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Abstract

Many microbial agents have been implicated as contributors to cancer genesis and
development, and the search to identify and characterize new cancer-related
organisms is ongoing. Modern developments in methodologies, especially culture-
independent approaches, have accelerated and driven this research. Recent work has
shed light on the multifaceted role that the community of organisms in and on the
human body plays in cancer onset, development, detection, treatment, and
outcome. Much remains to be discovered, however, as methodological variation and
functional testing of statistical correlations need to be addressed for the field to
advance.

Introduction
The human microbiome is a significant community, with an estimated ratio of one mi-

crobial cell per human cell [1] and nearly 500-fold more microbial genes than host

genes [2]. This community is dynamically shaped alongside human development from

birth through adolescence. It has coevolved with humans to the degree that it plays an

integral role in normal, healthy human functioning [3]. Experiments generating and

assessing gnotobiotic and germ-free (GF) mice suggest that, while not a requisite com-

ponent of physiology, this “hidden organ” provides critical functions that allow for nor-

mal metabolic and immune functioning [4]. The role of microbiota as a key functional

regulator of metabolic homeostasis [5, 6], drug detoxification and metabolism [7–9],

and metabolite biosynthesis [10] has been established only recently, and new findings

are emerging on a regular basis. Just as microbiota are important in healthy function-

ing, it has a hand in dysfunction and disorder. Microbial dysbiosis may be loosely de-

scribed as a human microbiome that does not fulfill all the necessary functions

required for health. It has been implicated in metabolic disorders, obesity [5, 11], and

immune development, as well as a wide array of disease states [12, 13]. While micro-

bial communities are functionally similar between individuals, they can be wildly dis-

similar phylogenetically, a phenomenon that presents unique challenges in studying

the microbiome and its role in health and disease [10]. Research on the microbiome
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has expanded dramatically in the last decade, with increasing interest in microbial com-

munity interactions with cancer.

As an emerging field, challenges must be overcome at all facets of research to ensure

robust and rigorous science, and these challenges are only exacerbated by the diversity

of the human microbiome. Multiple and concerted efforts have been made to identify

and provide solutions to these challenges. The MicroBiome Quality Control project

(MBQC) attempted to identify the most critical aspects in microbiome studies to im-

prove reproducibility [14], and the International Human Microbiome Standards con-

sortium (IHMS) attempted to address reproducibility concerns by providing standard

workflows for microbiome studies [15]. Several reviews have covered issues and solu-

tions for various levels of microbiology research, including fecal DNA extraction [16],

16S rRNA gene analysis and study design [17], and host-microbe multi-omic analyses

[18]. These approaches are eminently worthwhile; though it is important to note, they

are continuously evolving as the technology and our understanding of the underlying

biology improve. In this review, we address current research and issues in targeting

cancer as a disease influenced by the microbiome, which includes the issues of micro-

bial studies addressed above but also specific to correlating microbial analyses with can-

cer pathology or treatment.

Historical relationships between the microbiome and cancer

Various microbial populations have been implicated in cancer. In 2002, 17.8% of all

cancers were attributed to microbial action [19]. An early causal relationship between a

specific bacterial species and human cancer is Helicobacter pylori and gastric cancer. H.

pylori was discovered and later found to be implicated in ulcers by Warren [20]. The

development from an H. pylori infection to eventual carcinogenesis has been codified

in the Correa pathway. H. pylori can drive chronic inflammation, which leads to atro-

phic gastritis and eventual dysplasia. CagA-positive H. pylori is especially carcinogenic

[21, 22]. More recently, a possible relationship between H. pylori in the gut and in-

creased risk of pancreatic cancer has been explored, although it remains controversial

[23]. Curiously, H. pylori may have a protective effect with respect to esophageal adeno-

carcinomas [24]. Gastroesophageal reflux disease (GERD) can potentially lead to Bar-

rett’s esophagus—that is, a development of scar tissue, cellular dysplasia, and alteration

of the cells lining the esophagus from squamous cells to those resembling columnar

mucosal cells. These are contributing factors to the development of esophageal adeno-

carcinoma. There is an inverse correlation between patients with H. pylori infections

and Barrett’s esophagus, and thus with esophageal adenocarcinoma, likely due to the

reduction in GERD symptoms as a result of H. pylori reducing the local pH in the sub-

regions of the stomach; thereby, the hypothesis goes, reducing the severity of GERD

[25]. Thus, a single microbe may have both tumor-suppressing and tumorigenic effects,

and deeper research into the host and microbiome relationship is necessary to under-

stand the mechanisms that permit these differing phenotypes.

Transformation-competent viruses have also been shown to cause or be associated

with cancer, as was first elucidated through the involvement of Rous sarcoma virus

(RSV) in avian sarcoma. RSV is a retrovirus that contains a slightly modified src gene

that causes the gene product to be unregulated, which modifies intracellular processes
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and eventually causes sarcomas in chickens [26]. Human papillomavirus (HPV) has

been found to cause cancer by producing the transforming proteins E6 and E7, which

prevent Rb from binding E2F and lead to cell cycle dysregulation [27]. Epstein-Barr

virus (EBV), a common dsDNA herpesvirus, has been shown to be associated with car-

cinogenesis, especially Burkitt’s lymphomas. EBV infection alone is not sufficient to

cause cancer but may lead to carcinogenesis in tandem with genetic and environmental

factors [28]. In the case of breast cancer, there was early suspicion that breast cancer in

humans may be driven in part by a mammary tumor virus [29]. While this is a known

phenomenon in mice, no such virus has been conclusively identified in humans.

Modern research on the microbiome

Assessing studies of microbial communities and their interactions with cancer can be

difficult as there are many methods to look at these interactions, and, occasionally, the

approach used in a given study is not entirely clear. Here, we will describe studies by

differentiating the relationship between cancer and microbial communities into three

categories: primary, secondary, and tertiary interactions. We are proposing this descrip-

tive nomenclature as a means of clarifying exactly what a given study is assessing, as

the relationships can occasionally be unclear. We will define the primary interaction as

the interaction between a tumor of interest and the microbiota in the local tumor

microenvironment (Fig. 1a). Studies done at this resolution are likely looking for direct

mechanistic or causal relationships between the microbiota and the tumor, or therapies

within the tumor environment, and often require the use of animal models. Recent

mouse studies demonstrating that localized bacteria may modulate chemotherapy effi-

cacy are examples of a primary relationship between the microbiota and tumor [30,

31]. Secondary interactions are defined as those between the microbiota involved with

the more general tissue or organ environment and the tumor of interest (Fig. 1b), such

as the relationship between the gut microbiota from stool and colorectal cancer (CRC).

The distinction between primary and secondary interactions is important because,

while studies relying on the primary microbiota may elucidate causal relationships,

studies of the secondary microbiota might be less capable in this regard due to the rela-

tive dilution of cancer-specific interactions in the more generalized microbial popula-

tion being evaluated. The secondary microbial communities from these sources may

contain some signal in the form of traces and residues from the tumor microenviron-

ment and the primary microbiota, but these signals are inherently noisy since they

interact with other tissues besides the neoplasm. However, since samples containing

the secondary microbiota are much easier to obtain (e.g., stool), this interaction is crit-

ical to study in order to identify biomarkers for disease. Tertiary interactions are those

where the effect on a tumor or tumor outcome occurs while the tumor is in an entirely

different bodily location than that of the microbial community of interest (Fig. 1c). In

the vast majority of cases of tertiary interactions, the microbial community is the gut or

stool microbiota and the tumors are those outside the digestive tract—for instance, the

interactions seen between breast cancer and the stool microbiota or melanoma and the

gut microbiota [32–36]. Tertiary interactions often provide strong clinical implications

for treatment options but may also afford insight into systemic relationships between

the tumor and a physiologically remote microbial community.
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Fig. 1 Primary, secondary, and tertiary interactions between the tumor and microbial communities. a Primary
interactions are the interactions within the proximal tumor microenvironment. These interactions are important
for understanding the mechanisms of microbiome-cancer relationships, such as tumorigenesis through specific
microbes or bacterial proliferation in the tumor microenvironment. b Secondary interactions are the
interactions between tumors and the microbial community of the tissue or organ system within the same
general compartment. These interactions are mostly relevant for discerning potential biomarkers for screening.
In this figure, the example is digesta passing by neoplastic tissue in the gut. The digesta may pick up some of
the microbes from the tumor, which can be used as a signal of the tumor. Depending on the type and
location of the tumor, these interactions may be more or less useful. Generally, an advantage to these
interactions is ready access to the material for diagnosis. c Tertiary interactions are interactions between a
tumor and a remote microbiome community. Tertiary interactions are less direct than secondary or primary
interactions; they include therapeutic modulation by modifying chemotherapy drugs and reduce or increase
effectiveness or toxicity, or immune modulation that leads to relevant immune cell differentiation or reaction,
or metabolites that regulate hormones or host metabolism that can affect cancer phenotypes or outcomes. In
spite of the physical distance and separate organ systems these microbial communities occupy relative to the
tumor, they can have a profound effect on the tumor phenotype, treatment, and outcomes
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Human tumor microbiota primary interactions
The standard starting place for a study of the microbiota associated with a particular

disease state is basic characterization. A first-pass characterization needs to be done to

identify the specific taxa that are present in normal and disease states and determine

what the potential biomarkers or targets for intervention might be. Thus far, this topic

has been studied most commonly through cross-sectional clinical studies, which have

identified the microbes or sets of microbes that are differentially present/absent or in-

creased/decreased as a function of the disease once all the potentially confounding pa-

tient metadata variables have been accounted for. Most of these types of studies have

been restricted to cancers in tissues where there is a resident microbial community.

However, one interesting side effect of this line of research is the investigation of tissue

sites such as the breast, uterus, prostate, and bladder, among others, that were not pre-

viously thought to harbor resident microbial communities [37–45].

Regarding biomarkers, primary tumors are not necessarily a good place to begin a

study (i.e., looking at the microbes directly on a tumor to detect if a tumor is present

poses some logical challenges). However, there are instances where the primary micro-

biota can provide useful information. One can discern information about the microbes

at the tumor and make predictions about patient outcomes, as is done in parallel re-

search on personalized cancer treatments where a tumor genome is sequenced or spe-

cific levels of relevant genes measured as a means of identifying how best to proceed in

the clinic. For instance, in some cases, pancreatic cancer can be protected from the im-

mune system by the presence of specific cancer-associated microbial communities and

is correlated with patient mortality [46, 47].

Tumors provide a unique hypoxic environment for bacterial growth. In 1955, Mal-

mgren and Flanigan demonstrated in a mouse model that the growth of Clostridium

tetani is favored in the tumor microenvironment [48]. Tumors can develop hypoxic

conditions due to the outgrowth of oxygen supply as a result of poor vascularization by

tumor-stimulated angiogenesis [49, 50]. This hypoxic and necrotic environment allows

for the selective growth of anaerobic bacteria, an important characteristic of the tumor

microbiome [51, 52].

As established by the H. pylori model, tumorigenesis may occur due to microbial in-

fection. Other microbes have been suggested to play similar roles. The gram-negative

genus Fusobacterium is associated with the CRC tumor microenvironment [53, 54].

Fusobacterium nucleatum-derived tumorigenesis is thought to arise through an op-

portunistic infection followed by chronic inflammation and immunosuppression, es-

tablishing F. nucleatum as an opportunistic cancer driver in the microbiome-tumor

primary interaction. It also generates bacterial biofilms that increase fitness for

tumor-promoting microbial species and complement the hypoxic tumor micro-

environment [55–57]. Enterotoxigenic Bacteroides fragilis are another gram-

negative anaerobic bacterium associated with CRC and is hypothesized to be a

driver of tumorigenesis by promoting mutations in host cell genomes. In the tumor

microenvironment, besides proliferation under hypoxic conditions, pathogenic B.

fragilis may secrete proliferative and proinflammatory signals, thus exacerbating

tumorigenesis [58, 59].

The tumor microbiome may play a role in tumor resistance to treatment. Gemcita-

bine is a cytidine analog used as chemotherapy. In pancreatic ductal adenocarcinoma
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mouse models, it was found that tumor resistance to gemcitabine is mediated by intra-

tumoral gammaproteobacteria and Bifidobacterium psuedolongum [30, 60].

Microbes as anticancer therapy

A tumor’s hypoxic microenvironment’s selectivity for anaerobic bacteria has been

exploited as a method of combating cancer using auxotrophic bacteria to target the

tumor in bacteria-mediated cancer therapy (BCT). Early experiments using Clostridium

and Salmonella alone have not yielded regression of tumors in clinical trials, in spite of

success in mouse models. More recently, in various xenograft models, combination

therapy using Clostridium novyi (C. novyi-NT) with chemotherapy, antivascular ther-

apy, or radiation has shown to be more effective than treatment without C. novyi-NT,

and auxotrophic Salmonella typhimurium has shown promising effects. These treat-

ments function by eliciting a local inflammatory response to the bacteria via local in-

nate immune recognition of the bacteria, thereby increasing immune effects on the

cancer where the bacteria have localized. Challenges in bacteriolytic therapy revolve

mostly around successful bacterial growth in the heterogeneous tumor microenviron-

ment and sufficient stimulation of host immunity to effectively attenuate the tumor

[61]. Instead of relying on innate immunity to recognize and react to the localized bac-

teria, an alternative is to use the bacterial localization to deliver anticancer agents to

the tumor environment. Normal cells will be minimally affected, as the bacteria will not

localize anywhere but the tumor microenvironment. In in vivo models, this method has

shown results in delivering cytotoxic chemotherapy and immune-stimulating drugs to the

tumor, although it has yet to prove efficacious for long-term effects. However, this may

potentially be compensated for in combination with treatment strategies [51, 62].

The treatments above rely on transferring live bacterial communities, but other treat-

ment methods have been developed using bacterial extracts. Bacterial extracts have

been used in cancer treatments since the discovery of Coley’s toxins, a concoction of

bacterial lysates, in the early twentieth century [61]. More recently, synthetic CpG oli-

godeoxynucleotides (ODN), small ssDNA segments containing CpG motifs, have been

used to stimulate Toll-like receptors (TLRs) on immune cells. They have been classified

into three distinct classes: class A stimulates peripheral dendritic cells to secrete type I

interferon, class B stimulates B cell maturation, and class C has the effects of both class

A and B CpG ODNs [63]. In many models, CpG ODNs are administered intratumorally

or locally [64, 65], which can be an issue for administration in some clinical settings.

Systemic administration in mice shows promise, however, only when part of combin-

ation therapies [66]. At the time of writing, there are multiple ongoing clinical trials for

many CpG ODNs, mostly phase 1 or 2 trials for melanomas or lymphomas adminis-

tered in combination with monoclonal antibody immunotherapies (Table 1) [67, 68].

Using the microbiome as a biomarker—a secondary interaction
Early detection of cancer increases survival rates [69]. In developing biomarkers, it is

imperative to keep in mind that the tools must have robust sensitivity and specificity to

reduce false positives and false negatives. Since some microbial samples are minimally/

non-invasive to collect in routine checkups, such as the microbiome from the skin,
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mouth, rectal swabs, and urine, they can provide facile sources of investigation to assess

as cancer biomarkers.

Microbes involved in the primary tumor microenvironment are capable of becoming

biomarkers found in secondary samples. In practice, this depends on a few factors. For

one, there is the location of the tumor. Tumors that are in a region of the body exposed

to the environment or involved with circulated or excreted substances, such as cancers of

the blood or digestive system, have microbial biomarkers that are easier to obtain since

they may be detected in the blood, feces, etc. Another important factor is the auxotrophy

of the microbes—they may be dependent on the tumor microbiome primary environment

and thus not found at detectable levels elsewhere in the body.

Current clinical screening methods for CRC have shortcomings. Some tests that are

sensitive are invasive or expensive, and other tests that are non-invasive or inexpensive

have low specificity or sensitivity [70]. There remains a need to find non-invasive, ef-

fective, and cost-effective screening tools for CRC, and characterization of the micro-

biome may improve clinical screening and risk assessment. A pilot study has shown

that progressive stages of colorectal cancer, labeled as having no malignancy, adenoma,

and carcinoma, can be identified based on the relative abundance of microbes in fecal

samples. Combining this method with a fecal occult blood test (FOBT) decreased the

chance of false positives [71]. Several specific bacteria have been associated with CRC

that may be promising targets for developing biomarkers. As mentioned above, Fuso-

bacteria is present in primary colorectal tumor interactions; however, using species-

level Fusobacteria taxa as biomarkers has proved challenging. F. nucleatum may be a

potential driver of tumorigenesis in the primary interaction, but it is only present in a

minority of CRC patients and is also present in the stool of non-CRC individuals [56].

F. nucleatum is also present in the oral microbiome, and unusual levels of this bacter-

ium in the mouth may be a biomarker of CRC, an example of a tertiary interaction as a

biomarker for cancer [72].

Pancreatic cancer is one of the most fatal cancers with a 5-year mortality between 91

and 98%. A large contributor to the high mortality is the lack of efficient screening

methods [73]. Pancreatic cancer, like many cancers, is largely driven via inflammation.

Similar to gastric cancer, H. pylori infection increases the risk of pancreatic cancer.

Periodontal disease also leads to an increased risk of pancreatic cancer. Studies thus far

have found multiple associations between various oral microbiome perturbations and

pancreatic cancer [74, 75].

In addition to those described here, there is a similar clinical need for biomarkers in

other cancers. There have been a multitude of studies looking at the microbial commu-

nities in secondary compartments for relevant genomic markers, including the head

and neck, lung, bladder, prostate, and others [43, 45, 76–78]. The stool microbiome has

also been used as a tertiary biomarker for distant tumors, including hepatocellular car-

cinoma, lung cancer, and prostate cancer [78–82].

Modulation of therapeutic drug efficacy by the microbiome—a tertiary
interaction
Chemotherapy, a common and effective means of treating many cancers, involves using

drugs that preferably destroy transformed cells with minimal damage to normal cells,

although side effects may be common. Bacteria in the microbiome have been shown to
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modulate chemotherapy in various capacities. The most obvious effect is the microbial

effect on orally administered drug metabolism. Microbial species lining the intestinal

mucosa can perform various metabolic reactions, such as reduction, hydrolysis, ring

opening, and functional group removal. These alterations can activate or deactivate

drugs, or affect drug toxicity [83]. Alternatively, these microbes can affect intestinal cell

gene expression to modulate host cell metabolism of the drugs, which has implications

for drug absorption and efficacy over time [84, 85] The direct clinical relevance of gut

bacterial modulation of drugs is apparent in the case of irinotecan (CPT-11) treatment,

where the presence of bacteria in the gut expressing β-glucuronidase increases the

CPT-11 side effect of severe diarrhea [85, 86].

The microbiome has modulatory effects in other therapies. For allogeneic

hematopoietic cell transplantation (allo-HCT), a treatment for hematologic cancers, the

gut microbiome may be predictive for both risk for treatment and chances of relapse

post-treatment [87, 88]. In the case of inflammation-based immunotherapy, such as

intratumoral administration of CpG ODN described above, an intact gut microbiome

was found to significantly increase treatment efficacy in mice [89]. TLR response-based

therapeutics are connected to innate immunity, which may generally be affected by the

host microbial communities, although the specific mechanisms remain unknown. Other

therapeutic agents that do not rely on innate immunity have also been studied. Cis-

platin and oxaliplatin, platinum-based chemotherapy that forms intrastrand adducts

and interstrand crosslinks to prevent polymerase activity, were found to have reduced

efficacy when combined with common antibiotics in mice [89]. Cyclophosphamide

(CTX) is a chemotherapy drug that alkylates and crosslinks DNA and similarly prevents

polymerase activity. CTX is known to be immunogenic, meaning through cell lysis via

CTX, tumor cells release immune-stimulating signals that allow dendritic cells (DC) to

target the tumor, thus increasing CTX efficacy [90]. In mice, Viaud et al. found that

CTX also leads to increased numbers of pathogenic TH17 and increased CD4+ T cell

differentiation to TH1/TH17 by modulating the gut microbiota. However, the use of an-

tibiotics along with CTX was found to decrease CTX efficacy [91].

The efficacy of the checkpoint inhibitors PD-1, PD-L1, and CTLA-4 is modulated by

the gut microbiota. In multiple melanoma GF mouse models, the presence of specific

microbial taxa along with checkpoint inhibitors leads to an increased presence of rele-

vant immune-activating CD4+ and CD8+ T cells in the tumor microenvironment and

DC IL-12 secretion [92–94]. These studies can have significant clinical relevance, as the

gut microbial composition is a likely determinant of patient response or non-response

to anti-PD-1 and anti-PD-L1 therapy [32, 95]. While microbial-mediated immune

stimulation can have a positive effect on the tertiary tumor, it can also have a negative

effect by driving immune checkpoint inhibitor (ICI)-associated colitis. Colitis has been

shown in mouse models to drive primary interactions that can allow genotoxic bacteria

to ingraft and eventually lead to dysplasia [96]. This issue is manageable, however,

given that patients who develop or did not develop colitis after anti-CTLA-4 therapy

have distinct microbial communities [35], IL-10−/− mouse models show Bifidobacteria

may prevent colitis after anti-CTLA-4 therapy [97], and FMT may prove effective [98].

Thus, analysis of a patient’s gut microbiota may provide insight into the checkpoint in-

hibitor treatment efficacy for a remote tumor and risk assessment for ICI-associated

colitis.
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In general, dysbiosis or altered states of microbial communities may result from a pa-

tient’s genotype, antibiotic exposures, or chemotherapy, and altering or restoring

microbiota may lead to increased immune responses via innate immune signaling

(TLR) or specific immune cell activation or differentiation, e.g., TH1/TH17, CD8
+ T

cells, or DC [51]. There is emerging interest and effort being put forth to model the in-

teractions between the immune system, therapeutic interactions, and cancer outcomes

with the microbial communities in the host as the key variable [91, 99–103].

Future directions
Culture-independent approaches have become the forefront of research on the cancer

microbiome. As sequencing has become much less expensive and the 16S rRNA gene

databases have expanded, 16S rRNA gene sequencing has become an efficient and

high-throughput method for identifying bacteria present in a microbial community

[104, 105]. Issues with the resolution of 16S rRNA gene sequencing at the species and

strain levels remain a challenge [105, 106]. With the development of second-generation

and third-generation sequencing, one method to overcome the shortfalls of 16S rRNA

gene sequencing is to simply sequence the entire metagenome. Whole-genome shotgun

(WGS) sequencing, especially WGS techniques that provide long reads, has the ability

to overcome the 16S rRNA gene sequencing limitations [104, 107, 108]. By analyzing

the entire genome of all the microbial populations present, greater microbial diversity

can be represented with greater accuracy than 16S rRNA gene sequencing. Viral and

fungal species can be represented as well [109]. While advances in these technologies

are making WGS sequencing become more affordable, the cost to accurately sequence

and analyze all the bacteria in a microbial population with sufficient coverage remains

expensive, and the data analysis is laborious and intensive [107, 109] Progress is being

made on these fronts as well, with researchers leveraging advances in the algorithms

used to identify species- and strain-level details to allow shallow WGS to be used to

gain the advantage of the resolution of WGS with the economic benefit of 16S rRNA

gene sequencing [110].

Generally speaking, microbiome studies each come with their own caveats and chal-

lenges. The Human Microbiome Project was the first large-scale effort to catalog the

microbial communities present across multiple body sites [10, 111–114]. These studies,

along with other, similar efforts [115], have acted as the cornerstone of human micro-

biome work as they allow researchers to compare and contrast their own work on the

cancer microbiome with the research generated by others. However, while conceptually

simple, in practice, these comparisons are plagued with confounding variables that

hamper clear comparisons (Fig. 2 and Table 2).

The work of Sinha et al. has evaluated many experimental factors that influence the

evaluation of microbial communities [14]. Their work is part of a larger effort to identify

and iterate upon “best practices” in the microbiome research field. For example, the spe-

cific microbial taxa detected in samples vary as a function of which region of the 16S

rRNA gene is targeted for PCR amplification and sequencing (e.g., V1–V3 vs. V3–V5)

[10, 14, 124]. Subsequent research by other groups has also uncovered many additional

variables that can influence the results of 16S rRNA gene sequencing studies, including

the use of sample preservatives [116–122], sample storage [117–119, 129, 132–142], sam-

ple lysis protocol [143–145, 149, 150], and DNA purification technique [116–156]. The
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Table 2 Several variables related to the collection and evaluation of microbial communities by
amplicon sequencing have been performed. This table presents a subset of relevant variables and
references to the studies in which they have been evaluated

Variable evaluated Study references

Use of preservative agents (cryoprotectants, RNAlater, etc.) [116–123]

Sequence database [124–128]

Sequencing platform [116, 125, 129–131]

Sample storage [117–119, 127, 129, 132–142]

DNA extraction method (comparison of kits) [116, 125, 127, 129, 130, 132, 140, 143–148]

Lysis method (chemical, enzymatic, mechanical) [143–145, 149–151]

Sample collection (method, sampling location, sampler) [118, 126, 129, 131, 134, 150, 152–156]

16S rRNA gene variable region sequenced [10, 14, 124]

Fig. 2 Studies of primary interactions between tumors/precancerous lesions and bacteria are diverse with
respect to the sequencing platforms used and the 16S rRNA gene variable regions targeted for PCR and
sequencing. This Sankey plot highlights that among 40 different studies of the primary microbial
communities found at the site of a lesion, there are 5 different sequencing technologies that have been
used and 13 different sets of variable regions targeted
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choice of PCR primers, even for the same variable region; the DNA polymerase used; the

PCR cycling conditions; and the analysis platform can influence the outcome of 16S rRNA

gene sequencing studies [129, 157–159]. These variables, combined with the additional

factors such as bioinformatic pipelines used for analysis, data quality control tuning, soft-

ware parameters, and reference database choices, raise many questions related to the

value of comparing the final results of these studies to one another, when none of these

factors are controlled for. One would hope that the results from one bioinformatic ana-

lysis platform to another would be robust and adequately reflect the biological reality of

the experimental system; however, this has been demonstrated by several groups to not

necessarily be the case [159–165]. The development of new tools and the constant updat-

ing of existing tools are proceeding rapidly, with a healthy amount of back and forth dis-

cussion between different research groups (e.g., see Edgar [166] and the associated pre-

publication comment by the QIIME development team).

The body of microbiome studies on cancer as a whole manifests as one might expect

a decentralized, multidisciplinary research endeavor would: there is a profound lack of

consistency regarding the analyses. Figure 2 is a Sankey plot that summarizes the tumor

types, sequencing technologies, and the 16S rRNA gene variable region targeted across

40 different studies of the primary interactions between tumors and their associated

bacteria [39, 40, 54, 167–203]. While not shown, these studies also vary with respect to

the data analysis tools, pipelines, and databases used. Of these, more than half (26/40)

did not provide sufficient information in the methods section or supplementary mate-

rials to ascertain what the bioinformatic approaches used were in sufficient detail to be

able to replicate their analyses. Of the others that indicated the tools and approaches

used, at least seven different tools or combinations of tools were used. Furthermore,

the specifics of the parameters applied were not sufficiently reported. The studies in-

cluded in Fig. 2 are also quite varied with respect to the availability of the raw sequence

data. From an assessment of the manuscripts and their accompanying supplementary

materials, as well as a cold search of the NCBI Sequence Read Archive (SRA) for the

studies themselves, 27 of the 40 have deposited their data in the SRA, in some form or

other, 1 of the 40 deposited their data in the European Nucleotide Archive (ENA) and

12 of the 40 include a statement that data are available upon request or do not mention

data availability at all. One study has the data deposited in a public database, but not

the associated metadata that would allow other researchers to replicate their findings,

specifically due to the manner in which the IRB protocol for this study was written. In

order to improve the ability of researchers to replicate published findings, journals have

begun to require that data underlying figures as well as the code used to generate stat-

istical models and visualizations be made available as supplementary information,

though even with published code and tools, there is a broad spectrum of usability

[204]. Code generated and used in publications is often made available on GitHub or

SourceForge. The journal eLife has made code persistently available by forking the au-

thors' published version of code directly to the eLife GitHub account. Challenges re-

main regarding software and database availability, however. There are efforts in the

field to provide bioinformatic virtual environments in the form of virtual machine

(VM) images or dockerized containers that would allow interested researchers to be

able to easily repeat the analyses shown in a publication, as these environments contain

the exact software and database versions used at the time—QIIME 2, a popular
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metagenomic analysis suite, is provided in a preconfigured VM [205]. Even in these

best-case scenarios, this distribution model is suboptimal when the tools or databases

used are proprietary or closed source and not distributable. Despite these challenges,

steps are being taken in the field to develop guidelines for computational tool develop-

ment and publication [206].

The field of microbiome research is still new, and it is understandable that there would

be diversity in data analysis approaches and reporting. Unfortunately, as the field of bio-

medical research struggles with a reproducibility crisis, it is important that these devia-

tions are addressed [207]. To deal with these challenges, several groups have provided

guidelines that researchers can utilize to improve the utility and robustness of their find-

ings, including MIMARKS and MIMAG for reporting sequencing data from microbes

[208, 209], STROBE and STROME-ID for molecular data tied to epidemiological projects

[210, 211], and REMARK for data used as tumor markers [212, 213]. Marques and col-

leagues, working in the field of hypertension, have published a set of general guidelines

and checklists that researchers and publishers can use when designing, executing, and

reporting microbiome-related studies of disease in either animal models or humans that

could easily be adapted to cancer research [214]. Other groups, including the Inter-

national Human Microbiome Standards Project and the Microbiome Quality Control pro-

ject, have proposed research and reporting guidelines for experimental design when

assessing the microbiome in humans and model systems [14, 215, 216].

The many variables related to research on cancer-associated microbiota have led

other research groups to attempt to integrate findings across studies in meta-analyses,

typically focused on CRC and other gut-related diseases [198, 217–219], while other re-

views on the topic have attempted to integrate the non-gut-related microbial changes

[220]. In the case of the former, a recent meta-analysis that was performed on the colo-

rectal cancer microbiome [219] found that when integrating data from multiple pro-

jects, many of the significant factors that were reported in individual studies were

discovered to not be generalizable (i.e., the relationship between the increased abun-

dance of Fusobacterium ssp. in CRC patients). In the case of the latter, the findings

documented in these reviews are intriguing—however, as the comparisons are mas-

sively confounded by the indicated variables mentioned above, they are challenging to

rely upon as a basis for future work.

As the field generates more and more studies of the microbial communities relevant

to cancer biology, it is common (and quite reasonable) for researchers and reviewers to

want to contextualize findings in light of what has already been done on the topic. At

the moment, this is done ad hoc either by comparing the final results of other projects

to one’s own work or by more quantitatively integrating the work of other researchers

into the analyses using either raw sequencing data or finalized OTU tables, when avail-

able. Standardizing methods and protocols across the field of cancer, microbiome re-

search will prove useful in the short run, but since tools will change and evolve, robust

controls, logical study design, and sparing no effort to document and report on re-

search materials will be vital to the field.

Conclusions
The promise of the microbiome in cancer research is tremendous. The field is rapidly

expanding in scope along with our understanding of how microbial communities that
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live in and on us shape our behavior and influence our health. These breakthroughs in

microbiome research have only been made possible by the advances in genomics—

these advances have allowed us to collect vast amounts of metagenomic and microbial

marker gene sequences. Studies have now characterized the essential role of the micro-

biota in tumor formation and fitness. We have highlighted several areas that show pro-

spective benefits for cancer patients in the clinic. Characterization of the tumor

microenvironment led to the use of microbes that are selective for the said microenvir-

onment in therapies. Current trials are exploring the use of bacterial extracts in com-

bination with checkpoint inhibitor immunotherapies. A deeper understanding of the

microbiome in the context of secondary interactions brought about research into useful

diagnosis and detection of cancer early in the process. We have also shown that contin-

ued, efficient research in the emerging field of the microbiome in the context of cancer

is predicated on identifying best practices surrounding the design, execution, bioinfor-

matic analysis, interpretation, and reporting of studies. Due to the lack of applied com-

mon experimental and analytical approaches for research methods and subsequent

extreme variability in study design, outlining overarching, interpretable themes between

multiple studies even within the same cancer type, much less across cancer types, is

challenging to say the least. We propose an update to the manner in which the interac-

tions between cancer and microbial communities are described to rectify these incon-

sistencies and allow for larger-scale interpretations from multiple studies. Our hope is

that the temporary shortcomings in microbiome research will be recognized and

accounted for in order to provide the research community, clinicians, and patients with

the best possible information and outcomes possible.
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