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Abstract

Population-level comparisons of prokaryotic genomes must take into account the
substantial differences in gene content resulting from horizontal gene transfer, gene
duplication and gene loss. However, the automated annotation of prokaryotic
genomes is imperfect, and errors due to fragmented assemblies, contamination, diverse
gene families and mis-assemblies accumulate over the population, leading to profound
consequences when analysing the set of all genes found in a species. Here, we
introduce Panaroo, a graph-based pangenome clustering tool that is able to account
for many of the sources of error introduced during the annotation of prokaryotic
genome assemblies. Panaroo is available at https://github.com/gtonkinhill/panaroo.
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Background
Prokaryotic genome evolution is driven both by the transfer of genetic material verti-
cally from parent to offspring and by horizontal gene transfer between organisms [1].
Large population sequencing studies of bacteria have confirmed that this results in large-
scale differences in intraspecies genome content [2]. This has led to the description of the
pangenome, the set of all genes that have been found in a species as a whole [3].Within the
pangenome, genes are often then described as being part of the ‘core’ genome, the set of
genes present in all members of a species, or the non-core (‘accessory’) genome. Through-
out this paper, we refer to the problem of correctly identifying all the gene families that
are present in a collection of annotated assemblies as both inferring and determining the
pangenome.
A common problem when inferring the pangenome of bacterial genomic datasets is

the classification of homologous genes, usually defined by a percentage shared sequence
identity, into either orthologous or paralogous clusters. Orthologs trace their most recent
common ancestor to a speciation event whereas paralogs trace their most recent common
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ancestor to a gene duplication event. When analysing bacterial pangenomes, we are often
interested in identifying paralogs as genes with near identical sequence may perform a
different function or be under differential regulation at different locations in the genome.
Many programmes for pangenome analysis therefore use location information to further
identify paralogs, as well as xenologs which occur when gene duplications are acquired
through horizontal gene transfer.
Previous approaches which aid in the inference of the pangenome of a collection of

bacterial isolates include Roary, OrthoMCL, PanOCT, PIRATE, PanX, PGAP, COG-
soft, MultiParanoid, PPanGGoLiN and MetaPGN [4–12]. The majority of methods
for determining the pangenome tend to make use of one of two similar approaches
(see Supplementary Figure 1). Most start by inferring similarity between predefined
gene sequences using a homology search tool such as CD-HIT, BLAST or DIAMOND
[13–15]. Using this output, a pairwise distance matrix is created and genes are then
clustered into orthologous groups either using the popular Markov Clustering algorithm
(MCL) or by looking at triangles of pairwise best hits (BeTs) [16, 17]. A subset of these
methods then use gene adjaceny information to build a graphical representation of the
pangenome. This graph is then used to further split orthologous clusters into paralogs.
Roary, PIRATE, PPanGGoLiN and MetaPGN also provide this graphical representation
as an output file. A final step of some pipelines is to classify the resulting clusters into core
and accessory categories based upon their prevalence within the dataset. This is usually
done using predefined thresholds; however, more recently model-based extensions to this
approach have been suggested [11].
As bacterial genomic population studies have grown larger, there has not been a corre-

sponding increase in genome annotation accuracy or genome assembly contiguity. Thus,
as these databases have grown, so has the number of erroneous gene annotations. This
can have profound implications for the resulting estimates of the number of gene families
present, whereby a higher number genomes leads to a higher number of errors [18, 19].
Such errors can cause difficulties in any downstreammodeling of the pangenome, such as
the modeling of negative frequency-dependent selection (NFDS) acting through the loci
in the accessory genome [20, 21]. Errors can be introduced into pangenome analyses by
fragmented assemblies, mis-annotation, contamination and mis-assembly. Denton et al.
have shown that fragmented assemblies were the major cause of inflated gene numbers
in draft eukaryotic genomes [19]. Whilst errors often lead to inflations in the estimates
of the size of the accessory genome, they can also lead to missing genes when the anno-
tation software fails to identify a gene or where the gene is fragmented by a break in the
assembly, which reduces the estimated size of the core genome.Many current pangenome
inference algorithms have not been subjected to rigourous verification using simulated
data. Consequently, their ability to deal with the errors occurring in the initial genome
annotations has received limited attention.
Here, we present an alternative approach to inferring the pangenome, Panaroo, which

makes use of a graph-based algorithm to share information between genomes, allowing
us to correct for many of the sources of annotation error. Panaroo leverages the addi-
tional information provided by each genome in a dataset to improve annotation calls,
and as a result, the clustering of orthologs and paralogs within the pangenome. We
also provide a number of pre- and post-analysis scripts which further enrich the anal-
ysis package we provide, allowing integrated data quality control and gene association
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analysis, and to allow for the comparison of pangenomes between species. Whilst these
scripts can allow for comparisons of the resulting pangenomes between species, Panaroo
is not recommended for metagenomic datasets. As Panaroo constructs a full graph rep-
resentation of the pangenome, we are able to investigate structural variations within the
resulting graph, allowing for associations between structural variations and phenotypes
to be called. We demonstrate the success of the algorithm through extensive simulation
using the InfinitelyMany Genesmodel [22] and by analysing a diverse array of large bacte-
rial genomic datasets including the major clades of the Global Pneumococcal Sequencing
(GPS) project [23]. We compare the output of Panaroo with the previous gold standard
methods for analysing the pangenome and show that Panaroo produces superior ortholog
clusters, often leading to both significant reductions in the size of the estimated accessory
genome and increases in the size of the core genome.

Results
Overview

Panaroo builds a full graphical representation of the pangenome, where nodes are clusters
of orthologous genes (COGs) and two nodes are connected by an edge if they are adjacent
on a contig in any sample from the population. Using this graphical representation, Pana-
roo corrects for errors introduced during annotation by collapsing diverse gene families,
filtering contamination, merging fragmented gene segments and refinding missing genes
(Fig. 1). Panaroo generates the initial gene clusters using CD-HIT to cluster the collec-
tion of all gene sequences in all samples [13]. Paralogs are then split by only allowing each
genome to be present once in each cluster. Fragmented or mistranslated genes are iden-
tified and merged based on neighbourhood information of each node [24]. Diverse gene
families are identified using a relaxed alignment threshold along with neighbourhood
information obtained from the graph. Potentially contaminating genes with low contex-
tual support in the graph are then optionally removed. This retains rare genes that have
reliable contextual support. Finally, genes potentially missing from one or more samples
are identified in the graph and the contig sequence near neighbouring nodes is searched
to check for the presence of the gene.
Panaroo uses a number of predefined thresholds to construct the pangenome graph.

These can all be adjusted by the user, but we provide a number of modes for common
use cases. In the ‘strict’ mode, Panaroo takes a more aggressive approach to contamina-
tion and erroneous annotation removal. This is most useful when investigating genomes
where rare plasmids are not expected or when phylogenetic parameters such as gene gain
and loss rates are of interest. In these cases, erroneous gene clusters can quickly domi-
nate the estimated parameters. In its ‘sensitive’ mode, Panaroo does not remove any gene
clusters. This is useful if a researcher is interested in rare plasmids which may be hard to
distinguish from contamination.When running Panaroo in sensitivemode, it is important
to be aware of the possibility of a higher number of erroneous clusters. In the following
analyses, we run Panaroo in both its ‘strict’ and ‘sensitive’ modes with Panaroo generally
outperforming all other tools even without contamination removal in the ‘sensitive’ mode.
Panaroo takes annotated assemblies in GFF3 format as input and generates a variety of

output formats including a gene presence absence matrix (as in Roary) as well as a fully
annotated graph in GML format for viewing in Cytoscape or other graph visualisation
software [25]. The Panaroo package includes a number of pre- and post-processing scripts
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Fig. 1 a An overview conceptualising the problem with current gene annotation methods and the stages
Panaroo uses to correct for annotation errors. b Expanded specific stages in the process. (i) Contamination
appears in the graph as poorly supported components. In the default mode, Panaroo removes contamination
by recursively removing poorly supported nodes of degree 1. (ii) Genes are often mis-annotated near contig
breaks [19]. Panaroo corrects such mis-annotations by recursively removing poorly supported nodes of
degree 1. (iii) Panaroo corrects cases where the same DNA sequence has been translated in multiple reading
frames into a single gene by clustering concomitant genes at the DNA level. (iv) Panaroo uses context and a
lower clustering threshold to combine diverse gene families into a single gene. (v) Annotation algorithms
may predict a gene in some but not all samples, even when the samples share exactly the same DNA
sequence. Panaroo finds missing genes by searching for the gene sequence in the surrounding DNA

that can be used for initial quality control as well as for determining pangenome size, gene
gain and loss rates and to identify coincident genes. Panaroo interfaces easily with many
other pangenome analysis packages including the latest version of pyseer allowing for
associations between phenotypes and gene presence/absence as well as structural varia-
tion in the graph to be investigated [26]. The package is written in python and is available
under an open source MIT licence from https://github.com/gtonkinhill/panaroo/.

Corrected analysis of aMycobacterium tuberculosis outbreak in London

To assess the effectiveness of Panaroo and the impact of annotation errors on other
pangenome inference methods, we analysed a large outbreak of highly clonal, isoniazid-
resistant Mycobacterium tuberculosis (Mtb) in London [27]. Mtb exhibits a very low
mutation rate and is understood to have a ‘closed’ pangenome. Due to the short timescale

https://github.com/gtonkinhill/panaroo/
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of the outbreak, the maximum pairwise SNP distance within this dataset was 9. As we
would expect to find no pangenome variation, this dataset provides a useful control to
compare the different pangenome tools.
We ran each of the pangenome inference methods on all 413 Mtb genome assemblies

after first annotating them using Prokka [28]. Panaroo identified both the highest number
of core genes and the smallest accessory genome (Fig. 2), consistent with the established
biology of Mtb and a highly clonal dataset [29, 30]. In contrast, PanX, PIRATE, PPanG-
GoLiN, COGsoft and Roary all reported inflated accessory genomes ranging in size from
2584 to 3670 genes representing a nearly tenfold increase to that reported by Panaroo.
In its default mode PPanGGoLiN reported over 10,000 gene clusters giving it the highest
error rate. However, this reduced to 7131 after enabling the –defrag parameter. We thus
ran PPanGGoLiN using this parameter in all analyses. The small number of accessory
genes that Panaroo did predict mostly consisted of core genes where the algorithm was
unable to refind the genes in a subset of the assemblies. The majority of the difference
between the methods was driven by genes being fragmented during assembly (59%; see
Supplementary Methods). A smaller subset of genes were only called in a small minor-
ity of the isolates despite the underlying sequence being nearly identical (10%). Whilst
some of these differences could be due to frame shifts in the PE/PPE genes, 27.9% of the
isolates were indistinguishable with only one isolate being more than 5 SNPs from this
major clone. We found that the majority of the difference was due to the annotation algo-
rithm optimising for each isolate individually, leading to inconsistent gene calls. However,
Panaroo’s consensus approach helps to resolve these discrepancies. The magnitude of the
difference observed in this dataset suggests that failing to account for annotation errors
can have profound impacts on the resulting estimates of the pangenome.
An alternative to correcting gene annotations is to perform strict quality control checks

on assemblies prior to running pangenome inference tools. For very highly contaminated

Fig. 2 Pangenome counts for 413Mycobacterium tuberculosis genomes from an outbreak in London [27].
The maximum pairwise SNP distance between these isolates was 9, suggesting extremely limited variation.
Consequently, we would expect a very limited accessory genome and a core genome of approximately 4000
genes. All tools with the exception of Panaroo found in excess of 2500 accessory genes, which can be
attributed to annotation errors

https://github.com/gtonkinhill/panaroo_manuscript
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assemblies or those of very low quality, this can be the best option and Panaroo includes a
quality control pre-processing script for this purpose. However, in many cases, low-level
contamination and fragmented assemblies are common, and thus, filtering out assemblies
with minor errors can lead to large data losses. In large collections, even very low anno-
tation error rates will eventually compound pangenome inference results. To investigate
such a strategy on the Mtb dataset, we ran CheckM, which is a common assembly quality
control pipeline [31]. CheckM produces completeness and contamination scores by using
a reference gene dataset to compare with assemblies. The resulting scores on the Mtb
dataset are given in Supplementary Figure 2. As we know that this dataset should contain
highly similar assemblies, it is possible to identify a number of problematic genomes with
slightly lower completeness scores. If we were to remove these genomes, it would result
in a loss of 12% of the dataset which could potentially have a large impact on downstream
analysis. Instead, using Panaroo, we are able to retain these assemblies whilst controlling
the error rate.

Superior performance on simulated populations

To further assess the ability of the different methods to identify the correct gene pres-
ence/absence matrix, we simulated pangenomes using the Escherichia coli reference
genome ASM584v2 (accession number NC000913) and the Infinitely Many Genes model
[22, 32]. To more accurately simulate the kind of errors that typical annotation pipelines
produce, we simulated short read assemblies from these pangenomes using Mason, ART
and SPADES [33–35]. A more detailed description is given in the ‘Methods’ section. We
conducted five simple and two more complicated simulations, each with three replicates
(Supplementary Table 1). In the simple simulations, the gene gain/loss rate was varied
with lower rates corresponding to a larger core genome and smaller accessory genome,
whereas higher rates corresponded to a larger accessory genome. The mutation rate of
the accessory genome was also varied. In addition, we simulated two more complicated
datasets, one of which had an increased level of fragmentation of the assembly by frag-
menting the input genome prior to the NGS simulation. This resulted in a mean N50
of 23,112. The second more complex simulation included contamination by randomly
adding in short fragments of the Staphylococcus epidermidis reference genome, which
is a common contaminant. The more complicated simulations represent datasets with
unusually high error rates but help to clarify the large impact that these sources of error
can have on pangenome inference as was previously demonstrated in the analysis of the
highly clonal Mtb dataset.
Figure 3a indicates the number of gene clusters which contained errors for each of the

scenarios. Such errors included genes that were missing, incorrectly annotated or had
incorrectly clustered together. Most methods performed fairly well when applied to the
output from the simple simulation. All methods include some errors due to genes never
being annotated except in the original reference. As eachmethod relied on the same input
files, this was consistent between methods.
For the simple simulations, PanX and Panaroo produced the fewest errors, followed by

PIRATE, Roary, PPanGGoLin and COGsoft. Roary was the most sensitive method to the
substitution rate, with higher rates leading to more errors. This can be attributed to its
reliance on a strict BLAST e-value threshold. COGsoft gave variable results, performing
poorly on pangenomes with larger accessories suggesting it may over collapse genes. This
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Fig. 3 Error counts for the different algorithms after comparing with simulated data on different scenarios.
Accessory genome inflation refers to the number of erroneous clusters that do not correspond to any
simulated gene cluster. Missing genes refer to false-negative gene calls where the annotation is not present
in the final pangenome. Even in simulations of pangenome variation from a single E. coli reference with only
relatively simple sources of error, a Panaroo outperforms other methods across a variety of gene gain/loss
rates and mutation rates. In more realistic simulations of sequencing data, b the only method with
reasonable control of the error rate is Panaroo

interpretation was further supported in our analysis of a diverse Klebsiella pneumoniae
dataset (see below).
Whilst mostmethods were able to perform adequately on relatively error-free simulated

data, the introduction of more realistic significant sources of annotation error had a large
impact. Figure 3b indicates the resulting error counts after simulating both contamination
and highly fragmented assemblies. Here, the importance of Panaroo’s multiple annota-
tion error correction approaches becomes apparent. As expected, when small amounts of
contaminating S. epidermidis DNA were added to the simulated NGS data, all methods
except Panaroo and COGsoft incorrectly called a larger accessory genome. This is due
to their inability to account for and remove contaminating contigs. In contrast, Panaroo
achieved error rates similar to those found for the clean assemblies. As expected Panaroo’s
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sensitive mode did not correct for the additional contamination as potential contamina-
tion is not removed in this mode. COGsoft had a similar number of total errors to the
other programmes but rather than calling a larger accessory genome tended to incorrectly
merge the contamination with other genes.
The highly fragmented assemblies led to the largest error rates in each pangenome

analysis tool. Fragmentation can lead to gene annotation software such as Prokka miscall-
ing genes near the ends of contigs. It can also impact on the consistency of the training
step in some annotation algorithms. This resulted in a large increase in the estimated
accessory genome size for all methods except Panaroo. Similarly, miscalling can lead to
genes being left unannotated resulting in smaller estimates of the core genome. In both
cases, Panaroo’s error correction and refinding steps were able to accurately recover the
true pangenome, whilst PanX, COGsoft, PIRATE, PPanGGoLiN and Roary all produced
nearly an order of magnitude higher error rates. Whilst Panaroo’s sensitive mode pro-
duced far cleaner results than the other tools, the fact that it does not delete clusters
prevents it from removing some spurious annotations. These results mirror that observed
in the analysis of the highly clonalM. tuberculosis outbreak, helping to confirm the impact
that such errors can have on pangenome estimates.

Greater internal consistency in a diverse Klebsiella pneumoniae collection

We then went on to compare each method on a more complex real dataset—328 globally
sourced Klebsiella pneumoniae genomes from both human and animal hosts [2]. K. pneu-
moniae is a highly diverse gram-negative bacterium that can colonise both plants and
animals and has previously been found to have a large pangenome [2]. The high recom-
bination rate and often multiple plasmids per bacterium complicates analysis of the K.
pneumoniae pangenome. Nine of the 328 isolates were identified as outliers by the Pana-
roo quality control script due to the number of contigs or number of genes they contained
(see Supplementary Figures 4-6). These isolates were removed before running each algo-
rithm. Figure 4a indicates the resulting total, core and accessory gene counts inferred by
each method, using the 99% presence threshold for core genes as used in Roary [4].
As species such as K. pneumoniae are known to have many rare plasmids which are

difficult to distinguish from contamination, Panaroo’s sensitive mode is of particular rel-
evance here. Panaroo identified the highest number of core genes in both its default and
sensitive modes, 3372 and 3376 respectively. Hence, for these genomes, there was only
a minor difference in the estimated core between the two pipeline options. Roary iden-
tified the smallest core genome of 1800 genes. Given the result of the simulations, this
is likely due to gene clusters being incorrectly split into multiple smaller clusters, as the
default Roary pairwise identity threshold of 95% is too stringent for such a diverse dataset.
PIRATE relaxes the strict threshold required in Roary, and it identified a similar num-
ber of core genes to Panaroo (3318) but a smaller number of accessory genes than both
the Panaroo (sensitive) and PanX methods which agreed more closely with the original
estimates in Holt et al. [2].
Whilst there is no gold standard with which to compare these results, we can look at the

gene annotations within clusters to identify cases where a gene cluster contains multiple
different annotations, which would suggest separate gene clusters have been incorrectly
merged. Figure 4b indicates the number of conflicting annotations in the clusters of each
method. As gene fragments and genes annotated as ‘hypothetical’ are often the result
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Fig. 4 a The estimated pangenome, core and accessory sizes from the different algorithms in the global K.
pneumoniae dataset. b The number of conflicting gene annotations in the inferred clusters of the different
algorithms

of errors and thus can have erroneous annotations, we did not consider conflicts that
involved these. Panaroo in both its default and sensitive modes had the lowest number
of conflicting annotations. PPanGGoLiN had the second lowest number, whilst COG-
soft recorded the highest number of conflicts which is consistent with the tendency of
its method to overcluster genes. The lower number of conflicting annotations found by
PPanGGoLiN is consistent with it favouring splitting gene clusters over merging them
as we found earlier. Overall, Panaroo identified a larger core genome and fewer conflict-
ing annotations than any other method showing that its error correction approach is also
suitable for diverse datasets of highly recombinogenic bacteria.

Pyseer association analysis with Panaroo finds antibiotic resistance mechanisms

Panaroo provides a number of outputs as well as post-processing scripts for analysing
the cleaned pangenome graph. Panaroo outputs both a gene presence/absence matrix as
well as structural variation presence/absence matrix that can be used as input to pyseer
or Scoary for association analyses [26, 36]. Panaroo generates structural variation calls by
identifying distinct consecutive triplets of gene families in the graph that describes differ-
ent paths through a node (see Fig. 5a). As larger insertion and deletion events will only
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Fig. 5 a A diagram indicating how gene triplets are called in the graph. A single genome can only pass
through a node once; thus, variations in the arrangement of genes in different genomes can be called using
triplets. These triplets are summarised as a binary presence/absence matrix. b A family of related plasmids
present in the N. gonorrhoeae pangenome gene network. The path highlighted in red contained 4 structural
variant gene triplets significantly negatively associated with tetracycline resistance, or associated with
tetracycline susceptibility by a structural variant pan-GWAS (all adjusted p value < 0.05 ). The gene
highlighted in yellow, group_1999, was found to be a tetM resistance gene. c A subsection of the N.
gonorrhoeae pangenome gene network of the region surrounding gene group_1138. The presence of gene
triplets (group_771-group_1002-group_1138) and (group_1131-group_795-group_1138) is positively
associated with tetracycline resistance whilst the triplets (group_1002-group_795-group_1131) and
(group_771-group_1002-group_795) are negatively associated with tetracycline resistance (all adjusted p
value < 0.05)

be represented once in the structural presence/absence matrix rather than repeatedly for
each gene, this approach increases the power of such association analyses. The approach
also identifies associations with large structural rearrangements although these are often
more difficult to interpret. Once a significant association between a gene triplet and a
phenotype of interest have been identified, the context of the structural rearrangement
can be investigated manually by interrogating the pangenome graph in Cytoscape [25].
Panaroo is only able to call large structural rearrangements that result in genes being relo-
cated within the genome. Finer scale structural variants are better called using assembly
graph-based approaches such as Cortex [37].
To validate the pan-genome-wide association study (pan-GWAS) and pan-genome

structural variant association study (sv-pan-GWAS) pipelines, we ran Panaroo on the
Euro-GASP collection of 1054 Neisseria gonorrhoeae isolates collected from 20 countries
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across Europe from September to November 2013 [38]. We combined the Panaroo out-
put with antimicrobial MIC testing results for seven different antibiotics performed in the
original study and carried out association studies on the gene presence/absence patterns
and structural variants using pyseer [26].
The gene presence/absence pan-GWAS approach returned 67 genes (Supplementary

Table 2) associated with various antibiotics (adjusted p value ≤ 0.05 ). This included
many probable candidates for genes causing resistance, including an uncharacterised
ABC transporter (group_464), for penicillin resistance. ABC transporters are a common
resistance mechanism against ribosome-targeting antimicrobials, as they can function as
efflux pumps [39].
The structural variant pan-GWAS returned 138 triplets (Supplementary Table 3) asso-

ciated with antibiotic resistance (adjusted p value ≤ 0.05). These included many triplets
containing phage-associated, transposase, or pilin genes, all of which are known to be
mobile within the genome.
Among these, the sv-pan-GWAS identified a number of insertions and deletions of

whole genes which were associated with antibiotic resistance. One of these, group_1138,
is a transmembrane protein which, when inserted, is associated with ceftriaxone resis-
tance. All four possible gene triplets bypassing or going through the insertion were
significantly associated with either susceptibility or resistance depending on if they
included group_1138. The mechanisms of ceftriaxone resistance in N. gonorrhoeae are
not yet fully understood, but it has been suggested that efflux and permeability must
play a role [40]. Group_1138, as it is a transmembrane protein, could have either of these
functions.
The sv-pan-GWAS approach allows for closely related genetic architectures to be dis-

entangled, including highly related plasmids and phages. For example, analysis of the
pangenome graph showed that a common N. gonorrhoeae plasmid present 430 times in
this dataset is actually a family of several closely related plasmids. These highly simi-
lar plasmids share the majority of their genes, but there are several differences in gene
content, which appear as bubbles in the pangenome graph (Fig. 5b). One of the plas-
mid versions (highlighted in red in Fig. 5b) is negatively associated with tetracycline
resistance, with four gene triplets significantly negatively associated with this pheno-
type in the sv-pan-GWAS. The other plasmid variants each contain group_1999, a tetM
tetracycline resistance gene, providing a mechanism to explain the differential resistance
profiles. Together, these analyses demonstrate that multiple members of the same plasmid
family with different resistance profiles are circulating in the European N. gonorrhoeae
population, and illustrate the value of an the sv-pan-GWAS approach.

Improvedmethods for analysing pangenome evolutionary dynamics

The higher accuracy obtained by Panaroo allows for the comparison of gene gain and loss
rates between lineages and species as well as the more accurate inference of pangenome
size. Whilst it is a common practice to plot gene accumulation curves in the analysis
of pangenomes, these are not robust to errors and fail to account for sampling biases
and population structure. Thus, accumulation curves should not be used to compare
pangenome characteristics of different lineages or species. Recently, a number of phyloge-
netically informed methods for investigating pangenome dynamics have been published,
including the Infinitely Many Genes (IMG) model and the Finitely Many Genes (FMG)
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model [8, 22, 41]. Both of these approaches account for the diversity of the sample and
have been implemented as post-processing scripts in Panaroo.
To demonstrate the utility of using the corrected pangenome graph to infer gene

gain/loss rates and pangenome size, we used the FMG model to investigate 51 of
the major Global Pneumococcal Sequence Clusters (GPSCs) for which reliable dated
phylogenies could be constructed [42]. The major clades of the pneumococcus have dis-
tinct accessory gene profiles [43]. We ran Panaroo on each GPSC separately and used
the resulting gene presence/absence matrix with the corresponding dated phylogeny
to infer gene gain and loss rates for each cluster. We compared the inferred parame-
ters with other variables of interest calculated by Gladstone et al. [23], including the
inferred recombination rate (r/m), odds ratio of invasive disease and the number of
distinct serotypes for each cluster. The parameters along with these variables are plot-
ted in Supplementary Figure 3. We found that the estimated effective pangenome size
correlated positively with the recombination rate of a cluster (Spearman correlation
coefficient 0.53, p < 0.001) and the number of serotypes present in the cluster (Spear-
man coefficient 0.51, p = 0.001). This is consistent with biological understanding of the
genome diversification and gives confidence to our results, as a higher recombination
rate would allow for a clade to more easily gain and lose genes, including serotype-
defining gene clusters, resulting in a larger pangenome. Interestingly, GPSCs that have
lower gene gain rates were more likely to have a significant odds ratio for invasive dis-
ease (p = 0.04)(see Fig. 6). The association with gene loss rate was weaker, although the
effect was in the same direction (p = 0.08). Genome reduction has previously been asso-
ciated with increasingly obligate interactions with the host in multiple unrelated bacterial
pathogens [44].

Fig. 6 The inferred gene gain and loss rates of each of the 51 major clades of the Global Pneumococcal
Sequencing project plotted above the respective log odds ratio of invasive disease in that clade. Clades
which had significant odds ratios in Gladstone et al. [23] are represented in dark yellow
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Fig. 7 The cpu time and memory required for each of the algorithms for 10, 100 and 1000 N. gonorrhoeae
isolates. Each tool was run with 5 cpus

Computational performance

Panaroo uses a similar level of computational resources to competing methods. Figure 7
indicates the memory and cpu time required for the analysis of 10, 100 and 1000N. gonor-
rhoeae isolates subsampled from the Euro-GASP collection. PanX and COGsoft used the
most resources with COGsoft not completing the largest dataset in under a week. Roary,
PIRATE and Panaroo all performed similarly.

Discussion
Annotation errors, fragmented assemblies and contamination represent a major chal-
lenge for pangenome analysis. We have designed Panaroo to tackle these challenges
using a sophisticated framework for error correction that leverages information across
strains through a population graph-based pangenome representation. Using both simula-
tions and well-characterised real-world datasets, we demonstrated that many commonly
used methods greatly inflated the size of the accessory genome whilst reducing the esti-
mated size of the core genome. In contrast, Panaroo exhibited far lower error rates and
reconstructed highly accurate core and accessory genomes for simulated datasets that
included contamination and genome fragmentation. Analysis of both a highly conserved
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M. tuberculosis dataset and a highly diverseK. pneumoniae dataset indicated that Panaroo
provides superior solutions in challenging real-world population genomics applications.
Panaroo also includes a number of pre- and post-processing scripts for the analysis

of bacterial pangenomes that assist in quality control of the input data and facilitate
downstream processing of the pangenome. We used the Panaroo pre-processing QC
scripts to identify nine K. pneumoniae samples that were outliers based on the number
of contigs or genes and excluded these samples from our analysis. We recommend that
such pre-processing QC be carried out on all datasets to identify potentially erroneous
samples.
We used the output from Panaroo as input to pyseer to run pan-GWAS and sv-pan-

GWAS analyses on N. gonorrhoeae. Through this approach, we identified a deletion in
the genome of N. gonorrhoeae in a large European collection that confers resistance to
tetracycline. We demonstrated the utility of Panaroo to disentangle highly similar genetic
structures through identification of a plasmid family in N. gonorrhoeae (Fig. 5c). By com-
bining this high-resolution picture with structural variant pan-GWAS, we identified that
some members of this plasmid family carry tetracycline resistance and were able to
accurately determine the tetM gene as the cause of resistance.
As part of the Panaroo package, we include implementations of recently proposed

pangenome evolution models, which are more appropriate than the more frequently
used gene accumulation curves. We demonstrated the effectiveness of such methods
through the analysis of the 51 major GPSCs where we observed an association between
recombination rate and pangenome size (Supplementary Figure 2). We also identified an
association between pneumococcal clade invasiveness and gene gain rate.
Panaroo is written in python (versions 3.6+) and is available under the open source

MIT licence from https://github.com/gtonkinhill/panaroo. The code used to produce
the analyses described above along with summary data is available from https://github.
com/gtonkinhill/panaroo_manuscript. The raw GFF3, FASTA and all intermediate post-
processing files are available from https://doi.org/10.5281/zenodo.3599800. Taking gene
annotation errors into account is vital to recover an accurate pangenome, something pre-
vious methods have struggled to do in a systematic manner. Panaroo uses gene adjacency
in a population-graph to provide a fast method for pangenome analysis, which is robust to
a wide range of error sources. In the future, we plan to further improve the computational
performance of Panaroo to allow it to scale to datasets involving hundreds of thousands
or millions of genomes. We will also extend the post-processing tools available to analyse
the resulting pangenome graph.

Methods
Panaroo algorithm

The Panaroo algorithm builds a graphical representation of the pangenome where nodes
are genes and edges connect nodes if two genes appear adjacent to one another on at
least one contig. The algorithm then uses this initial graph structure to perform a number
of cleaning steps which correct for many of the problems encountered in genome anno-
tation. Panaroo accepts annotated assemblies in GFF3 format as output by the popular
annotation pipeline Prokka [28]. Unlike similar pangenome software, Panaroo attempts
to preserve the full global context of each gene in the graph. This is in contrast to other

https://github.com/gtonkinhill/panaroo
https://github.com/gtonkinhill/panaroo_manuscript
https://github.com/gtonkinhill/panaroo_manuscript
https://doi.org/10.5281/zenodo.3599800
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programmes such as Roary [4, 7, 10] which uses only the local context surrounding genes
to build the graph.

Initial graph creation

To first build the graph, Panaroo runs CD-HIT (v4.8.1) at a high sequence identity thresh-
old (98%) [13]. The resulting clusters are then either classified as non-paralogous gene
clusters, if they contain at most one instance of each genome, or paralogous clusters if
they contain more than one gene from any single genome. Initially, non-paralogous gene
clusters are represented by a single node in the graph whilst paralogous clusters are split
into a single node for every occurrence of that cluster in the dataset. For instance, if a
paralogous gene appears twice in two genomes and once in another, the initial graph will
contain five nodes representing that paralog. The graph is then built by connecting clus-
ter nodes with edges between them if the two clusters appear adjacent to one another
on any contig. Paralogous nodes are collapsed back into the maximum number of nodes
in which those genes appear in a single genome using the global context of the graph.
In the above example, this would result in the final graph having two instances of the
paralog node.

Contig ends

Fragmented assemblies can cause issues for gene annotation software, whereby genes are
often mis-annotated near contig breaks [19]. These spurious annotations appear as short
paths of low support edges and nodes that end in a node of degree 1 that splits off from
the main graph. To deal with this, Panaroo recursively removes nodes of degree 1 that are
below a given support threshold as indicated in Fig. 1.

Contamination

Contigs originating from sample contamination are generally significantly diverged from
the target species pangenome. Thus, contaminating contigs tend to appear as discon-
nected components from the main graph with low support. To remove these, Panaroo
uses the same approach as described for contig ends to recursively delete low supported
nodes with less than or equal to one degree (see Fig. 1). This approach has the advantage of
retaining rare genes which are present in the main graph whilst removing likely contami-
nants. Whilst this has in general been found to be very successful, it can occasionally lead
to rare plasmids being removed. We have found that the benefits of removing unwanted
noise far exceed the small loss in sensitivity that this approach provides. However, we also
provide three settings for the algorithm with the most sensitive retaining such rare calls
which can be useful when one is interested in rare plasmids.

Mistranslation correction

Many annotation algorithms rely on an initial training phase where their parameters
are adapted to the dataset at hand [45–47]. Often, this training is performed sepa-
rately on each genome. This is the case in the Prokka pipeline, which makes use of
Prodigal to perform the initial gene annotation [28, 45]. This can result in an identical
sequence being annotated differently in different genomes. To correct for this, Panaroo
checks genes that are within close proximity in the pangenome graph to determine if
any are likely to be mistranslations, frame shift mutations or pseudogenised gene copies
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by comparing their sequence at the nucleotide level. If two gene sequence matches at
a high coverage and identity, typically 95% and 99% respectively, a mistranslation is
called and the gene node with the lower support is collapsed into the node with higher
support.

Collapsing gene families

Gene families diversify at different rates due to the influence of positive and purify-
ing selection. This makes choosing a strict sequence identity threshold for defining
orthologous clusters difficult. Most pangenome analysis software rely on either a pair-
wise sequence identity or BLAST e-value threshold. This reliance can lead to both
overclustering, where separate gene families are incorrectly merged, and oversplit-
ting where a single gene family is incorrectly split into several smaller clusters. Many
approaches attempt to deal with the former of these problems by utilising contex-
tual information to split apart clusters that have different gene neighbourhoods [4, 6].
More recently, alternatives that make use of clustering at lower thresholds followed by
more involved splitting techniques have been proposed [7, 8]. As an alternative to these
approaches, we extend the idea of using gene context to the oversplitting problem. Pana-
roo utilises gene contextual information to collapse diverse gene families that have been
incorrectly split into multiple clusters during the initial pangenome graph creation. Initial
gene clusters that share a common neighbour in the graph are compared at a lower pair-
wise sequence threshold (default 70%). If they fall within this threshold, the two nodes
are collapsed and the resulting node is annotated to indicate it consists of a more diverse
family. We have found that utilising this additional contextual information leads to more
robust clusters.

Identifying missing genes

Previous pangenome clustering software tools are unable to identify missing annotations.
Gene annotations can be lost due to variability in model training, fragmented assem-
blies and mis-assemblies. Panaroo remedies this issue by identifying pairs of nodes in the
pangenome graph where one node is present in a genome and its neighbour is not. The
potentially missing node is then searched for in the sequence surrounding the neighbour-
ing node. If a match of sufficient coverage and identity is found, the graph is corrected
to include an annotation for this missing gene in that genome. The alignment tool edlib
(v1.3.4) is used to perform these searches which enables millions of checks in a reasonable
time frame [24].

Output

To allow for simple integration with existing bioinformatics pipelines, Panaroo outputs
many of the same file formats as Roary. This includes the same gene presence/absence
file format as well as core and accessory genome alignments created using either
MAFFT, Prank or Clustal Omega [48–50]. In addition, Panaroo outputs a fully annotated
pangenome graph in GML format for easy viewing in Cytoscape [25]. Each gene node and
edge is annotated with the genomes to which it belongs as well as the gene annotations
given by Prokka, gene sequence and whether or not the node has been classified as being
a paralog. This graph format provides a valuable tool for visually inspecting the results of
Panaroo. As Panaroo attempts to build the full pangenome graph rather than only using
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local context, this graph is able to provide insights hidden inmany of the outputs of similar
tools such as Roary [4].

Structural variation

As Panaroo constructs the full pangenome graph, it is possible to go beyond gene pres-
ence/absence and look at the underlying structure of the graph. To facilitate the analysis of
this structure, Panaroo generates a gene triplet presence/absence matrix, indicating when
three genes are present in a path along a genome. This is demonstrated in Fig. 5a, and
the resulting presence/absence matrix can be used in association studies to investigate
differences in rearrangements between genomes in a species. The context of each triplet
can then be analysed by looking at the full graph in Cytoscape.

Pre- and post-processing

The Panaroo pipeline comes packaged with a number of pre- and post-processing scripts
for analysing pangenomes. We have included a wrapper for the popular Mash and Mash
screen algorithms which generates diagnostic plots for quality control prior to running
the Panaroo pipeline [51, 52]. These plots include a multidimensional scaling (MDS) pro-
jection of pairwise Mash distances, interactive bar charts to investigate contamination, as
well as gene and contig counts.
In addition, we have included post-processing scripts for estimating gene gain and loss

rates using both the infinitely many genes (IMG) model [41, 53] and the finitely many
genes (FMG) model of [8, 53]. These are preferable to the common practice of plot-
ting accumulation curves to indicate pangenome size as they account for the diversity
and timescale of the sampled isolates. This allows for a clearer comparison between the
pangenomes of different species or clades. Panaroo also includes an implementation of
the Spydrpick algorithm which allows for the identification of gene presence/absence pat-
terns that are either highly correlated or anti-correlated whilst accounting for population
structure [54]. Such correlations can indicate that the genes involved have epistatic effects
on fitness or that their presence or absence is a result of similar selective pressures. Finally,
the output of Panaroo seamlessly interfaces with pyseer (v1.3.0), a bacterial GWAS pack-
age [26, 55]. pyseer includes a wide range of methods for performing association studies
allowing for phenotypic associations to be foundwith gene or structural presence/absence
patterns.

Simulation and comparison with previous methods

Using the E. coli reference genome ASM584v2 as a starting point, we simulated varia-
tion in the accessory genome by varying the rates of gene gain and loss using a phylogeny
simulated with the Kingman coalescent in dendropy (v4.4.0) [56]. In addition, we simu-
lated various degrees of sequence variation by varying the within gene codon substitution
rate. Three replicate datasets of 100 sampled genomes were created for each set of model
parameters outlined in Supplementary Table 1. Realistic sequence assemblies were gener-
ated by first simulating NGS sequencing reads using eitherMason (v2.0.9) or ART (v2.5.8)
[33, 35]. These were assembled using SPAdes (v3.13.0) [34]. The resulting assemblies were
annotated using Prokka (v1.13.3) with a custom BLAST database containing the cor-
rectly assigned proteins from the simulation prior to assembly. This extensive simulation
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pipeline provided more realistic data and included many of the sources of error encoun-
tered in pangenome analyses. To simulate the problems that fragmentation can bring to
the analysis of pangenomes, we also simulated a fragmented assembly by breaking the
simulated whole genomes into fragments prior to simulating the NGS reads. This resulted
in highly fragmented final assemblies. Contamination was also simulated by randomly
adding 10-kb segments of the S. epidermidis reference genome ASM764v1 a common lab
contaminant to the simulated genomes prior to NGS simulation. These segments were
added by sampling from a Poisson distribution with mean 1. The gene presence/absence
matrix was then generated for PanX (v1.5.1), Roary (v1.007002), PIRATE (v1.0),
COGsoft (v201204) and Panaroo (v1.0.0). These were compared with the simulated
matrix and the number of inferred orthologous clusters that contained an error was
counted and is shown in Fig. 3.
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