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Abstract

Background: Mobile elements are a major source of structural variants in the human
genome, and some mobile elements can regulate gene expression and transcript
splicing. However, the impact of polymorphic mobile element insertions (pMEIs) on
gene expression and splicing in diverse human tissues has not been thoroughly
studied. The multi-tissue gene expression and whole genome sequencing data
generated by the Genotype-Tissue Expression (GTEx) project provide a great
opportunity to systematically evaluate the role of pMEls in regulating gene
expression in human tissues.

Results: Using the GTEx whole genome sequencing data, we identify 20,545 high-
quality pMEls from 639 individuals. Coupling pMEI genotypes with gene expression
profiles, we identify pMEl-associated expression quantitative trait loci (eQTLs) and
splicing quantitative trait loci (sQTLs) in 48 tissues. Using joint analyses of pMEls and
other genomic variants, pMEls are predicted to be the potential causal variant for
3522 eQTLs and 3717 sQTLs. The pMEl-associated eQTLs and sQTLs show a high
level of tissue specificity, and these pMEls are enriched in the proximity of affected
genes and in regulatory elements. Using reporter assays, we confirm that several
pMEIs associated with eQTLs and sQTLs can alter gene expression levels and isoform
proportions, respectively.

Conclusion: Overall, our study shows that pMEls are associated with thousands of
gene expression and splicing variations, indicating that pMEls could have a
significant role in regulating tissue-specific gene expression and transcript splicing.
Detailed mechanisms for the role of pMEIs in gene regulation in different tissues will
be an important direction for future studies.

Keywords: Quantitative trait loci, Gene expression regulation, Alternative splicing,
Transposable elements, Polymorphic mobile element insertions
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Introduction

Mobile genetic elements, or mobile elements (MEs), are segments of DNA that can move
around and make copies of themselves within a genome [1]. At least 50% of the human
genome is derived from MEs [2]. Three non-long terminal repeat (non-LTR) retrotran-
sposons dominate the recent ME activity: the short interspersed element (SINE) Alu [3],
the long interspersed element 1 (LINE1) [4], and the composite SVA (SINE-VNTR
(variable-number tandem repeat)-Alu) [5, 6] element. LINE1 is an autonomous ME and
encodes proteins that are required for the retrotransposition of LINE1 [7] and the non-
autonomous Alu and SVA retrotransposons [8], as well as occasionally cellular RNAs [9].
Many diseases, including cancer [10] and psychiatric disorders [11], are associated with
the activities of MEs [12, 13]. In addition to causing genomic structural changes, MEs can
also alter mRNA splicing [14] and gene expression levels [15, 16] via a wide variety of
mechanisms, including acting as promoters [17], enhancers [18], splicing sites [19], and
terminators for transcription [20] and affecting chromatin looping [21].

The activities of MEs create new insertional mutations in the genome, leading to
thousands of polymorphisms among human individuals and populations [22—24]. The
effects of polymorphic mobile element insertions (pMEIs) on gene expression have
been studied in the transformed B lymphocytes cell lines (LCLs) of the 1000 Genomes
Project (1IKGP) [25-28] and in human induced pluripotent stem cells [28]. Together,
several hundred pMEI loci were identified as expression quantitative trait loci (eQTLs).
However, the full extent of the impact of pMEIs on human gene expression in diverse
tissues has not been extensively examined.

The Genotype-Tissue Expression (GTEx) project provides a public resource to study
tissue-specific gene expression and regulation [29-31]. In the v7 release, GTEx provides
11,668 high-depth RNA sequencing (RNA-seq) datasets from 51 tissues and 2 cell lines of
714 donors. More than 600 of the donors have also been subjected to high-depth whole
genome sequencing (WGS). This rich dataset makes it possible to assess the impact of
different types of genomic variants on gene expression. For example, studies have
reported the impact of structural variants [32], rare variants [33], and short tandem
repeats [34] on gene expression variation. However, the role of pMEIs in gene regulation
and alternative splicing, especially for pMEIs not annotated in the reference genome, has
not been fully evaluated. Given that thousands of common pMEIs exist in human popula-
tions, pMEIs might explain a large proportion of gene expression variation among
humans. With the large GTEx dataset, we systematically identified pMEIs in each donor
and examined the impact of common pMEIs on gene expression and splicing.

Results

Detection of pMEls in GTEx individuals

We obtained WGS data from the GTEx v7 release. Using the Mobile Element Locator
Tool (MELT) [35], we identified MEs that are present in the sequenced individuals but
absent in the reference genome, as well as MEs that are present in the reference genome
but absent in a subset of sequenced individuals. We refer to these two types of ME poly-
morphisms as non-reference MEIs (nrMEIs) and reference MEIs (rMEIs) in the following
text, respectively. We identified a total of 80,057 candidate nrMEI and rMEI loci in 639
individuals, including 638 GTEx individuals and the HuRef sample (Table 1). Overall,
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Table 1 Overview of pMEIs in the MELT call set, eQTL, and sQTL analyses

ME MELT call set eQTL sQTL

type Raw HQ Common All Causal Highest All Causal Highest
nrAlu 62,864 13,870 2157 1451 562 147 1071 539 191
nrL1 11,159 2130 246 177 81 23 126 71 18
nrSVA 1877 558 69 61 32 12 51 27 13

rAlu 3837 3687 968 671 253 84 444 202 106

L1 192 188 59 42 15 7 28 18 8

rSVA 128 112 21 20 13 9 14 9 6
Total 80,057 20,545 3520 2422 956 282 1734 866 342

MELT call set: raw—all pMEI loci identified by MELT; HQ—high-quality loci after quality control; common—pMEls used
for the eQTL and sQTL analysis

eQTL/sQTL analysis: all—unique pMEls in eQTL/sQTL analysis (FDR < 10%); causal—unique pMEls identified as the causal
variant; highest—unique pMEls identified as the causal variant with the highest causal probability

99.5% of sites have no-call rates < 25%, demonstrating the high quality of the sequenced
genomes.

The initial candidate ME loci were further filtered based on quality scores, no-call
rates, and other criteria (see the “Methods” for details). After filtering, 20,545 high-
quality loci were selected for further analysis. Most pMEIs have allele frequency < 0.05,
especially nrMEIs (Additional file 1: Fig. Sla, S1b). Because the human reference
genome is based on only a small number of individuals, pMEIs present in the reference
genome (rMEIs) should be more common than pMEIs absent in the reference genome
(nrMEIs). As expected, overall, rMEIs have higher allele frequencies than nrMEls
(Additional file 1: Fig. S1a, S1b). The number of loci with pMEI present in an individual
is correlated with their self-reported ancestry. In general, the number of loci with
nrMEI and rMEI present in African individuals is larger than in non-African individ-
uals (Additional file 1: Fig. Slc). We define common pMEIs as those with allele
frequency between 0.05 and 0.95. Overall, 3076 nrMEIs and 1662 rMEIs are common,
which are 18.58% and 41.68% of the high-quality nrMEI and rMEI call sets, respect-
ively. After further quality control, a total of 3520 common pMEIs were selected for
the following analyses (Table 1).

Identification of pMEl-associated eQTLs

Next, we determined the effect of pMEIs on nearby gene expression by identifying
pMEI-associated cis-eQTLs. The GTEx v7 release includes expression data of 56,202
genes, including 19,820 protein-coding genes and 36,382 non-coding genes (Table 2).
We selected 46 tissues and 2 cell lines with expression data in more than 70 individuals

Table 2 Summary of genes

Gene Total Expressed eQTLs ME causal ME highest
causal

Protein-coding 19,820 19,064 4243 1062 294

Non-coding 36,382 19,111 2099 526 139

Total 56,202 38,175 6342 1588 433

Expressed—genes used in the eQTL analysis of at least one tissue

eQTLs—number of unique genes in the ME-only eQTL analysis with FDR < 10%; ME causal and ME highest
causal—unique genes with pMEls predicted as a causal variant or a causal variant with the highest
probability, respectively
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for the analysis (ranging from 78 to 481 individuals per tissue or cell line)
(Additional file 2: Table S1). We will refer to both tissues and cell lines as tissues for
simplicity in the following text. After excluding low-expressed genes from the ana-
lysis, the average number of tested protein-coding genes in each tissue is 16,461
with a standard deviation (SD) of 598 (see the “Methods” section for detail). For
non-coding genes, the testis is an outlier with 14,970 expressed genes. The average
number of expressed non-coding genes in tissues other than testis is 7294 with an
SD of 826.

We performed cis-eQTL mapping with Matrix eQTL [36] in each tissue. Here, we
define an eQTL as a unique combination of tissue-gene-variant. Among all tissues, we
identified 30,147 eQTLs with 6342 distinct genes, 2422 distinct pMEIs, and 8204
distinct gene-ME pairs with a false discovery rate (FDR) < 10%. pMEIs that are eQTLs
showed strong enrichment near the transcription start site (TSS) of the affected genes,
although some eQTL-pMEIs are much further away from the affected genes
(Additional file 1: Fig. S2a). In comparison, there is no enrichment of pMEIs at TSS
among all tested tissue-gene-pMEI combinations (Additional file 1: Fig. S2b). Next, we
define an eGene as a tissue-gene pair that was identified in the eQTL analysis with an
FDR < 10%, while an eVariant as a tissue-variant pair with an FDR < 10%. Because an
eGene can be influenced by multiple variants and an eVariant may have an impact on
multiple genes, the numbers of eGenes (24,109) and eVariants (17,230) are smaller than
the total number of eQTLs. The number of eQTLs (FDR < 10%) per tissue ranges from
118 to 1609, and the sample size is strongly correlated with the number of detected
eQTLs (* = 0.85, Fig. 1a, c, Additional file 2: Table S1). This strong correlation was also
observed in similar studies [30, 31, 34]. The correlation is even stronger (*=0.92)
when we added the number of expressed genes as a covariate in the linear regression
analysis of the number of eQTLs. For eQTLs, most gene-ME pairs were identified in
only one tissue, accounting for 53% of coding gene-ME pairs and 62% of non-coding
gene-ME pairs (Fig. 1d, Additional file 2: Table S1). The higher tissue specificity of
non-coding gene eQTLs could be explained by the fact that non-coding genes more
frequently have tissue-specific expression patterns.

To determine if closely related tissues show similar eQTL profiles, we evaluated the
eQTL correlations among different tissues for ME-gene pairs using Spearman’s correl-
ation (p). The Spearman’s correlation of the expression level of these eQTL genes
(calculated as transcript per million (TPM)) was also calculated to determine the
impact of similarities of gene expression on eQTL identification. As shown in Fig. 1b,
tissues from different brain regions were clustered together by eQTL correlations and
eQTL gene expression levels. Testis (Te) showed the highest difference with other
tissues in both eQTLs and gene expression levels. Highly similar tissues, such as skin
sun-exposed (SS) and skin not sun-exposed (SN), brain cerebellum (BC) and brain
cerebellum hemisphere (BCH), are highly similar in the eQTL significance (p > 0.6) and
the gene expression level (p>0.95). However, whole blood and EBV-transformed
lymphocytes (B and CE) showed lower gene expression correlation with other tissues
(p <0.8 in general) than other tissue pairs, suggesting a different expression pattern in
blood and cell line samples. It is also obvious that the correlations are higher for gene
expression than for eQTLs. This is partial because gene expression values can be more
accurately determined and normalized than eQTL significance values.
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Fig. 1 Overview of the ME-only eQTL analysis. a The number of detected eQTLs with Benjamini-Hochberg
FDR < 10% in each tissue. Bars are colored by tissue clusters based on cis-eQTL as shown in b (tree). b
Similarity (Spearman'’s correlation coefficient p) between different tissues based on cis-eQTL FDR values
(lower triangle) and gene expression TPM values (upper triangle). Gene-pMEI pairs with FDR < 10% in at
least one tissue are selected for the analysis. The tree on the left of the plot was based on the hierarchical
clustering of the cis-eQTL results, and the branches are colored to five groups. Tissue text colors in a and b
were based on the hierarchical clustering tree of TPM results (data not shown). ¢ The relationship between
the eQTL count (FDR < 10%) and the individual count in different tissues. Tissue text is colored by tissue
clusters based on cis-eQTL in b (tree). The axes are in log scale. d Gene-pMEI pair count and the number of
tissues they were detected as significant for coding and non-coding genes. e Effect size (beta value)
distribution for coding and non-coding eQTLs of different types of pMEls. Tissue abbreviations: AdS, adipose
subcutaneous; AdV, adipose visceral omentum; AG, adrenal gland; ArA, artery aorta; ArC, artery coronary;
ArT, artery tibial; BAm, brain amygdala; BAn, brain anterior cingulate cortex BA24; BCa, brain caudate basal
ganglia; BCH, brain cerebellar hemisphere; BC, brain cerebellum; BCo, brain cortex; BFC, brain frontal cortex
BA9; BHi, brain hippocampus; BHy, brain hypothalamus; BNu, brain nucleus accumbens basal ganglia; BPu,
brain putamen basal ganglia; BSp, brain spinal cord cervical c-1; BSu, brain substantia nigra; Br, breast
mammary tissue; CE, cells EBV-transformed lymphocytes; CT, cells transformed fibroblasts; CoS, colon
sigmoid; CoT, colon transverse; EG, esophagus gastroesophageal junction; EMc, esophagus mucosa; EMs,
esophagus muscularis; HA, heart atrial appendage; HL, heart left ventricle; Li, liver; Lu, lung; MSG, minor
salivary gland; MuS, muscle skeletal; NT, nerve tibial; O, ovary; Pa, pancreas; Pi, pituitary; Pr, prostate; SN, skin
not sun-exposed suprapubic; SS, skin sun-exposed lower leg; SIT, small intestine terminal ileum; Sp, spleen;
St, stomach; Te, testis; Th, thyroid; U, uterus; V, vagina; B, whole blood

To determine if the presence/absence of an ME has a directional impact on the gene
expression, we examined the association between the direction of the gene expression
change (positive or negative beta value) and the presence or absence of an ME. We
observed several significant differences (e.g, SVA for non-coding genes, Fig. le,
Additional file 3: Table S2). However, because some pMEIs are eQTLs in multiple tis-
sues and/or affect multiple genes, these pMEIs can potentially bias the result, especially
for small datasets such as SVAs. To control for this bias, we selected a single best
eQTL for each pMEI for the testing. Using one eQTL per pMEI locus, we observed no
statistically significant difference in the direction of the effect for any of the three types
of pMEIs (Alu, L1, SVA), for either coding or non-coding genes (Additional file 3:
Table S2). This result suggests that for common pMEI eQTLs, the ME-specific
sequence is a less important factor affecting the nearby gene expression than the pres-
ence/absence of an ME. We also compared the correlation of the direction of the effect

Page 5 of 19
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(i.e., the sign of the beta value) among tissue pairs. Overall, the direction of the effect
for ME:s is highly consistent among tissue pairs, with an apparent exception of the testis
(Additional file 1: Fig. S3). Excluding the testis, the effect direction among tissue pairs
is consistent for 98.6 + 1.7% of eQTLs.

Fine-mapping of causal pMEls for eGenes

Due to the linkage disequilibrium among genetic variants, several tightly linked variants can
be identified as eQTLs along with the causal variant. To determine whether the pMEIs
identified in the eQTL analysis are the causal variants, we applied a fine-mapping approach
for each eQTL locus. To do this, we gathered the single nucleotide polymorphisms (SNPs)
and insertions/deletions (indels) from GTEx individuals and selected a total of 6,334,405
high-quality common variants, including 5,837,891 SNPs and 496,514 indels. For the 6342
unique eGenes identified in the ME-only eQTL analysis, we performed joint analyses for
pMEIs and these common variants to identify all variants associated with an eGene in each
tissue. Then, we applied a fine-mapping method for each of the 24,109 eGenes to identify
the contributions of MEs in altering gene expression. Overall, pMEIs were included in the
causal variant set for 13.98% of eGenes, ranging from 10.69% in the sun-exposed lower leg
skin to 25.33% in the hippocampus. pMEIs were detected as the highest probability causal
variant for 4.55% of tested eGenes (2.67-9.18% among tissues) (Table 1, Additional file 2:
Table S1). This is slightly more frequent than the 3.5% (2.4—4.4% among tissues) detected
for structural variants in a previous study [32].

Enrichment of eQTL-pMEIls with functional genomic elements

To explore the potential molecular mechanisms by which MEs influence gene expres-
sion, we examined the enrichment of pMEIs relative to functional genomic elements.
We grouped the 3520 common pMEIs into three categories: not an eVariant for any
gene (NS), identified as an eVariant but not a causal eVariant (related), and identified
as a causal eVariant (causal). Compared to the NS set, pMEIs that are eVariants
(related and causal) are significantly enriched in enhancers, 10 kb upstream or down-
stream of affected genes, and exons and introns of affected genes (Fig. 2a—e). This is
consistent with the observation that eQTL-pMEIs are enriched near the TSS of genes
(Additional file 1: Fig. S2). Importantly, pMEIs in the “causal” category are more signifi-
cantly enriched in functional regions than “related” pMEIs in all categories except in
introns. This enrichment suggests pMEIs in the causal set are more likely to be the true
functional variant for the gene expression change. Only a small portion of pMEIs are in
the exon of genes, and all of them are detected as eQTLs and showed a stronger en-
richment in the causal set (Fig. 2e). Given the size of the pMEISs, it is expected that the
exonic pMEIs will have a strong impact on the gene expression level. The enrichment
of pMEIs in functional elements is similar to structural variants in general, as structural
variants impacting gene expression are also enriched in enhancers, promoters, and
regions close to the affected genes [32].

Identification of pMEl-associated sQTLs
We next investigated the impact of pMEIs on alternative splicing of genes. We analyzed
splicing quantitative trait loci (sQTLs) similarly to eQTLs, except we used percent
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Fig. 2 Enrichment of pMEls in different functional genomic regions of affected genes in eQTL analysis (a—e)
and sQTL analysis (f-j). Functional genomic regions include enhancers from the Dragon Enhancers
Database (DENdDb) (a, f); 10 kb upstream from the transcription starting site (TSS) (b, g), 10 kb downstream
(¢, h), exons (d, i), and introns of the affected gene (e, j). pMEls were divided into three categories: NS,
pMEls that were not reported to be significantly related with any gene or ASE in any tissue; related, pMEls
that were significantly associated with at least one gene or ASE but were not reported as causal; causal,
pMEls that were reported as causal for at least one gene or ASE (see the “Methods” section for details). The
bar plot shows the proportion of pMEls in each genomic feature in each category (NS, related, or causal).
Values inside the bars are fold enrichment compared to NS, and values above the bars are p value from
Fisher's exact test for significance of enrichment compared to NS. For exons in the eQTL analysis in d, the

fold enrichment values are not available because the proportion of pMEls in exon is zero in NS

splicing in (PSI) scores of alternative splicing events (ASEs) instead of TPM of genes
(see the “Methods” section for a full definition of the ASEs). When determining ASEs,
genes sharing one or more exons were grouped together as a gene cluster. We will refer
to these gene clusters as genes in the sQTL analysis for simplicity. There are 165,882
ASEs from 17,015 genes (Table 3). About half of the events occur inside the gene, these
include alternative 3'/5" splicing site (A3/A5), mutually exclusive exons (MX), retained
intron (RI), and skipped exon (SE). The other half occur at the edge of a gene, includ-
ing alternative first/last exons (AF/AL) (Table 3). We detected a total of 21,529 sQTLs
with 7184 distinct splicing events from 2992 genes with FDR < 10%. Similar proportions

Table 3 Summary of alternative splicing events

ASEs Total events (genes) Events in sQTL (genes) ME causal (genes) ME highest
causal (genes)

A3 14,918 (7419) 537 (456) 165 (154) 50 (49)

A5 14,197 (7144) 576 (484) 185 (165) 55 (53)

AF 70,352 (9036) 3063 (1332) 994 (533) 253 (172)

AL 18,369 (5103) 887 (513) 314 (198) 103 (72)

MX 4803 (2681) 210 (179) 71.(61) 21 (18)

RI 5718 (3237) 219 (178) 78 (66) 25(23)

SE 37,525 (12,232) 1692 (1267) 494 (418) 154 (135)

Total 165,882 (17,015) 7184 (2992) 2301 (1231) 661 (435)

Events in sQTL—number of unique ASEs in the ME-only sQTL analysis with FDR < 10%

ME causal and ME highest causal—number of unique ASEs with pMEls predicted as a causal variant or a causal variant
with the highest probability, respectively

The numbers in the parentheses are the number of genes/gene clusters of the corresponding ASEs. Genes sharing the
same exons were merged into gene clusters by SUPPA when calculating PSI scores. Because some genes have multiple
ASEs, the overall gene count is not the sum of the gene count in different ASEs

ASEs alternative splicing events, A3/A5 alternative 3'/5' splice site, AF/AL alternative first/last exon, MX mutually exclusive
exon, Rl retained exon, SE skipping exon

Page 7 of 19
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of sQTLs are from events internal (11,183) and at the edge (10,346) of the gene. The
numbers of detected sQTLs with events internal or at the gene edge are proportional
to the total number of possible events in these regions, indicating weak or no selective
preference. The number of sQTLs in each tissue ranges from 81 to 1120 (Fig. 3a,
Additional file 4: Table S3). Similar to eQTLs, the number of sQTLs is highly corre-
lated with the number of donors for each tissue (r* = 0.71, Fig. 3c). Eighty-three per-
cent internal and 73% of gene edge splicing event-pMEI pairs are only detected in
one tissue, suggesting the impact of pMEIs on gene splicing is highly tissue-specific
(Fig. 3d). Of note, sQTL analysis uses the transcript level PSI information, which is
noisier than the gene level TPM used in the eQTL analysis. Therefore, the higher
tissue specificity of sQTLs than eQTLs may also be partly due to the lower power
and higher level of false negatives in the sQTL analysis. Although sQTLs appear
highly tissue-specific, we did identify similarities among related tissues (e.g., brain
regions) based on sQTL significance and PSI scores for ASEs (Fig. 3b). We also
observed high agreement in the direction of effect by the pMEIs (Additional file 1:
Fig. S3), similar to eQTLs. Overall, tissues show more variance based on gene
alternative splicing (PSI values) than gene expression levels (TPM values), and the
similarity of sQTL and PSI metrics are less than eQTL and TPM metrics. The effect
size for sQTLs can be either positive or negative (Fig. 3e), but values of beta are
much smaller than eQTLs due to the small variation of PSI values (0-1).
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Next, we applied the fine-mapping strategies to identify the causal pMEI-sQTLs.
pPMEIs were identified as causal for 17.26% (13.10-35.11% among tissues) and as the
highest probability causal for 4.33% (2.05-7.38%) of ASEs. The same as eQTLs, pMEIs
detected as sQTLs (related) or identified as causal variants for at least one ASE (causal)
are significantly enriched in enhancer regions and regions close to the affected genes
(Fig. 2f-j). However, the enrichment and significance of pMEIs are lower compared to
eQTLs, likely because of the noisier measurement of PSI values than TPM values for
eQTL analysis.

To determine if pMEIs affect the expression and splicing of genes simultaneously, we
identified genes with both eQTLs and sQTLs. Both the significance and the effect size
for eQTLs and sQTLs are positively correlated, indicating that a pMEI that influences
the expression of a gene is also likely to impact the alternative splicing and isoform
abundance of that gene (Fig. 4a, b). Although ~40% of pMEIs were identified in both
eQTL and sQTL analyses, some pMEIs were only identified in one, indicating either a
specific functional impact of some pMEIs or different sensitivities of the two analyses
(Fig. 4c). pMEIs detected only in sQTL analysis tend to have lower allele frequencies
than pMEIs only in the eQTL analysis (Fig. 4d).

Experimental validation of eQTLs and sQTLs

To experimentally verify the predicted impact of specific pMEIs on gene expression
and splicing, we evaluated selected loci in ectopic reporter assays (see the “Methods”
section for details). We selected loci for validation based on the requirements of ectopic
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reporter assays (e.g., pMEI size, sequence availability), the supportive evidence from the
eQTL/sQTL analysis, and the importance of the associated genes. For pMEIs predicted
to be causal in the eQTL analysis, we selected six loci for experimental validation. All
six tested ME loci showed a significant difference in the gene expression between the
presence and absence of the pMEI (p < 0.05, unpaired 2-tailed ¢ test) (Fig. 5a). The pres-
ence of the pMEI resulted in the upregulation of luciferase expression in five cases,
with only one locus, IP6K2, where the presence of the pMEI reduced the luciferase
expression relative to the pre-insertion allele. These results indicate that pMEI in their
genomic context can alter transcription levels, supporting their role as eQTLs. Three
pMEIs have the same direction of effect (i.e., either up- or downregulation in the pres-
ence of the ME) in the reporter assay as predicted computationally for the closest
eGenes: BDH2, PGR, and IP6K2 (Fig. 5a). Because all three pMEIs are eQTLs in
multiple tissues and in all tissues the pMEIs have the same predicted direction of effect,
these pMElIs are likely to regulate gene expression across tissue types using a similar
mechanism.

Next, we performed an experimental validation of pMEI sQTLs using ectopic
reporter assays. We focused on pMEIs within genes and near differentially incorporated
exons to enable evaluation with a minigene reporter. We evaluated three pMEI loci for
sQTLs and identified significant effects of the ME at two of the three loci (p <0.05,
unpaired 2-tailed ¢ test) (Fig. 5b). In both cases, the presence of the ME resulted in less
incorporation of the alternatively incorporated exon. We compared these results to the
effects predicted for the ME-containing allele in our sQTL analysis. For IFT122, we
predicted that the presence of the ME would decrease the exon inclusion in all tissues
with sQTLs, and this prediction agrees with our ectopic assay. However, for CAPI, the
predicted effect of the presence of the ME on splicing did not agree with the experi-
mental result. Altogether, these data confirm that pMEI can alter gene expression levels
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Fig. 5 Experimental validation of eQTLs (a) and sQTLs (b). Gene names were labeled in the x-axis, and
those underlined showed the effects in the same direction as predicted in the computational analysis. For
sQTL experiments, one constitutive exon was included with the alternative exon. Results are shown for the
ME-containing construct and the construct without the ME. In b, the direction of the arrow represents the
strand of the ME on the chromosome. *p < 0.05, **p < 0.01, ***p < 0.001
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and isoform proportions largely consistent with the predicted effects in our QTL
analysis.

Discussion

MEs play important roles in gene regulation and have the capacity of creating new gene
regulatory networks [18, 37, 38]. However, most previous studies on the impact of
pMEIs on gene expression focused only on eQTLs and on LCLs from the 1KGP project
[26, 32, 39]. The GTEx project provides an excellent opportunity to study the impact of
PMEI on gene expression and alternative splicing across human tissues [30]. Although
a previous study from the GTEx Consortium included some pMEIs that are present in
the reference genome (rMEIs), the study did not consider non-reference pMElIs, and it
is based on the smaller GTEx v6 release (147 individuals, 13 tissues) [32]. In this study,
we identified both pMEIs that are present in the reference genome (rMEIs) and absent
in the reference genome (nrMEIs) in more than 600 individuals. Combining the geno-
types of common pMEIs with the GTEx RNA-seq data, we examined the impact of
PMEIs on gene expression and gene splicing comprehensively in 48 tissues.

The high-depth WGS from the GTEx project (mean coverage about 40-fold) resulted
in sensitive pMEI identification and accurate genotyping [35]. We identified a total of
20,545 pMEI loci from 639 individuals, including 16,558 non-reference pMEIs and
3987 reference pMEIs. The total number of pMEIs in our study is about ten times
more than the 2051 reference pMEIs identified in the previous study [32]. The number
is also higher than the 17,934 pMEIs identified in phase 3 of the 1KGP from 2504
individuals, which was based on low-coverage WGS (mean coverage 7.4-fold) [27]. Less
than half of the pMEI loci (8456) were identified both in this project and in the 1IKGP.
Recent studies have been able to continually annotate new pMEIs as techniques
improve and individuals from diverse populations are considered [24, 40]. In addition,
because of the repetitive nature of MEs, many pMEIs are missed by the current short-
read sequencing technology [41]. Therefore, when more diverse populations are in-
cluded and long-read sequencing technologies are used, we expect a lot more pMEIs
will be identified.

We identified 6342 genes with expression levels correlated with 2422 pMEIs and the
2992 transcript splicing events correlated with 1734 pMEIs in at least one of the 48
tested tissues. The number of pMEIs identified as eQTLs (2422) in our study is much
higher compared to previous studies [26, 28, 32, 39]; the GTEx structure variation
study reported 265 rMEIs at FDR < 10% [32], and the 1KGP study identified 235 pMEIs
at FDR < 5% [26]. We also identified a large number of pMEIs as the potential causal
variant for eQTLs (956) and sQTLs (866). This highlights the value of both the large
number of pMEIs identified from the high-coverage WGS data and the many tissues
examined in our study. The numbers of detected eQTLs and sQTLs in each tissue were
highly correlated with the sample size of each tissue (+* = 0.85 and 0.71 for eQTLs and
sQTLs, respectively) (Fig. 1c, Fig. 3c). Because the power of the QTL (eQTL and sQTL)
analysis is closely related with the sample size, this linear relationship indicates that the
sample size is still too small in most tissues. It is likely that many additional QTLs were
not detected due to the small sample size in many tissues. In GTEx v8, there is no
significant sign of eGenes/sGenes showing plateauing at a sample size of 600 [31],
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suggesting more than 600 samples are needed to reach sufficient power to identify all
eQTLs and sQTLs.

A previous study showed that different analysis methods can produce very different
eQTL results, even with the same raw dataset [28]. It is also known that different ME
identification programs have different sensitivity and specificity. In addition, the pMEI
selection can further introduce discrepancies among studies [42]. For example, our
analyses focused on a small set of common pMEIs, which accounts for only 17% of the
high-quality call set. To assess the consistency of our eQTL analysis with other studies,
we compared the eQTLs identified in LCLs with an eQTL study of LCLs from 1KGP
samples [26]. Our dataset contains 113 individual-derived LCLs, which is much smaller
than the 445 LCLs in the 1KGP study [43]. With FDR <5% as a cutoff, we identified
255 pMEl-associated eQTLs in GTEx LCLs. Despite that the differences in sequencing
protocols, sample composition, and data processing, 67 of these eQTLs were also iden-
tified in the study of 1IKGP eQTLs (Additional file 5: Table S4). This result suggests
that many of the pMEI-associated eQTLs are strong eQTLs that show consistent signal
in individuals from different populations.

The significance of pMEI-associated eQTLs and sQTLs is similar in related tissues
(Fig. 1b, Fig. 3b). Except for the testis, tissue pairs also show strong consistency in the
direction of the effect for the pMEI in eQTLs and sQTLs (Additional file 1: Fig. S3).
Our results agree with a previous study showing that the testis is unique in gene
expression compared to other tissues [44]. The overall high consistency of the direction
of effects for eQTLs and sQTLs among tissues suggests that when a pMEI is affecting
gene expression or splicing in multiple tissues, similar regulators are involved. How-
ever, because gene expression and alternative splicing patterns are also correlated
among related tissues (Fig. 1b, Fig. 3b), the similarity of eQTLs and sQTLs could also
be attributed to the correlated gene expression/splicing patterns among related tissues.

Although the QTL analyses can detect the association of pMEIs with gene expression
and splicing changes, they do not provide information on the molecular mechanisms
for the effect. By examining the enrichment of pMEIs, we found that pMEIs in regions
close to genes (intron, exon, 10 kb upstream or downstream) are more likely to correl-
ate with gene expression and alternative splicing (Fig. 2, Additional file 1: Fig. S2).
These pMEIs likely affect cis-elements (e.g., promoter, splicing sites) of the associated
genes. However, not all pMEIs identified in the eQTL and sQTL analyses are near
genes. Many of these pMEIs are far from the associated genes. These pMEIs may im-
pact gene regulation through several mechanisms, such as serving as distal enhancers
[45, 46] or altering chromatin looping structure [21, 37]. An interesting observation is
that the effects of pMEIs on expression and splicing were highly correlated for some
genes (Fig. 4). This may be because the regulation of gene expression was isoform-
specific; the pMEI altered the transcript level of specific isoforms and is then detected
as both an eQTL and an sQTL. pMEIls with eQTL/sQTL signals are also highly
enriched in enhancer regions (Fig. 2a, f). Because enhancers are key regulators for
tissue-specific gene expression [47], this enrichment suggests that pMEIs could play a
role in regulating tissue-specific expression and splicing.

In addition to the enrichment analysis, we also experimentally validated the predicted
impact of several pMEIs using ectopic reporter assays. Such reporter assays are benefi-
cial as several loci can be evaluated quickly to confirm computational predictions.
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However, while we have included as much of the endogenous locus as technically
feasible, the ectopic assay does not capture the full genomic context of the pMEL
Therefore, locus-dependent or tissue-specific effects may not be recapitulated in the
reporter system. Further, the cloned pMEI loci were limited to the subset of pMEIs we
could evaluate. In the end, our experiments did validate the predicted effect of most of
the tested pMEIs. To fully assess the functional impact of pMEIs, large-scale functional
validation, including validation at the endogenous locus, will be needed in the future.

Conclusions

Opverall, our study showed that pMEIs are associated with thousands of gene expression
and splicing variations in different tissues. Given the majority of pMEI-associated
eQTLs/sQTLs are tissue-specific and pMEIs are enriched in the enhancer regions,
pPMEIs could have a significant role in regulating tissue-specific gene expression/spli-
cing. Detailed mechanisms for the role of pMEIs in gene regulation in different tissues
will be an important direction for future studies.

Methods

pMEI identification and filtering

WGS data from the GTEx project v7 release were downloaded from dbGaP
(phs000424.v7.p2). Of the 650 individuals in the v7 release, 12 were excluded from the
analysis because of issues during the dbGaP retrieval or the read mapping. WGS data
from a reference sample HuRef (https://www.coriell.org/1/HuRef) was also included for
quality control purposes. HuRef DNA sample was purchased from Coriell (NS12911,
Camden, NJ, USA), and WGS was performed by Novogene (Sacramento, CA, USA) on
the Illumina HiSeq platform using a PCR-free library and the pair-end 150-bp sequen-
cing format.

The Mobile Element Locator Tool (MELT, version 2.1.5) [35] was used to identify
pMEIs using the WGS data from the 639 individuals (638 GTEx individuals and
HuRef). Briefly, WGS reads were aligned to the human reference genome GRCh38 with
a decoy sequence used in the 1KGP [48] using the Burrows-Wheeler Aligner (BWA,
ver. 0.7.15) [49]. Output files were sorted and indexed with SAMtools (ver. 1.7) [50].
To identify pMEIs that are not present in the reference genome (nrMEIs), MELT (ver.
2.1.5) was run in the “MEELT-SPLIT” mode under the default setting. The “MELT-SPLI
T” mode includes five steps: Preprocess, IndivAnalysis, GroupAnalysis, Genotype, and
MakeVCE. To identify pMEIs that are present in the reference genome but absent in
the sequenced individuals (rMEIs), MELT was run in the “MELT-Deletion” mode
which includes two steps: Genotype and Merge. The ME reference files for Alu, LINEL,
and SVA were downloaded within the MELT program. The final output is three files
for nrMEIs and three for rMEIs in the VCF format.

The call sets were filtered to reduce false positives and to focus on common variants.
For nrMElIs, loci with <25% no-call rate, MELT ASSESS score >3, VCF filter column
with “PASS” or “rSD,” and split reads > 2 were kept. For rMEIs, sites with < 25% no-call
rate were kept. For both nrMEIs and rMEIs, only loci with allele frequencies between
0.05 and 0.95 in the dataset were kept. Hardy-Weinberg equilibrium test was per-
formed for each locus using individuals with “European” in the race description. Loci
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with a p value <107'° were considered low-quality and were excluded from the ana-
lysis. The genomic coordinates of the loci were then lifted over from the human refer-
ence genome version GRCh38 to GRCh37/hgl9 using CrossMap (ver. 0.2.7) [51].
Because of the known low-quality calls on the Y chromosome, only the loci from the

autosomes and X chromosomes were used for the downstream analysis.

cis-eQTL mapping

Matrix eQTL (ver. 2.3) was used to identify the association between genotypes and gene
expression with a linear regression method [36]. Two genotype files were prepared: one
file with only pMEIs for the ME-only analysis and one file with pMEIs plus common
SNPs and indels for the joint analysis. The SNP and indel genotypes were obtained from
the GTEx project (phs000424.v7.p2, GTEx_Analysis_20160115_v7_WholeGenomeSeq_
635Ind_PASS_AB02_GQ20_HETX_MISS15_PLINKQC.PIR.vcf). SNPs and indels were
filtered to remove sites with > 25% no-call rate or with Hardy-Weinberg equilibrium test
p value < 107 in “European” individuals as described above.

Gene expression data were downloaded from the GTEx website (https://gtexportal.org/
home/datasets, GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz, and
GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_reads.gct.gz). Normalized expres-
sion data of genes in each tissue were generated following the official GTEx QTL pipeline
to reduce the effect of technical bias (https://github.com/broadinstitute/gtex-pipeline/
tree/master/qtl). Briefly, in each tissue, a gene was kept if it has a transcript per million
(TPM) 2 0.1 and a raw read count = 6 in > 20% samples. Read counts among samples were
normalized with the method described by [52] to obtain the trimmed mean of M (TMM)
values. Then, TMM values of each gene were inverse normal transformed across the sam-
ples in each tissue.

The covariates for each tissue were downloaded from the GTEx website (https://gtexpor
tal.org/home/datasets, GTEx_Analysis_v7_eQTL_covariates.tar.gz). The covariates include
sex, three genotyping principal components, sequencing platform, and probabilistic estima-
tion of expression residuals (PEER) factors based on the number of individuals (N) in each
tissue type (15, 30, and 35 PEERs for N < 150, 150 < N < 250, and N > 250, respectively) [30,
53]. Input files for Matrix eQTL were generated with Python scripts for each tissue, and
Matrix eQTL was run with a window of 1 million bp (Mb) on either side of each gene. The
p value cutoffs (- p) were set at 1 for the ME-only analysis and 0.05 for the joint analysis.
For the ME-only analysis, all genes were used as input and only eQTLs with FDR < 10% by
the Benjamini-Hochberg method were used for further analysis. For the joint analysis, in
each tissue, only genes reported in ME-only analysis with FDR < 10% were used as input.
From both eQTL analyses, a gene whose expression level showed an association with a
variant with FDR < 10% in a given tissue is defined as an eGene. Protein-coding genes and
non-coding genes were defined based on GENCODE gene models.

cis-sQTL mapping

TPM value for each transcript and transcript model for each gene were downloaded from
the GTEx website (https://gtexportal.org/home/datasets, GTEx_Analysis_2016-01-15_v7_
RSEMv1.2.22_transcript_tpm.txt.gz, and gencode.v19.transcripts.patched_contigs.gtf).
ASEs were determined using SUPPA2 [54], with “—pool-genes” option enabled to group
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genes together if they are on the same genomic strand and share at least one exon. Seven
types of ASEs were calculated: skipping exon (SE), alternative 5" splice sites (A5), alterna-
tive 3" splice sites (A3), mutually exclusive exons (MX), retained intron (RI), alternative
first exons (AF), and alternative last exons (AL). Then, the percent spliced in (PSI) values
were calculated by SUPPA2 based on the TPM values of transcripts in each sample.
Similar to the eQTL analysis, sex, three genotyping principal components, sequencing
platform, and PEER factors were included as covariates. PEER factors of different tissues
were calculated by r-peer with PSI values [53]. The number of PEER factors was set based
on the number of individuals in each tissue type, the same as in the eQTL analysis. ASEs
with empty values were excluded from the r-peer analysis. The cutoff for significant
sQTLs was set at 10% FDR.

Fine-mapping of causal variants for each eGene and ASE

CAVIAR (ver. 2.1) [55] was used to identify causal variants in the associated region for
each eGene. CAVIAR takes a linkage disequilibrium file and a z-score file as inputs and
reports a list of possible causal variants and the posterior probabilities of input variants
being causal. pMEIs in the ME-only analysis and the 100 most significant SNPs/indels
in the joint analysis were chosen for each FDR-controlled eGene in the ME-only ana-
lysis. The signed r values for the linkage disequilibrium file were calculated with PLINK
(version 1.90), and the ¢-statistic values in Matrix eQTL output were used as the z-
score. For each eGene, CAVIAR was run under the default setting (rho-prob 0.95,
gamma 0.01, causal 1).

To identify causal cis-sQTL variants, similar analyses were performed as the eQTL
analysis using CAVIAR (ver. 2.1). pMEIs in the ME-only analysis and the 100 most sig-
nificant SNPs/indels in the joint analysis were chosen for each FDR-controlled ASE in
the ME-only analysis. Here, ASEs were used in place of eGenes, and PSI values were
used in place of gene expression levels.

Enrichment analysis of pMEls

Fisher’s exact test was performed to check the enrichment of pMEIs in different re-
gions of the affected genes. To test for enrichment in the eQTL analysis, common
PMEIs were grouped into three categories based on their effect on gene expression:
pMEIs not correlated with any gene (NS), correlated with at least one gene but not
causal (related), and being causal for at least one gene (causal). For pMEIs grouped as
NS and related, the affected gene of a pMEI is defined as the gene with the smallest
FDR value by Matrix eQTL. For causal pMEIs, the affected gene is defined as the gene
with a pMEI as the causal variant and with the smallest eQTL FDR value. pMEIs that
are not within the 1-Mb window of any gene were excluded from the analysis. Func-
tional genomic regions include enhancers from the Dragon Enhancers Database
(DENdb, https://www.cbrc.kaust.edu.sa/dendb/src/enhancers.csv.zip) [56], 10 kb up-
stream of the transcription starting site (TSS), 10 kb downstream of the affected gene,
and exons and introns of the affected gene. For each category, the number of pMEIs
in different genomic functional groups was counted, and Fisher’s exact test was per-
formed to determine the enrichment of pMEIs in those genomic regions in the related
and causal categories relative to the NS category.
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The enrichment analysis for sQTLs was performed similarly. For pMEIs grouped as
NS and related, the affected ASE of a pMEI is defined as the ASE with the smallest
FDR value; for pMEIs grouped as causal, the affected ASE is the ASE with a pMEI as
the causal variant and with the smallest FDR value. The affected gene is the gene
containing the affected ASE. If ASE includes transcripts from more than one gene, the
longest gene among the overlapping genes was used to define the genomic functional
groups. pMEIs that are not within the 1-Mb window of any ASE were excluded from
the analysis.

Dual-luciferase reporter assay for eQTLs

The effects of six representative pMEIs on gene expression were tested using a standard
luciferase enhancer assay. For loci where the pMEI was predicted as causal for multiple
eGenes, the gene closest to the pMEI location was selected. About 300 bp of each
genomic locus encompassing the pMEI insertion site was cloned into a modified
pGL4.26 vector (Payer LM, et al.: Alu insertion variants alter gene transcript 722 levels,
submitted) using Gateway cloning (Invitrogen). The locus was amplified from 1KGP in-
dividuals using the primers listed in Additional file 6: Table S5. For each locus, two in-
dependent clones were generated with the pMEI present and two clones without the
pMEL The orientation of the locus and the pMEI relative to the eGene was maintained
relative to the luciferase reporter gene. All constructs were verified by Sanger
sequencing. The firefly luciferase vectors were each co-transfected with a Renilla
plasmid (pRL, Promega) into 293T cells using Fugene HD (Promega). 293T cells were
selected because they are easy to transfect and are frequently used in ectopic reporter
assays. After 48 h, luciferase levels were measured using the Dual-Glo Luciferase Assay
System (Promega) and the GloMax-Multi Detection System (Promega). Firefly and
Renilla levels were normalized to the background in wells with no transfected plasmids,
and a ratio of firefly to Renilla levels in each well accounted for any differences in
transfection efficiency. Results were graphed as relative luciferase units for each con-
struct, and an unpaired 2-tailed ¢ test was performed for each locus.

Ectopic minigene reporter assay for sQTLs

The effects of four representative pMEIs on alternative splicing were experimentally
evaluated with an ectopic minigene reporter assay as previously described [14]. Briefly,
for each locus, a genomic fragment surrounding the pMEI and nearby exons was
cloned into an intron between rat insulin exons in the pSpliceExpress vector (Addgene)
[57] using Gateway cloning (Invitrogen). The region was amplified using primers listed
in Additional file 6: Table S5 from the DNA of 1KGP individuals. Two constructs were
generated for each evaluated locus: one with the pMEI present and one without the
pMEL Two independent clones were isolated for each construct and verified by Sanger
sequencing. The plasmids were transfected (Fugene HD, Promega) into 293T cells, and
after 24 h, RNA was extracted (Quick RNA MicroPrep Kit, Zymo Research) and reverse
transcribed to cDNA (iScript cDNA Synthesis Kit, BioRad). RT-PCR was performed
with primers that bind within the rat insulin exons (Insl: 5'-CAGCACCTTTGTGGTT
CTCA-3’ and Ins2: 5'-AGAGCAGATGCTGGTGCAG-3"). For the IFT122 locus, to
enable a sensitive quantification of the rare alternative exon, we increased the
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specificity by repeating the RT-PCR with a primer in the constitutive exon from this
locus (5'-AAAGTAAAGATCGAGCGGCC-3’ paired with Ins2). For each locus, the
relative quantification of alternatively spliced RNA isoforms was performed on eth-
idium bromide-stained agarose gels with band intensities normalized for DNA frag-
ment length. Two transfections were performed for each independent clone of each
construct, resulting in four data points for each type of construct (i.e., with or without
the pMEI) for each locus. Quantification is graphed as percent of transcripts that in-
clude the alternative exon, and unpaired ¢ tests compared the percent inclusion when

the pMEI was present versus absent at each locus.
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