individual estimation can be coarse (fewer epochs), the

ensemble estimation can be smooth and accurate.

Brief introduction to Stairway Plot 2

Let tk be the k-coalescent time of a random sample of n sequences, Nk is the effective

size of the population during tk, θk = 4Nkμ, and μ is the mutation rate per bp per gener-

ation. θk s are estimated for each of the B (default is 200) sub-samples of the SFS in-

stead of bootstrap samples as in the Stairway Plot 1 [5]. In Stairway Plot 2, the effective

population size trajectory is calculated for each SFS sub-sample, that is Nb
e ðTÞ ¼ θbk=ð4

μÞ if Tb
i < T ≤Tb

i − 1 , where θbk is the θk estimation based on the sub-sample b, and Tb
i

¼ Pn

k¼i

θbk
kðk − 1Þ ; i ¼ 2; 3;…; n:

Then at each time point T, the median of a total of B estimates of the effective popu-

lation size Nb
eðTÞ is used as the final estimate of Ne at T [9].

Composite likelihood of folded SFS

Composite likelihood of the observed SFS was calculated as:

Ln ¼ ln!
Qn=2

i¼0

p
ηi
i
ηi!
;

where n is the sample size (number of haploids), ηi is the count of observed sites with

a minor allele count of i, pi is the frequency of ηi in the samples, and ln ¼
Pn − 1

i¼0
ηi . This
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likelihood is calculated for both the training purpose (with training data) and testing/

evaluating purpose (with testing data).

SFS subsampling

Let ln be the total number of sites observed, as defined above, where n is the sample

size (number of haploids). A number l
0
n (by default l

0
n ¼ 2=3ln) sites are randomly sam-

pled from ln sites and used as training data. The remaining ln − l
0
n sites are used as test-

ing data. SFSs, either folded or unfolded, can be obtained by summing the SNPs of a

given ancestral allele count (unfolded) or minor allele count (folded).

Constraint on “breakpoints”

For a sample of size n, a maximum of n − 1 different θs that can be estimated. In an or-

dered serial of θ2, θ3, …, θn, “breakpoints” are inserted into the serial that separates the

θs into continuous groups. Any two consecutive θs that are not separated by a break-

point belong to the same group. The θ s within the same group have the same value,

while those belonging to different groups may have different values. Therefore, there

are n − 2 possible breakpoints that can be inserted. The actual number of breakpoints

to be inserted into the serial is defined by the “blueprint” file. By default, four numbers

approximately equal 1
4 � ðn − 2Þ , 1

2 � ðn − 2Þ , 3
4 � ðn − 2Þ , and n − 2 are used. Given a

number m, for each training SFS, from the full set of breakpoints (i.e., 1, 2, …, n − 2) m

of them are randomly picked. The best grouping of θs fitting the training SFS follows

the same procedure described in the Stairway Plot 1 paper [5] with the constraint that

the actual breakpoints must be chosen from the m break points.

Determine the best number of “breakpoints”

For m breakpoints defined above, the best estimations of θ s are obtained for each

training SFS using the procedure described in the Stairway Plot 1 paper [5]. Then, the

likelihood of this set of θs using the corresponding testing SFS is calculated and used

as the measurement of goodness-of-fit of those θs. The average goodness-of-fit of a

total of B testing SFS is used for the overall goodness-of-fit of using m break points,

Gm. With a set of m, the best m is the one with the largest Gm. In practice, considering

the variation of Gm, the best m is picked as the smallest number m that satisfies Gm

> Gm0 þ 1:92 for all m′ <m, where m and m′ are both from the set of m.

Simulation

SNP data were simulated using the ms [22] or MaCS [23] (Markovian Coalescent

Simulator) programs. If not specified, all SNPs were simulated assuming a mutation

rate (μ) of 1.2 × 10−8 per base pair per generation, a recombination rate of ρ = 1.2 × 10−8

per base pair per generation, and a generation time of 24 years. Simulation commands

used for producing the data used in Additional file 1: Fig. S1 can be found in the Sup-

plementary Note of the Stairway Plot 1 paper [5]. Other simulation commands are

listed below.

zig-zag model: for /L %%i in (1, 1, 10) do (ms 200 200 -t 7156.0 -r 7156.0 10000000

-eN 0 5 -eG 0.000582262 1318.18 -eG 0.00232905 -329.546 -eG 0.00931619 82.3865
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-eG 0.0372648 -20.5966 -eG 0.149059 5.14916 -eN 0.596236 0.5 >zig-zag-10M-

%%i.out)

sharpCEU model: macs 200 30000000 -i 200 -t 0.0007156 -r 0.0007156 -eN 0.0

10.8300726663 -eN 0.00116452394261 1.08300726663 -eN 0.0174678591392

0.216601453326 -eN 0.0465809577045 1.08300726663 -eN 0.0873392956959

3.24902179989 -eN 0.232904788522 1.08300726663 2>/dev/null >sharpCEU.macs.out

sharpYRI model: macs 200 30000000 -i 200 -t 0.001 -r 0.001 -eN 0.0 8.25 -eN 0.0025

0.825 -eN 0.0416666666667 2.475 -eN 0.166666666667 0.825 2>/dev/null

>sharpYRI.macs.out

SFS of the Finnish individuals

The gnomAD project whole genomes sites and allele frequencies of the Finnish individ-

uals were downloaded from http://gnomad.broadinstitute.org/downloads. A total of

650,351,035 likely neutral sites that are 50 kb away from any known coding genes yet

within the 1000 Genomes Project phase 1 [24] strict mask were used for analyses [5].

Parameters used in PSMC, SMC++, MSMC, MSMC2, Stairway Plot 1, and Stairway Plot 2

The PSMC estimations were conducted using the default parameters tuned for human

populations: -N25 -t15 -r5 -p “4+25*2+4+6”. The composite likelihood with all individ-

uals in the sample was used in PSMC. For SMC++, as suggested by its readme file, the

composite likelihood using 10 distinguished individuals was used. The parameters

“--regularization-penalty 5.0 --knots 16 --timepoints 35 100000” were used for SMC++

as suggested [6]. MSMC and MSMC2 used parameters “--skipAmbiguous”, and “-r 1”

since we know the simulated recombination rate equals to the mutation rate. MSMC

also used parameter “--fixedRecombination” as recommended by the authors [25]. For

Stairway Plot 1 and 2, the default parameters were used.

Supplementary information
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