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Recent improvements in DNA synthesis and editing techniques enable engineering the

entire genome of an organism, offering new tools to directly probe relationships be-

tween genotype and phenotype. Genome synthesis potentially allows the researchers to

gain a much greater degree of control of an organism, and it also leads to a completely

new way to understand the biology of genomes. In 2008, the first mega-size bacteria

genome was built from oligonucleotides [1]. Next, the 4-Mb genome of E. coli was

redesigned and engineered [2, 3]. More recently, the synthesis of first eukaryotic gen-

ome, the 12-Mb Saccharomyces cerevisiae genome, is nearing completion as the goal

of the Sc2.0 initiative [4] and Genome Project-Write (GP-Write) has been proposed to

engineer higher eukaryotes with gigabase-sized genomes [5].

As genome sizes increase, the design principles of synthetic genomes are becoming

more sophisticated and complex. In the first synthetic genome, the Mycoplasma gen-

ome, only few watermarks were introduced [1]. The nearly completed Sc2.0 project in-

volves building a genome that is heavily modified [4]. These modifications include the

removal of all retrotransposons, subtelomeric repeats, and introns; eliminating and re-

locating all tRNA genes; swapping all TAG stop codon to TAA; and introducing nu-

merous PCRTags (a type of watermark) by synonymous recoding of coding sequences.

More importantly, over 4000 LoxPSym sites need to be inserted in the 3′ UTR of all

non-essential genes, as well as at synthetic “landmarks,” a system designated as “syn-

thetic chromosome rearrangement and modification by loxP-mediated evolution”

(SCRaMbLE [6]). Overall, the native genome will be reduced in size by about 8% with

an aim to reduce genomic contents and stabilize the genome, while still maintaining

similar 3D structures and functions as wild-type chromosomes.

One thing we learned while constructing new chromosomes is that despite the variety

of changes introduced, cells are quite tolerant to these perturbations. For example, the re-

location of the megabase-size, highly repetitive ribosomal gene cluster on chrXII to a

much smaller chromosome, chrIII, conferred only very minor, if any, effects on cell

growth [7]. These results lead us to propose a new hypothesis that the yeast genome con-

tains a larger variety of redundant elements. Therefore, more radical changes might be in-

troduced to generate a much more compact genome. Here, we present a proposal to

design and synthesize the next version of the synthetic yeast genome, dubbed Sc3.0.
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Sc3.0 genome design
Sc2.0 is designed based on the wild-type S. cerevisiae reference genome, but we propose

that Sc3.0 relies on the prior completion of the Sc2.0 genome. As a first step, all essen-

tial genes from each chromosome will be restructured with designated regulatory ele-

ments. Next, each could be functionally validated and assembled into a dedicated

chromosome with altered gene orders. These projects could be carried out by the Sc2.0

groups that originally synthesized them. Finally, the newly synthesized Sc3.0 chromo-

somes could then be combined into a single yeast to obtain strains with multiple chro-

mosomes [8], or alternatively, these chromosomes could be merged into a single large

chromosome [9, 10]. However, it is possible that a high density of synthetic lethal inter-

actions would show up when such downsized chromosomes are combined [11]. We ex-

pect that multiple versions of the Sc3.0 base chromosomes could ultimately be

generated, depending on which genes remain in each chromosome after SCRaMbLE.

However, we propose here a single, more conservative Sc3.0 strategy that bypasses the

challenges articulated above and can serve as a starting point for many subsequent vari-

ations. The core of the plan is the building and exploitation of the eArray, a circular

centromere-containing DNA containing all of the essential genes, or a linear chromo-

some derived from it, synE, which we describe below.

Constructing essential gene arrays (eArray)
The SCRaMbLE system allows for the stochastic generation of deletions, duplications,

inversions, and translocations, among which deletions are desirable for the purpose of

genome minimization. However, given the scattered distribution of essential genes

throughout the genome, SCRaMbLE of haploid strains bearing one or more synthetic

chromosomes often results in a high lethality rate by deleting one or more essential

genes [6, 12]. To overcome this problem, we will first relocate all ~ 1000 essential

genes, including their regulatory sequences from each chromosome, to a centromeric

plasmid. These essential gene arrays (eArray) could be constructed by amplifying the

desired sequences from the native genome by PCR and assembling them together using

the yeast homologous recombination machinery; however, we propose synthesizing all

the genes de novo, allowing for introduction of other systematic modification in DNA

sequences, such as the use of promoters from sibling species which will contain vari-

ants to allow their distinction from the native promoters. This will allow for an orthog-

onal watermarking scheme, based on an alternative PCR-Tagging scheme that will

allow three types of genes to be distinguished: native, Sc2.0, and Sc3.0 versions of each

essential gene, which will be needed during construction. Very importantly, the eArray

will be non-ScRaMbLEable, so it will remain intact through every future round of

SCRaMbLE so that no essential genes will ever be lost. Subsequently, the function of

each relocated gene in the eArray will be validated by tetrad analysis after transforming

this plasmid into heterozygous diploid strains with one copy of the essential genes

deleted.

It will be most efficient to synthesize the eArray directly in an Sc2.0 strain with all 16

Sc2 chromosomes. Once this is completed, the circular eArray can be converted to a

linear chromosome containing all 1000 essential genes by use of the telomerator cas-

sette [13]. This base strain represents a conservative place to start for 3.0 and can be

SCRaMbLEd at will to explore genome minimization comprehensively.
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Genome minimization by SCRaMbLE
Previous studies using haploid strains directly for SCRaMbLE only identified clones

with small regions removed, presumably due to the deleterious effects of losing essen-

tial genes [14]. The presence of eArray/synE could greatly enhance the variety of dele-

tions, as we demonstrated recently (Luo et al., in submission). To further increase the

power of deletion by SCRaMbLE, the URA3 gene could be integrated at different loca-

tions throughout the synthetic chromosome in strains bearing eArray. After SCRaM-

bLEing, clones bearing at least one deletion including the URA3 integration site were

readily identified when they were selected in medium containing 5-FOA. We also iden-

tified deletions at other loci in these strains, suggesting it could be an efficient mechan-

ism for chromosome minimization (Luo et al., in submission). Using this approach, the

entire complement of the Sc2.0 chromosome could be minimized simultaneously in a

new 3.0 version. After each round of SCRaMbLE, strains should be sequenced to iden-

tify regions remaining in the synthetic genome. Since SCRaMbLE is largely random,

multiple rounds of SCRaMbLE will be needed. Sc3.0 thus represents the ultimate tool

for driving to the most minimal of minimal S. cerevisiae genomes.

Gene and chromosome reprograming—a multitude of possibilities
In order to generate a genome with few or no sequences from the native strain, after a

chromosome is minimized after several rounds of SCRaMbLE, the remaining genes

could be reprogrammed. We propose several principles to guide the Sc3.0 genome de-

sign. First, each open reading frame (ORF) could be recoded synonymously. The num-

ber of codons used in the designed genome could thereby be greatly reduced. Second,

regulatory elements such as promoters and terminators should be replaced by function-

ally validated but completely artificial sequences, or sequences from other yeast species

as proposed for the base Sc3.0 strain. Other intergenic sequences can then be removed,

replaced by random sequences or corresponding sequences from other yeast species.

We will gauge the quality of these sequences by carefully monitoring cell fitness. Non-

coding RNAs (ncRNAs) and other known genetic elements can be replaced by ortho-

logs from other yeast species. Intergenic sequences can be removed or replaced with

random sequences of different lengths. The overall GC content can be retained—or

not. Finally, genes can be clustered according to their functionality or arranged based

on their chromosomal locations.

Sc3.0 benefits and challenges
Through careful design, the Sc2.0 project has enabled experimental tests of many

otherwise intractable questions about chromosome function and evolution. For ex-

ample, removal of all retrotransposons and LTR repeats has produced a genome free of

mobile elements, providing a system to assay effects of mobile elements on genome sta-

bility directly. Nevertheless, Sc2.0 made minimal changes to non-coding regions, no

changes in gene order, and deletions of very limited number of genes. Complementary

to Sc2.0, the Sc3.0 genome would allow to further explore questions such as how much

of the yeast genome is redundant and could be compacted? What is the content of a

minimal genome to support life under a given condition? Is the gene organization in

the current genome evolutionary inevitable or contingent?
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Given our current knowledge on the yeast genome, there remain many chal-

lenges. For example, engineering regulatory sequences is risky, since misregulation

of any essential genes could lead to inviable cells. We expect much time will be

spent on solving these issues. The available yeast genetics tools and directed evolu-

tion approaches will be extremely helpful. Additionally, making changes to most

DNA sequences can cause long-range interactions to be disrupted, potentially

resulting in dysfunction. In addition, many genes are co-regulated and it might be

difficult to coordinate their expression using synthetic regulatory elements. We ex-

pect many of these challenges could be solved with experiences learned from the

Sc2.0 project. We anticipate that all of the Sc2.0 chromosome synthesis teams will

want to participate in this exciting next Sc3.0 phase.
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