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Abstract

Background: The correct identification of differentially abundant microbial taxa
between experimental conditions is a methodological and computational challenge.
Recent work has produced methods to deal with the high sparsity and
compositionality characteristic of microbiome data, but independent benchmarks
comparing these to alternatives developed for RNA-seq data analysis are lacking.

Results: We compare methods developed for single-cell and bulk RNA-seq, and
specifically for microbiome data, in terms of suitability of distributional assumptions,
ability to control false discoveries, concordance, power, and correct identification of
differentially abundant genera. We benchmark these methods using 100 manually
curated datasets from 16S and whole metagenome shotgun sequencing.

Conclusions: The multivariate and compositional methods developed specifically for
microbiome analysis did not outperform univariate methods developed for
differential expression analysis of RNA-seq data. We recommend a careful exploratory
data analysis prior to application of any inferential model and we present a
framework to help scientists make an informed choice of analysis methods in a
dataset-specific manner.

Keywords: Microbiome, Benchmark, Single-cell, Metagenomics, Differential
abundance

Background
Study of the microbiome, the uncultured collection of microbes present in most envi-

ronments, is a novel application of high-throughput sequencing that shares certain

similarities but important differences from other applications of DNA and RNA se-

quencing. Common approaches for microbiome studies are based on deep sequencing

of amplicons of universal marker-genes, such as the 16S rRNA gene, or on whole

metagenome shotgun sequencing (WMS). Community taxonomic composition can be

estimated from microbiome data by assigning each read to the most plausible micro-

bial lineage using a reference annotated database, with a higher taxonomic resolution
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in WMS than in 16S [1, 2]. The final output of such analyses usually consists of a large,

highly sparse taxa per sample count table.

Differential abundance (DA) analysis is one of the primary approaches to identify dif-

ferences in the microbial community composition between samples and to understand

the structures of microbial communities and the associations between microbial com-

positions and the environment. DA analysis has commonly been performed using

methods adapted from RNA sequencing (RNA-seq) analysis; however, characteris-

tics specific to microbiome data make differential abundance analysis challenging.

Compared to other high-throughput sequencing techniques such as RNA-seq, metage-

nomic data are sparse, i.e., the taxa count matrix contains many zeros. This sparsity

can be explained by both biological and technical reasons: some taxa are very rare and

present only in a few samples, while others are very lowly represented and cannot be

detected because of an insufficient sequencing depth or other technical reasons.

In recent years, single-cell RNA-seq (scRNA-seq) has revolutionized the field of tran-

scriptomics, providing new insight on the transcriptional program of individual cells,

casting light on complex, heterogeneous tissues, and revealing rare cell populations

with distinct gene expression profiles [3–6]. However, due to the relatively inefficient

mRNA capture rate, scRNA-seq data are characterized by dropout events, which leads

to an excess of zero read counts compared to bulk RNA-seq data [7, 8]. Thus, with the

advent of this technology, new statistical models accounting for dropout events have

been proposed. The similarities with respect to sparsity observed in both scRNA-seq

and metagenomics data led us to pose the question of whether statistical methods de-

veloped for the differential expression of scRNA-seq data perform well on metage-

nomic DA analysis.

Some benchmarking efforts have compared the performance of methods [9–12] both

adapted from bulk RNA-seq and developed for microbiome DA [13, 14]. While some

tools exist to guide researchers [15], a general consensus on the best approach is still

missing, especially regarding the methods’ capability of controlling false discoveries. In

this study, we benchmark several statistical models and methods developed for metage-

nomics [13, 14, 16–18], bulk RNA-seq [19–21], and, for the first time, single-cell RNA-

seq [7, 8, 22–24] on a collection of manually curated 16S and WMS [25, 26] real data

as well as on a comprehensive set of simulations. We include in the comparison several

tools that take into account the compositional nature of the data: they achieve this

through the use of the Dirichlet-Multinomial Distribution (e.g., ALDEx2), Multinomial

Distribution with reference frames (Songbird), or the Centered Log Ratio (CLR) trans-

formation (e.g., ALDEx2, mixMC). The novelty of our benchmarking efforts is twofold.

First, we include in the comparison novel methods recently developed in the scRNA-

seq and metagenomics literatures; second, unlike previous efforts, our conclusions are

based on several performance metrics on real data that range from type I error control

and goodness of fit to replicability across datasets, concordance among methods, and

enrichment for expected DA microbial taxa.

Results
We benchmarked a total of 18 approaches (Additional file 1: Supplementary Table 2)

on 100 real datasets (Additional file 1: Supplementary Table 1), evaluating goodness of

fit, type I error control, concordance, and power through (i) reliability of DA results in
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real data based on enrichment analysis and (ii) specificity and sensitivity using 28,800

simulated datasets (Fig. 1; Additional file 2: Supplementary Table 4).

The benchmarked methods include both DA methods specifically proposed in the

metagenomics literature and methods proposed in the single-cell and bulk RNA-seq

fields. The manually curated real datasets span a variety of body sites and characteris-

tics (e.g., sequencing depth, alpha and beta diversity). The diversity of the data allowed

us to test each method on a variety of circumstances, ranging from very sparse, very di-

verse datasets, to less sparse, less diverse ones.

We first analyzed 18 16S, 82 WMS, and 28 scRNA-seq public datasets in order to as-

sess whether scRNA-seq and metagenomic data are comparable in terms of sparsity.

We observed overlap in the fractions of zero counts between the scRNA-seq, WMS,

and 16S, but with scRNA-seq datasets having a lower distribution of sparsities (ranging

from 12 to 75%) as compared to 16S (ranging from 55 to 83%) and WMS datasets

Fig. 1 Starting from 41 Projects collected in 2 manually curated data repositories (HMP16SData and
curatedMetagenomicData Bioconductor packages), 18 16S and 82 WMS datasets were downloaded.
Biological samples belonged to several body sites (e.g., oral cavity), body subsites (e.g., tongue dorsum), and
conditions (e.g., healthy vs. disease). Feature per sample count tables were used in order to evaluate several
objectives: goodness of fit (GOF) for 5 parametric distributions, type I error control, concordance, and power
for 18 differential abundance detection methods. Methods developed for metagenomics, bulk-RNAseq, or
sc-RNAseq were ranked using empirical evaluations of the above-cited objectives
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(ranging from 35 to 89%) whose distributions of zero frequencies were not significantly

different from each other (Wilcoxon test, W = 734, p = 0.377, Additional File 1: Supple-

mentary Fig. S1a-b). To establish whether the difference between scRNA-seq and meta-

genomic data was due to the different number of features and samples, which are

intrinsically related to sparsity, we explored the role of library size and experimental

protocol (Additional File 1: Supplementary Fig. S1c). scRNA-seq datasets showed a

marked difference in terms of the number of features and sparsity, as they are derived

from different experimental protocols. Full-length data (e.g., Smart-seq) are on average

sparser than droplet-based data (e.g., Drop-seq) but both are less sparse than 16S and

WMS.

These results indicate that metagenomic data are even more sparse than scRNA-seq,

and thus that zero-inflated models designed for scRNA-seq could at least in principle

have good performance in a metagenomic context.

Goodness of fit

As different methods rely on different statistical distributions to perform DA analysis,

we started our benchmark by assessing the goodness of fit (GOF) of the statistical

models underlying each method on the full set of 16S and WMS data. For each model,

we evaluated its ability to correctly estimate the mean counts and the probability of ob-

serving a zero (Fig. 2). We evaluated five distributions: (1) the negative binomial (NB)

used in edgeR [19] and DeSeq2 [20], (2) the zero-inflated negative binomial (ZINB)

used in ZINB-WaVE [23], (3) the truncated Gaussian Hurdle model of MAST [7], (4)

the zero-inflated Gaussian (ZIG) mixture model of metagenomeSeq [13], and (5) the

Dirichlet-Multinomial (DM) distribution underlying ALDEx2 [14]. The truncated

Gaussian Hurdle model was evaluated following two data transformations, the default

logarithm of the counts per million (logCPM) and the logarithm of the counts rescaled

by the median library size (see the “Methods” section). Similarly, the ZIG distribution

was evaluated considering the scaling factors rescaled by either one thousand (as imple-

mented in the metagenomeSeq Bioconductor package) and by the median scaling factor

(as suggested in the original paper). We assessed the goodness of fit for each of these

models using the stool samples from the Human Microbiome Project (HMP) as a rep-

resentative dataset (Fig. 2a–d); all other datasets gave similar results (Additional file 1:

Supplementary Fig. S2). A useful feature of this dataset is that a subset of samples was

processed both with 16S and WMS and hence can be used to compare the distribu-

tional differences of the two data types. Furthermore, this dataset includes only healthy

subjects in a narrow age range, providing a good testing ground for covariate-free

models.

The NB distribution showed the lowest root mean square error (RMSE, see the

“Methods” section) for the mean count estimation, followed by the ZINB distribution

(Fig. 2a, b). This was true for both 16S and WMS data, in most of the considered data-

sets (Additional file 1: Supplementary Fig. S2). Moreover, for both distributions, the dif-

ference between the estimated and observed means was symmetrically distributed

around zero, indicating that the models did not systematically under- or overestimate

the mean abundances (Fig. 2a, b; Additional file 1: Supplementary Fig. S2). Conversely,

the ZIG distribution consistently underestimated the observed means, both for 16S and
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WMS and independently on the scaling factors (Fig. 2a, b). The Hurdle model was sen-

sitive to the choice of the transformation: rescaling by the median library size rather

than by one million reduced the RMSE in both 16S and WMS data (Fig. 2a, b). This

was particularly evident in 16S data (Fig. 2a), in which the default logCPM values re-

sulted in a substantial overestimation of the mean count, while the median library size

scaling led to underestimation. Given the clear problems with logCPM, we only used

the median library size for MAST and the median scaling factor for metagenomeSeq in

all subsequent analyses. The DM distribution overestimated observed means for low-

mean count features and underestimated observed values for high-mean count features.

This overestimation effect was more evident in WMS than in 16S.

Fig. 2 a Mean-difference (MD) plot and root mean squared errors (RMSE) for HMP 16S Stool samples. b MD
plot and RMSE for HMP WMS Stool samples. c Average rank heatmap for MD performances in HMP 16S
datasets, HMP WMS datasets and all other WMS datasets. The value inside each tile refers to the average
RMSE value on which ranks are computed. d Zero probability difference (ZPD; see the “Methods” section)
plot and RMSE for HMP 16S Stool samples. e ZPD plot and RMSE for HMP WMS Stool samples. f Average
rank heatmap for ZPD performances in HMP 16S datasets, HMP WMS datasets, and all other WMS datasets.
The value inside each tile refers to the average RMSE value on which ranks are computed
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Concerning the ability of models to estimate the probability of observing a zero (re-

ferred to as zero probability difference, ZPD), we found that Hurdle models provided

good estimates of the observed zero proportion for 16S (Fig. 2c) and WMS datasets

(Fig. 2d). The NB and ZINB distributions, on the other hand, tended to overestimate

the zero probability for features with a low observed proportion of zero counts in 16S

(Fig. 2c). In WMS data, the ZINB distribution perfectly fitted the observed proportion

of zeros, while the NB and DM models tended to underestimate it (Fig. 2d). Finally, the

ZIG distribution always underestimated the observed proportion of zeros, especially for

highly sparse features (Fig. 2c, d).

In summary, across all datasets, the best fitting distributions were the NB and ZINB:

the NB distribution seemed to be particularly well-suited for 16S datasets, while the

ZINB distribution seemed to better fit WMS data (Fig. 2e). We hypothesize that this is

due to the different sequencing depths of the two platforms. In fact, while our 16S

datasets have an average of 4891 reads per sample, in WMS, the mean depth is 3.6 ×

108 (3 × 108 for HMP). To confirm this observation, we carried out a simulation experi-

ment by down-sampling reads from deep-sequenced WMS samples (rarefaction): while

the need for zero inflation seemed to diminish as we got closer to the number of reads

typical of the corresponding 16S experiments, the profile did not completely match be-

tween approaches (Additional file 1: Supplementary Fig. S4b). This suggests that, while

sequencing depth is an important contributing factor, it is not enough to completely

explain the distributional differences between the two platforms.

Type I error control

We next sought to evaluate type I error rate control of each method, i.e., the probability

of the statistical test to call a feature DA when it is not. To do so, we considered mock

comparisons between the same biological Stool HMP samples (using the same Random

Sample Identifier in both 16S and WMS), in which no true DA is present. Briefly, we

randomly assigned each sample to one of two experimental groups and performed DA

analysis between these groups, repeating the process 1000 times (see the “Methods”

section for additional details). In this setting, the p values of a perfect test should be

uniformly distributed between 0 and 1 (ref. [27]) and the false positive rate (FPR or ob-

served α), which is the observed proportion of significant tests, should match the nom-

inal value (e.g., α = 0.05).

To evaluate the impact of both the normalization step and the estimation and testing

step in bulk RNA-seq inspired methods, we included in the comparison both edgeR

with its default normalization (TMM), as well as with DESeq2 recommended

normalization (“poscounts,” i.e., the geometric mean of the positive counts) and vice

versa (Table S2). Similarly, because the zinbwave observational weights can be used to

apply several bulk RNA-seq methods to single-cell data [24], we have included in the

comparison edgeR, DESeq2, and limma-voom with zinbwave weights.

The qq-plots and Kolmogorov-Smirnov (KS) statistics in Fig. 3 show that most

methods achieved a p value distribution reasonably close to the expected uniform. Not-

able exceptions in the 16S experiment were edgeR with TMM normalization and ro-

bust dispersion estimation (edgeR_TMM_robustDisp), metagenomeSeq, and ALDEx2

(Fig. 3a, b). While the former two appeared to employ liberal tests, the latter was

Calgaro et al. Genome Biology          (2020) 21:191 Page 6 of 31













https://github.com/waldronlab/nychanesmicrobiome
https://github.com/waldronlab/nychanesmicrobiome






https://doi.org/10.1186/s13059-020-02104-1


https://bioconductor.org/packages/HMP16SData
https://bioconductor.org/packages/HMP16SData
https://bioconductor.org/packages/curatedMetagenomicData
https://github.com/mcalgaro93/sc2meta
https://zenodo.org/record/3942108#.XwyN1ygzZPY




https://github.com/bryandmartin/corncob
https://github.com/biocore/songbird
https://doi.org/10.5281/zenodo.3942108

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Goodness of fit
	Type I error control
	Between-method concordance
	Within-method concordance
	Enrichment analysis
	Parametric simulations

	Discussion
	Conclusions
	Methods
	Datasets
	Statistical models
	Negative binomial (NB)
	Zero-inflated negative binomial (ZINB)
	Truncated Gaussian Hurdle model
	Zero-inflated Gaussian
	Dirichlet-Multinomial

	Goodness of fit (GOF)
	Differential abundance detection methods
	DESeq2
	edgeR
	Limma-voom
	ALDEx2
	metagenomeSeq
	Corncob
	Songbird
	mixMC
	MAST
	Seurat with Wilcoxon rank sum test
	SCDE—single-cell differential expression

	Type I error control
	Concordance
	Sample selection step

	Enrichment analysis
	Parametric simulations
	Computational complexity

	Supplementary information
	Review history
	Peer review information
	Authors’ contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

