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Abstract

Allele expression (AE) analysis robustly measures cis-regulatory effects. Here, we
present and demonstrate the utility of a vast AE resource generated from the GTEx
v8 release, containing 15,253 samples spanning 54 human tissues for a total of 431
million measurements of AE at the SNP level and 153 million measurements at the
haplotype level. In addition, we develop an extension of our tool phASER that allows
effect sizes of cis-regulatory variants to be estimated using haplotype-level AE data.
This AE resource is the largest to date, and we are able to make haplotype-level data
publicly available. We anticipate that the availability of this resource will enable
future studies of regulatory variation across human tissues.
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Background
Allelic expression (AE, also known as allele-specific expression or ASE) analysis is a

powerful technique that can be used to measure the expression of gene alleles relative

to one another within single individuals. This makes it well suited to measure cis-act-

ing regulatory variation using imbalance between alleles in heterozygous individuals

(Fig. 1a) [1]. AE analysis can capture both common cis-regulatory variation, for

example, expression quantitative trait loci (eQTLs), and rare regulatory variation [2]. It

can also be used to measure allele-specific epigenetic effects such as parent of origin

imprinting [3].

In practice, AE analysis uses RNA-seq reads that overlap heterozygous single nucleotide

polymorphisms (SNPs), where the SNP can be used to assign the read to an allele. These

heterozygous SNPs capture the cumulative effects of cis-regulatory variation acting on

each allele. Allelic imbalance occurs when the two alleles of a gene are expressed at differ-

ent levels. The magnitude of the imbalance can be quantified by allelic fold change (aFC)

[1], and the statistical significance of the imbalance can be evaluated using binomial-

based statistics to account for the count-based nature of the data [4]. In some cases, these

effects can be caused by the SNPs being used to measure AE themselves, for example,
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stop-gain variants that cause nonsense-mediated decay (NMD) [5], but often they simply

capture the effects of other cis-acting variation. Traditionally, a single SNP has been used

to measure AE, by taking the SNP with the highest coverage per gene. However, as a re-

sult of improvements in genome phasing, data can be aggregated across SNPs to produce

estimates of AE at the haplotype level (Fig. 1b). We have previously developed a tool,

phASER, which does this systematically, in a way that uses the information contained

within reads to improve phasing, while preventing double counting of reads across SNPs

to improve the quality of data generated [6].

In this work, we present and demonstrate the utility of an AE resource generated

using the Genotype Tissue Expression (GTEx) version 8 data release comprising RNA-

seq data from 54 tissues and 838 individuals, for a total of 15,253 samples [7]. We gen-

erated both SNP-level and haplotype-level AE data. While the SNP-level data is avail-

able to approved users through dbGaP, the haplotype-level data does not contain

identifiable information, and we were thus able to make it publicly available on the

GTEx portal. Finally, we developed an addition to phASER, called phASER-POP which

makes it easy to generate population-scale, haplotype-level AE data and calculate effect

sizes for regulatory variants.

Results and discussion
Both SNP-level and haplotype-level AE data were generated for each GTEx sample

using current best practices, both with and without using WASP filtering [8] to reduce

the mapping bias that is sometimes present in AE analysis, resulting in 4 data types per

sample (Additional file 1: Fig. S1, “Data generation and availability” section in the

“Methods” section). Across samples, this produced over 431 million measurements of

AE at the SNP level and 153 million measurements of AE at the haplotype level. To

Fig. 1 Capturing cis-regulatory effects with phased allelic expression data. a The presence of a
heterozygous cis-regulatory variant or eQTL produces an expression-level imbalance between the two
haplotypes, which can be detected using allelic expression analysis. b RNA-seq reads overlapping
heterozygous SNPs in expressed regions of the gene can be used to quantify the expression of alleles
relative to one another. These SNPs can be phased with each other and their counts aggregated to
produce haplotype-level expression estimates, or haplotypic counts. The effects of regulatory variants can
be captured by phasing them with haplotypic counts. c Spearman correlation across the 49 GTEx v8 tissues
where eQTLs were called between eQTL effect size (allelic fold change, aFC) and effect size measured using
AE data from the single SNP with the highest coverage (SNP AE) or haplotype-level AE generated with
phASER (phASER). Results are shown with and without allelic mapping bias correction from WASP. In each
tissue, only a single top significant (FDR < 5%) eQTL per gene was analyzed. p values were calculated using
a Wilcoxon paired signed rank test. For boxplots, bottom whisker: Q1 − 1.5*interquartile range (IQR), top
whisker: Q3 + 1.5*IQR, box: IQR, and center: median
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demonstrate the ability of these data to robustly capture cis-regulatory effects and also

benchmark the four data types relative to one another, we estimated eQTL effect sizes

across the 49 tissues where eQTLs were mapped from AE data using allelic fold change

(aFC) and compared them to those derived from eQTL mapping [7]. The effect sizes

were quantified using aFC for both AE and eQTL data. To make it easier to generate

aFC estimates for regulatory variants from phASER data, we developed a new add-on

to the software package, phASER-POP, eliminating the need for custom scripts

(Additional file 1: Fig. S2). Briefly, phASER-POP integrates genotype calls and

haplotype-level AE data across individuals and phases each regulatory variant of

interest (e.g., eQTL) in each individual with their AE data. It then calculates statis-

tics, including aFC per sample, and its median across samples for individuals that

are heterozygous for the variant. At the sample level, aFC is a net expression fold

difference between the two haplotypes in an individual that is affected by all het-

erozygous regulatory variants, including other eQTLs and rare regulatory variation,

and thus can differ from the expected aFC derived from eQTL mapping. However,

the median aFC across all individuals in a population that is heterozygous for a

given eQTL can be used as a robust estimate of its effect size [1]. The software is

described in full detail in the “Methods” section.

To characterize the GTEx AE resource, we first compared aFC estimates calculated for

GTEx eQTLs between SNP- and haplotype-level AE data. We found high correlations be-

tween AE and eQTL estimates, with a median Spearman rho of 0.80 across tissues for SNP-

level data and 0.83 for haplotype-level data generated by phASER (Fig. 1c). Haplotype-level

correlations were significantly higher than SNP-level correlations (p = 3.55e−15, Wilcoxon

paired signed rank test) while at the same time producing estimates for a median of 20%

more eQTLs (Additional file 1: Fig. S3). Based on this, we recommend using the haplotype-

level data for most downstream analyses, as it yields more data of a higher quality. However,

there are some circumstances when the SNP-level data should be used. For example, when

analyzing allelic splicing, the haplotype-level data is not appropriate because it spans the

entire transcript, whereas only SNPs within the exon(s) or intron(s) of interest should be

analyzed. Furthermore, when analyzing transcribed variants with post-transcriptional effects

on gene expression, such as stop-gain or splice variants, SNP-level AE data from the variant

of interest is more straightforward to analyze.

Next, we assessed the effect of read mapping bias correction on allelic expression

analysis by comparing eQTL and AE effect size correlations with and without WASP

filtering. WASP filtering significantly improved correlations for both SNP- (p = 2.49e

−13, median improvement 1.22%) and haplotype- (p = 3.55e−15, median improvement

1.28%) level data (Fig. 1c). Since WASP works by removing, rather than correcting

reads with mapping bias, we compared the number of eQTLs for which an aFC

estimate could be calculated and found only a small 3.5% reduction (Additional file 1:

Fig. S3d). We therefore recommend using WASP-filtered data for most downstream

analyses. This is particularly important if the aim is to identify strong signals of allelic

imbalance, which can often be false positives due to mapping bias. We encourage users

of the resource to assess the impact of WASP filtering for their own use case, so have

included the unfiltered AE data for comparison.

Next, we characterized the WASP-filtered AE data. In the GTEx RNA-seq data, at a

minimum coverage of 8 reads, samples had a median of 7,607 genes with AE data at
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the SNP level and 10,043 genes at the haplotype level, and this dropped as a function

of increasing coverage thresholds (Additional file 1: Fig. S4). With the same coverage

threshold, at the tissue level and excluding tissues with small sample sizes (N < 70)

where eQTL mapping was not performed, there were a median of 18,042 genes with a

median of 128 samples per gene using haplotype-level AE data, rendering the data set

well-powered to detect cis-regulatory effects (Fig. 2a). The median number of samples

with AE data per gene was largely dependent on tissue sample size, ranging from 39 for

kidney cortex (N = 73 samples) to 321 for thyroid (N = 574 samples). The number of

genes with AE data was correlated with both sample size (rho = 0.41) and the number

of expressed genes (rho = 0.82), with the two cell lines having the lowest number of

genes with AE data (LCLs = 15,804, fibroblasts = 16,526) and the testis having the

Fig. 2 The GTEx v8 haplotype-level allelic expression resource. a Number of genes per tissue with
haplotype-level AE data (AE genes) in at least 1 individual versus the median number of samples with data
per gene. b Percentage of AE genes with significant allelic imbalance (binomial test, gene-level FDR < 5%)
in at least n samples per gene using all samples (blue) or excluding samples heterozygous for any top
(FDR < 5%) or independent GTEx eQTL (permutation p < 1e−4) (red). Faded points are values for individual
tissues, and solid points are the median across tissues. Proportions above data points indicate the reduction
in percentage of AE genes with imbalance after removing eQTL heterozygotes. A full summary of these
statistics across tissues and sample thresholds is available in Additional file 3: Table S2. c The effect of the
number of heterozygous variants in or proximal to gene promoters (< 10 kb upstream of TSS) on allelic
imbalance stratified by minor allele frequency. Plotted values are effect estimates and 95% confidence
intervals (see the “Promoter variant effect modeling” section in the “Methods” section)
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largest number of genes with AE data (21,952) despite an intermediate sample size of

322 (Additional file 2: Table S1). This was likely driven by the number of expressed

genes in testes, which was the highest across all tissues.

Finally, we sought to demonstrate the pervasiveness of cis-regulatory effects that can

be captured with this resource. We found that even strong regulatory effects, where

one allele was expressed at ≥ 2x the level of the other allele, are widely present, even

for protein-coding genes, with 53% of protein-coding genes showing such an effect in

at least one tissue and at least 50 individuals (Additional file 1: Fig. S5). Considering all

genes, we found that a median of 10,183 genes (or a median of 56% of those genes with

AE data) per tissue exhibited significant allelic imbalance (binomial test, FDR < 5% at

the gene level) in at least one sample, indicating the wide-spread nature of cis-regula-

tory effects (Fig. 2b). Removing individuals that were heterozygous for any known

GTEx eQTL (“GTEx eQTLs” section in the “Methods” section) only resulted in a

median reduction of 7.5% in the number of genes with significant imbalance in at least

one sample, demonstrating the potential of this resource to identify additional regula-

tory effects, including rare regulatory effects, that are not captured in eQTL analysis.

To further demonstrate this potential, we modeled allelic imbalance as a function of

the minor allele frequency and number of heterozygous variants found in or proximal

to gene promoters (< 10 kb upstream of TSS). As expected, we found that rare variants

tended to have larger effects on allelic imbalance than common variants, with the rarest

class of variants analyzed (MAF < 0.005 in GTEx) having the strongest effects (Fig. 2c).

Conclusion
In this work, we used the GTEx v8 release to produce a vast allelic expression resource,

consisting of hundreds of millions of measurements. We generated SNP- and

haplotype-level data, which provides better estimates of allelic expression for a greater

number of genes. These data have numerous uses for the study of regulatory variation.

SNP-level data from the previous v6 AE dataset [2] has been extensively used to study

gene regulation, for example, to study the effects of rare regulatory variation [9], X

chromosome inactivation [10], Neanderthal-introgressed regulatory variation [11],

interaction between regulatory and coding variants [12], and regulatory constraint in

the context of rare disease [13]. The haplotype-level v8 data presented here have simi-

larly found broad use for studying gene regulation. For example, they have been used

to replicate sex-, population-, and cell type-specific eQTLs [7, 14] as well as capture the

effects of rare regulatory variants [15] and study cis-domains of lncRNA regulation

[16]. By making haplotype-level AE data publicly available for the first time, we antici-

pate that this resource will find similarly broad use as the eQTL data it complements.

Methods
Data generation and availability

Paired-end 75-bp Illumina RNA-seq reads were aligned to hg38 using STAR [17] v2.5.3a

(without allelic mapping bias correction) and v2.6.0c (with allelic mapping bias correction)

in two-pass mode, and with allelic mapping bias correction enabled via the --waspOutput-

Mode option which replicates the approach in van de Geijn et al. [8] (the full settings of

the alignment pipeline are described at https://github.com/broadinstitute/gtex-pipeline).
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All data was generated with or without using this feature and is indicated by “_WASP_”

in the file names.

SNP-level AE data was generated using the GATK ASEReadCounter tool v3.8-0-

ge9d806836 with the following settings: -U ALLOW_N_CIGAR_READS -minDepth 1

--allow_potentially_misencoded_quality_scores --minMappingQuality 255 --minBase-

Quality 10. Raw SNP-level data, consisting of the GATK tool output, were aggregated

per subject across all tissues. Raw autosomal SNP-level data, for SNPs with ≥ 8 reads,

was annotated by assigning heterozygous SNPs to genes using Gencode v26, calculating

the expected null ratio for each combination of ref/alt allele [4], calculating a binomial

p value by comparing to the expected null ratio, calculating a multiple hypothesis cor-

rected p value per tissue using Benjamini-Hochberg, and flagging sites that overlapped

low-mappability regions (75-mer mappability < 1 based on 75mer alignments with up

to two mismatches based on the pipeline for ENCODE tracks and available on the

GTEx portal), showed mapping bias in simulation [18], or had no more reads support-

ing two alleles than would be expected from sequencing noise alone, indicating poten-

tial genotyping errors (FDR < 1%, see Castel et al. [4] for the description of the test).

The genotype warning test cannot distinguish between strong allelic expression and a

true genotyping error and as a result should not be used when studying phenomena

with expected mono-allelic expression (e.g., imprinting).

Haplotype-level data was generated using phASER v1.0.1 [6]. phASER was run using

whole genome sequencing genotype calls that were population-phased with Shapeit

v2.837 in read-backed phasing mode with whole genome sequencing reads [19].

phASER was run using all available RNA-seq libraries per subject. RNA-seq read-

backed phased genotype data are provided (filename: phASER_GTEx_v8_mer-

ged.vcf.gz). Haplotypic expression was calculated using phASER Gene AE 1.2.0 and

Gencode v26 gene annotations with min_haplo_maf 0.01. Haplotypic expression matri-

ces containing all samples were generated using the “phaser_expr_matrix.py” script.

This consists of a single string per sample per gene with the format “HAP_A_

COUNT|HAP_B_COUNT.” One matrix was generated using only haplotypes that

could be genome-wide phased such that the haplotype assignment is consistent across

genes within an individual and with the phased VCF (filename: phASER_GTEx_

v8_matrix.gw_phased.txt.gz). Another was generated that does not ensure

genome-wide haplotype phasing across genes, which includes more counts, but

makes the haplotype assignment of A/B arbitrary and unrelated across genes

within an individual or the VCF (filename: phASER_GTEx_v8_matrix.txt.gz). The

full settings of the haplotype-level AE pipeline are described at https://github.

com/broadinstitute/gtex-pipeline/.

SNP-level data is available for authorized users via dbGaP under accession phs000424 (file-

names: phe000039.v1.GTEx_v8_ASE.expression-matrixfmt-ase.c1.GRU.tar, phe000039.v1.G-

TEx_v8_ASE_WASP.expression-matrixfmt-ase.c1.GRU.tar) [20]. phASER-generated,

haplotype-level data is available through the same dbGaP accession (folders GTEx_Analysis_

v8_phASER and GTEx_Analysis_v8_phASER_WASP inside archive phe000037.v1.GTEx_

v8_RNAseq.expression-data-matrixfmt.c1.GRU.tar) and on the GTEx Portal (http://gtexpor-

tal.org/).

Unless stated otherwise, all analyses were performed using only protein-coding and

lncRNA genes.
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Software and availability

The original phASER package produced gene-level haplotypic expression per individual

[6]. We developed new additions to phASER (phASER-POP) that make it easier to

analyze data across many samples, as is often done with gene expression quantifica-

tions. First, we developed a new addition to the software (phaser_expr_matrix.py) that

enables the aggregation of gene-level haplotypic expression measurement files across

samples to produce a single haplotypic expression matrix, where each row is a gene

and each column is a sample. The values consist of a single string per sample per gene

in the format “HAP_A_COUNT|HAP_B_COUNT.” This format is intended to facilitate

downstream analyses of allelic expression.

Second, we developed a tool to make it easier to estimate effect sizes of regulatory

variants using phASER haplotypic expression data (phaser_cis_var.py). As input, this

script takes a phASER haplotype expression matrix, a phased VCF, and a list of regulatory

variants (e.g., eQTLs) to calculate effect sizes for. To improve accuracy, the read-backed

phased VCFs produced by phASER should be used, but first need to be combined across

individuals, which can be performed using, e.g., “bcftools merge ind1.vcf.gz ind2.vcf.gz ….”

Using these inputs, the tool phases each regulatory variant of interest with haplotype-level

expression data in each individual. It then calculates numerous statistics, including allelic

fold change (aFC) [1] per sample, and a median across samples for individuals that are

heterozygous for the variant of interest. This median can be used as an estimate of regula-

tory variant effect size. aFC is calculated as log2((eqtl_alt_allele_haplotype_count+1)/

(eqtl_ref_allele_haplotype_count+1)). The output also includes aFC estimates calculated

for homozygous individuals and performs a ranksum test of absolute aFC in heterozygotes

as compared to homozygotes. True regulatory variants are expected to have a significantly

higher aFC in heterozygous individuals. 95% confidence intervals are included for all aFC

estimates, and all underlying individual data, including haplotypic counts, are outputted.

The updated phASER package code along with extensive documentation is available

through GitHub at https://github.com/secastel/phaser/tree/master/phaser_pop under

the GNU General Public License v3 [21].

GTEx eQTLs

For comparison between eQTL effect size and allelic expression effect size, GTEx v8

top significant (FDR < 5%) eQTLs were used from 49 tissues [7]. This results in at most

a single eQTL per gene in a given tissue. When quantifying the number of samples that

are not heterozygous for a known eQTL but still show allelic imbalance, gene-level

haplotypic expression levels were excluded for a sample if the individual was heterozy-

gous for a top significant eQTL or a nominally significant (permutation p < 1e−4)

independent eQTL in any of the 49 tissues.

Promoter variant effect modeling

The effects of regulatory variants in or proximal to gene promoters were modeled using

haplotype-level allelic expression data. Briefly, for each individual, all heterozygous vari-

ants within 10 kb upstream of protein-coding or lincRNA gene transcription start sites

(TSS) were retrieved and the median allelic imbalance for that gene across all tissues,

measured using aFC, was calculated. For each individual by gene, the number of
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heterozygous variants (which could potentially cause allelic imbalance) falling into each

of the following minor allele frequency (MAF) bins was calculated: 0.50–0.10, 0.10–

0.05, 0.05–0.01, 0.01–0.005, 0.005–0. Bins were inclusive of variants whose MAF <

upper bin limit and ≥ the lower bin limit. Using data from all genes by individuals,

absolute aFC was modeled with a multivariate linear model (speedglm function in R)

using the number of variants in each of the MAF bins as predictors. The coefficients

for each of the predictors were then plotted along with their 95% confidence intervals

(confint function in R) as a measure of the effect of the number of heterozygous vari-

ants in each MAF class on allelic imbalance, with a higher coefficient indicating a

stronger effect (i.e., a larger allelic imbalance). Because allele frequencies were calcu-

lated within the GTEx cohort, only individuals of predominantly European ancestry

(N = 699, determined by PCA) were included in the analysis, to ensure accurate allele

frequency estimates. Without this filtering, population-specific variants, whose popula-

tions are not well represented in the GTEx cohort, may have inaccurate, likely underes-

timated allele frequencies, which can confound the analysis.
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