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Abstract

Accurate discovery of somatic variants is of central importance in cancer research. However, count statistics on
discovered somatic insertions and deletions (indels) indicate that large amounts of discoveries are missed because of
the quantification of uncertainties related to gap and alignment ambiguities, twilight zone indels, cancer
heterogeneity, sample purity, sampling, and strand bias. We provide a unifying statistical model whose dependency
structures enable accurate quantification of all inherent uncertainties in short time. Consequently, false discovery rate
(FDR) in somatic indel discovery can now be controlled at utmost accuracy, increasing the amount of true discoveries
while safely suppressing the FDR.
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Background
The foundation of cancer is the modifications of the
genome; somatic mutations turn originally healthy cells
into a heterogeneousmix of aberrantly evolving cell clones
[1]. Global consortia have launched population-scale
sequencing projects concerned with the discovery and
annotation of somatic variants in cancer genomes [2, 3].
Potential benefits of the systematic analysis of somatic
mutations include improved diagnosis, staging, and ther-
apy protocol selection in the clinic.
The routine use of tools for the discovery of somatic

variants naturally is at the core of such large-scale
projects. However, only the discovery of somatic single
nucleotide variants (SNVs) can be considered sufficiently
addressed so far. The situation differs quite substantially
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for somatic insertions and deletions (indels; here, we refer
to insertions and deletions of all possible sizes, rang-
ing from 1 to thousands of base pairs, because we will
focus on such variants in the following. Note that else-
where, insertions and deletions larger than 50 bp are often
subsumed as structural variants) and for other types of
structural variants, such as translocations, duplications,
and inversions.
For the discovery of germline indels and SVs, a plethora

of approaches have been available in the meantime. These
approaches vary in terms of benefits and drawbacks, but
address the issue sufficiently well, with only a few open
problems remaining, see [4] for a recent review.
Methods for the discovery of somatic variants can be

classified into those targeting SNVs and small indels (e.g.,
Mutect2, Strelka, NeuSomatic, SmuRF [5–8]) and larger
indels and SVs (e.g., Delly, Manta, LUMPY, GRIDSS,
novoBreak [9–12]). To the best of our knowledge, the only
method so far that is able to handle both small and large
indels in a unified way is Lancet [13]. However, none of
the methods is able to assess all involved uncertainties
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in a statistically sound way. This is reflected by the fact
that suggested filtering operations rely on combinations of
hard thresholds on various scores like, e.g., p values, read
depth, strand bias test statistics, and allele counts.
As a result, given the amount of somatic variants dis-

covered so far, there is room for improvement across the
whole range of possible variant types [14], documented by
the rather small amounts of variants discovered so far. In
this, somatic insertions and deletions (indels) have proven
to pose particular challenges when belonging to certain
classes or length ranges [15, 16]. Indels of length approxi-
mately 30–250 bp, previously termed “the next-generation
sequencing (NGS) twilight zone of indels” [17–19], have
resisted their discovery in particular also in somatic vari-
ant calling: while the COSMIC database (https://cancer.
sanger.ac.uk/cosmic; Release v88, data retrieved on 20
March 2019) counts 1,879,044 indels of length 1–30 bp,
it only counts 17,793 indels of length 31–60 bp, 3758
indels of length 61–100 bp, and 2483 indels of length 101–
250 bp. The drop by two orders of magnitude from 1–30
to 30–60 bp, not followed by any such drops in further
length bins, has so far not been supported by any reason-
able biological interpretation. Further supported by our
benchmark experiments, the most likely explanation is
that the majority of somatic indels in that size range have
remained undiscovered so far, hence correspond to a blind
spot in somatic mutation discovery.
Therefore, the application of more sensitive somatic

indel calling strategies most likely will induce striking
changes in the spectrum of somatic indels so far detected.
As indicated in earlier work [16], this has the potential
to deepen our understanding of the origin and effects of
somatic indels, beyond just balancing count statistics.
Here and in the following, sensitivity or recall denotes

the ratio of true indels discovered over the overall amount
of true indels, whereas precision denotes the ratio of true
indels discovered over the overall amount of indels dis-
covered. False discovery rate (FDR) is the ratio of mistaken
discoveries over the overall amount of indels discovered
(so, precision = 1 − FDR).
In this paper, we suggest a sensitive strategy and prove

that it substantially reduces the somatic indel discovery
blind spot. To understand the issues that are characteristic
of this blind spot, consider that somatic variant discovery
(unlike germline variant discovery) is a two-step proce-
dure: in the first step, one discovers putative variants in
both the cancer and healthy (or control) genome of the
individual analyzed; in the second step—which is unique
to somatic variant discovery—one runs a differential anal-
ysis that classifies putative variants into somatic, germline,
healthy somatic, or just noise. Here, somatic variants only
appear in the cancer genome, germline variants occur
already in the healthy genome, and healthy somatic vari-
ants appear in the healthy genome but at subclonal levels.

Already the first step (which also applies for generic
germline variant discovery) is affected by major issues,
where for example gap wander and annihilation (see [20])
are well-known and notorious examples when determin-
ing gapped alignments in general. Issues become further
aggravated when dealing with indels of 30–250 bp due to
particularities of NGS read alignment and indel discov-
ery tools. This explains why one needs to make particu-
lar methodical efforts already when seeking for “twilight
zone” germline variants [17–19, 21].
In somatic indel discovery, an additional layer of issues

due to cancer heterogeneity has to be considered. The
variant allele frequency (VAF), here the fraction of
genome copies in the (tumor or control) sample affected
by the variant, is either 0.0, 0.5, or 1.0 for germline vari-
ants, reflecting absence, heterozygosity, or homozygos-
ity, respectively. In contrast, allele frequencies of somatic
variants vary across the whole range from 0.0 to 1.0,
depending on the clonal structure of the tumor sample
and its impurity (the ratio of healthy genome copies in
the tumor sample). Usually, there is no prior information
about the clonal structure available at the time of variant
calling. Low-frequency variants (i.e., having a VAF close
to 0) yield particularly weak, statistically uncertain signals.
Of course, there are limits to somatic variant discovery,
relative to VAF and sequencing depth. The methodical
challenge is to not miss any discoveries that a statisti-
cally sound approach is able to reveal. The purpose of
this paper is to understand the limits of somatic vari-
ant discovery in theory and considerably push them in
practice.
Certainly, there are still also improvements for the first

step conceivable; however, the second (differential anal-
ysis) step has never been treated before with statistical
rigor. So, the second step may have left room for improve-
ments in particular. We recall that dealing with the var-
ious statistical uncertainties due to (as abovementioned)
cancer heterogeneity, gap placement, strand bias, etc. is
the major challenge in the second step. For successful
operation, one needs to accurately quantify all relevant
uncertainties in the first place. As a consequence, one has
a sound statistical account on whether putative variants
are somatic, germline, healthy somatic, or just errors. In
consequence, statistically sound false discovery rate (FDR)
control becomes possible: the user specifies the maximal
ratio of false discoveries she/he is willing to deal with. Sub-
sequently, a maximal set of discoveries is reported that
ensures that the FDR specified by the user is not exceeded.
The desired accuracy in uncertainty quantification,

however, comes at a cost: if data is uncertain, one deals
with an exponential amount of possibly true data sce-
narios. This prevents naive approaches to work at the
desired level of accuracy without serious runtime issues,
which constitutes a common computational bottleneck

https://cancer.sanger.ac.uk/cosmic
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in uncertainty quantification. In our setting, we will
be dealing with at least 3n possible scenarios for one
putative indel where n corresponds to the sum of read
coverages in the cancer and control genome at a par-
ticular locus. Nowadays, n around 60 is not uncom-
mon. This number of arithmetic operations is prohibitive
when processing up to hundreds of thousands putative
indel loci.
In the model presented in this paper, we overcome this

bottleneck by presenting a Bayesian latent variable model
whose conditional dependencies point out how to com-
pute all of the relevant probabilities in time linear, and
not exponential in the coverage of a putative indel locus.
Thanks to its computational efficiency, the model cap-
tures and accurately quantifies all uncertainties involved
in somatic indel discovery in a comprehensive manner.
In summary, we are able to compute all probabilities

required for enforcing reliable FDR control at both the
necessary speed and accuracy. Reliable, sound, and accu-
rate FDR control, in turn, gets us in the position to
substantially increase the recall in somatic indel discovery,
without having to deal with losses or even improving in
terms of precision. As was to be expected, improvements
in the twilight zone turn out to be the most dramatic: in
comparison with the state-of-the-art tools, we double or
even triple recall, while preserving (often better than just)
operable precision.

Results
We have designed Varlociraptor, as a method to imple-
ment the improvements in the differential analysis step
outlined in the introduction. To the best of our knowledge,
Varlociraptor is the first method that allows for accurate
and statistically sound false discovery rate control in the
discovery of somatic indels. As a consequence, the appli-
cation of Varlociraptor leads to substantial increases in
recall in somatic indel discovery. Varlociraptor doubles or
even triples the number of true discoveries in compari-
son with the state-of-the-art tools, while often also further
improving on precision, or, at any rate, not incurring any
kind of loss in precision. Varlociraptor also accurately esti-
mates the variant allele frequency (VAF) for all somatic
indels.
In the following, we provide a high-level description of

the Varlociraptor workflow. We provide a brief explana-
tion of how one can quantify all relevant uncertainties in
linear runtime, as the key methodical breakthrough and
the fundamental building block that underlies all that fol-
lows.We briefly illustrate how the Bayesian latent variable
model that enables rapid quantification of uncertainties
further immediately gives rise to the computation of all
probabilities that are crucial in somatic variant calling.
We further briefly address how Varlociraptor estimates
variant allele frequencies (VAFs). Finally, we explain how

accurate FDR can be established. For details, we refer to
the “Methods” section.
Subsequently, we analyze Varlociraptor’s performance

in comparison with the current state-of-the-art tools on
simulated and real data. As pointed out above, we show
that Varlociraptor indeed achieves (sometimes drastic)
increases in recall, often accompanied by further increases
in precision.We notice that the probabilities used for clas-
sifying putative variant calls allow for a clear distinction
between true and false positives, which is of consider-
able value in classification practice. We then demonstrate
that Varlociraptor indeed reliably controls FDR, thereby
also providing the theoretical explanation for why Var-
lociraptor achieves superior performance rates in terms
of recall and precision. Varlociraptor further accurately
estimates all VAFs. Turning our attention to real data,
we conclude that Varlociraptor achieves superior concor-
dance for variants of VAF at least 20%. For variants of VAF
of less than 20%, Varlociraptor is the only tool that discov-
ers considerable amounts of variants. The low coverage
of reads supporting such calls delivers stringent statisti-
cal explanations for why concordance cannot be reached
at rates that apply for calls above 20%. To corroborate that
the majority of Varlociraptor’s calls are correct—just as
we experienced on simulated data—we demonstrate that
Varlociraptor’s count statistics agree with the theoretical
expectation under neutral evolution.

Workflow
We first discuss how Varlociraptor embeds in a work-
flow for somatic variant calling and highlight the central
difference to classical approaches.
The classical workflow for calling somatic variants

(Fig. 1a) starts with aligned reads from tumor and
corresponding healthy sample of the same patient
in BAM (https://samtools.github.io/hts-specs/SAMv1.
pdf) or CRAM (https://samtools.github.io/hts-specs/
CRAMv3.pdf) format. First, variants are discovered, and
a differential analysis is performed to call variants as
somatic or germline. Candidate variants are reported
in VCF or BCF format (https://samtools.github.io/hts-
specs/VCFv4.3.pdf). In the following, we will refer to VCF
as a placeholder for VCF/BCF, and BAM as a placeholder
for BAM/CRAM. Second, the candidate variants are fil-
tered, usually by applying thresholds for various scores
(e.g., variant quality, strand bias, coverage, minimummap-
ping quality, minimum number of supporting reads in
healthy sample), in order to obtain final variant calls. If
not just relying on some suggested defaults, finding those
thresholds is often a tedious, study-specific effort.
With Varlociraptor, we provide a new approach for

calling and filtering, thereby separating variant discovery
from calling (Fig. 1b). The input for Varlociraptor are can-
didate variants from an external discovery step. Here, any

https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/CRAMv3.pdf
https://samtools.github.io/hts-specs/CRAMv3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://samtools.github.io/hts-specs/VCFv4.3.pdf
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Fig. 1 Difference between a the classic somatic variant calling workflow and b the Varlociraptor approach

variant calling tool can be applied. At the time of writing,
the Varlociraptor implementation supports SNVs, multi-
ple nucleotide variants (MNVs), insertions, and deletions.
However, the model presented here is agnostic of the vari-
ant type, and we are actively working on adding support
for all other types of variants in Varlociraptor. Therefore,
while we are writing about indels in the following, keep
in mind that the presented model can straightforwardly
be applied to other variant types. Similarly, Varlociraptor
currently supports single-end or paired-end short reads,
while the model itself is agnostic of the sequencing proto-
col and technology. The implementation will be extended
in the future. There are plenty of approaches that thor-
oughly deal with the discovery step. In particular, as it
is already common practice within the state-of-the-art
somatic variant calling pipelines (e.g., the Sarek pipeline,
[22]), it is possible to combine the candidate variants of
different callers in order to obtain maximum sensitiv-
ity across all variant types and length ranges. However,
instead of having to perform ad hoc filtration of finalized
calls (e.g., Sarek performs majority voting), Varlociraptor
provides a unified mechanism for assessing all candidate
variants. During calling, Varlociraptor classifies variants
into somatic tumor, somatic healthy, germline, or absent
variants, while providing posterior probabilities for each
event (see the “Classification” section) along with maxi-
mum a posteriori estimates of the variant allele frequency
(VAF) (see the “Estimating allele frequencies for somatic
tumor variants” section), reported in BCF format. Finally,
using the posterior probabilities, Varlociraptor can filter
variants by simply controlling for a desired false discovery
rate (FDR, see the “False discovery rate control” section),
instead of requiring the adjustment of various thresholds.
This becomes possible because Varlociraptor, as the first
approach, integrates all known sources of uncertainty into
a single, unified model.
In this work, we will evaluate Varlociraptor’s perfor-

mance in direct comparison with the (usually ad hoc)

differential analysis routines provided by other tools. We
will use the indels that are output by the respective tool
to compare against in its first (discovery) step as input for
Varlociraptor. This way we ensure that all tools receive
input they are supposed to deal with and therefore ensure
maximum fairness.

Foundation of the approach
Efficient computation of the fundamental likelihood function
Let us fix a particular variant locus, as given by an entry in
the VCF file that lists all candidate variants from Fig. 1b.
By θh and θc, we denote the true but unknown allele fre-
quency of that (putative) variant among the healthy (θh)
and the cancerous (θc) genome copies. While for germline
variants, θ ∈ {0, 1/2, 1} reflecting absence (artifacts or
noise) and hetero- and homozygosity of the variant, and
θ ∈[ 0, 1] for somatic variants. We model that somatic
healthy variants usually show at subclonal rates by allow-
ing only θ ∈ (0, 1/2), i.e., the exclusive interval between 0
and 1/2. A variant evaluates as somatic tumor if and only
if θc > 0, while θh = 0. Since we are most interested
in these variants, one of the central goals is to conclude
that θc > 0, θh = 0 for a particular putative variant with
sufficiently large probability.
By Zh =

(
Zh
1 , ...,Z

h
k

)
and Zt = (

Zt
1, ...,Z

t
l
)
, we denote

the read data being associated with the variant locus in
the healthy (h) and the tumor (t) sample. Note that we dis-
tinguish between the tumor sample, which is a mixture of
healthy and cancer cells, and the cancer cells themselves.
When referring to the latter, we use the subscript c, and for
the former, we use the subscript t. Each of the Zh

i ,Zt
j , i =

1, ..., k, j = 1, ..., l represents one (paired-end) read that
became aligned across or nearby the given variant locus.
This further means that k and l correspond to the sample-
specific read coverages at that locus. For selecting reads
via alignments, we use BWA-Mem [23] in the following,
although the choice of particular aligner is optional, as
long as the aligner outputs a MAPQ value [24], which
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quantifies the certainty by which the sequenced fragment
(represented by the read pair) stems from the locus under
consideration.
Let further β ∈ {0, 12 , 1} denote the strand bias affecting

the particular variant locus. Thereby ,β = 0 and β = 1
denote that evidence about the putative variant occurs
only in the reverse (β = 0) or in the forward (β = 1)
strand. Both cases are indicators of sequencing or map-
ping artifacts. Therefore, no strand bias, i.e., β = 1/2 will
subsequently be used to select for non-artifact variants.
We present a Bayesian latent variable model that

enables to efficiently compute:

L(θh, θc,β | Zh,Zt), (1)

the likelihood of allele frequencies θh, θc and strand bias
β given read data Zh,Zt (see the “The model” section).
Straightforward approaches to compute (1) via fully
Bayesian inverse uncertainty quantification [25], which is
the canonical and approved way to compute (1) fail due to
requiring exponential runtime (also see section S1 (Addi-
tional file 1)). The conditional dependency structure of
the statistical model we raise (see the “Methods” and the
“The model” sections), points out a way to compute (1) in
runtime linear in k + l, as summarized by the following
theorem.

Theorem 1 L(θh, θc,β | Zh,Zt) can be computed in
O(k + l) arithmetic operations.

Note that this is the best one can hope for; the insight is
crucial in somatic variant calling practice, beyond estab-
lishing also a theoretical novelty, because Theorem 1
establishes that L

(
θh, θc,β | Zh,Zt

)
can be evaluated fast

at any (θh, θc,β). This in turn renders integration over
L

(
θh, θc,β | Zh,Zt

)
computationally feasible, which facil-

itates solving the following three essential problems.

Classification
Statistically sound classification in somatic variant call-
ing requires, when given Zh,Zt , to compute the posterior
probabilities for the following four cases, which refer to
different combinations of θc, θh (see also Fig. 8a in the
“Methods” section).

• Somatic tumor (st); θc > 0, θh = 0: the variant is
somatic in the tumor and does not appear in the
healthy genome.

• Germline (ge); θh ∈ {1/2, 1}: a germline variant, where
θh = 1/2 reflects a heterozygous and θh = 1 a
homozygous variant.

• Somatic healthy (sh); θh ∈ (0, 1/2): a variant that is
somatic but appears in the healthy genome, reflected
by subclonal, non-germline variant allele frequencies.

• Absent (ab); β ∈ {0, 1} or θc = 0, θh = 0: the variant
reflects (strand bias) artifacts or noise.

Note in particular that cases (st), (ge), and (sh) imply that
there is no strand bias, i.e., β = 1/2. Given the respective
read data Zh,Zt from the healthy and the tumor genome,
the corresponding posterior probabilities compute as:

P
(
st | Zh,Zt

)
= 1

P(Zh,Zt)

∫ 1

0
h(0, θc, 1/2)L

(
0, θc, 1/2 | Zh,Zt

)
dθc,

(2)

P
(
ge | Zh,Zt

)
= 1

P(Zh,Zt)

∫ 1

0

∑
θh∈{1/2,1}

h(θh,θc,1/2)L
(
θh, θc,1/2 |Zh,Zt

)
dθc,

(3)

P
(
sh | Zh,Zt

)
= 1

P(Zh,Zt)

∫ 1/2

0

∫ 1

0
h(θh, θc,1/2)L

(
θh, θc,1/2 |Zh,Zt

)
dθcdθh,

(4)

P
(
ab | Zh,Zt

)
= 1 −

∑
{st,ge,sh}

P
(
· | Zh,Zt

)
. (5)

h(θh, θc,β) is the prior distribution of the three readouts
θh, θc, and β , which can be used to integrate prior knowl-
edge about clonal structure or zygosity rates, if available.
We consider the choice of h as an open question, that is
most important for sparse data (i.e., very low coverage).
It can be guided by the work of [26], for example. For the
evaluation conducted here, we use a uniform h. P(Zh,Zt)
is the marginal probability of the data, which acts as a
normalization factor.
The integrals lack an analytic formula but, supported

by the efficient computation of (1), as established by
Theorem 1, can be approximated numerically using
quadrature.

Estimating allele frequencies for somatic tumor variants
Upon having determined that a variant is a somatic tumor,
implying θc > 0, θh = 0 and β = 1

2 , we would like to
determine maximum a posteriori estimates for θc, given
the fragment data Zh,Zt . When using a uniform prior
this is the same as computing the maximum likelihood
estimate:

θ̂c ≡ arg max
θc∈[0,1]

L
(
0, θc, 1/2 | Zh,Zt

)
. (6)

The likelihood function (1) is a higher-order polynomial
in θh and θc for given β , as follows from the computations
in the “Statements” section, which makes it infeasible
to derive its maximum analytically. We can nevertheless
prove the following theorem.
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Theorem 2 Let the following conditions hold:

1. The likelihood of θh,β given the data from the
healthy sample must be non-zero, i.e.:

k∏
i=1

P(Zh
i | θh,β) > 0.

2. The subset:

I := {θc ∈[ 0, 1] : P(Zt
j | θh, θc,β) > 0 for j = 1, . . . , l}

(7)

is connected and non-empty.
3. The purity is greater than 0, i.e., α > 0 (otherwise the

“tumor” sample would not contain any cancer cells).
4. There exists read data Zt

j for which the alignment
probability π t

j is strictly larger than 0, and pj �= aj
(i.e., there must exist an observation that with
non-zero probability stems from the locus of interest
and provided information about the presence or
absence of the indel of interest).

Then, for fixed θh and β , the logarithm of the likelihood
function θc → L

(
θh, θc,β | Zh,Zt

)
is concave on the unit

interval [ 0, 1]. Hence, the likelihood function attains a
unique global maximum θ̂c on [ 0, 1].

Conditions 1–4 are technical and always apply in prac-
tice. A proof for the theorem can be found in section S2
(Additional file 1). Since the logarithm of the likelihood
function is strictly concave, its maximum can be easily
determined numerically. This allows to report the corre-
sponding global maximum θ̂c for θh = 0 and β = 1

2
as a reasonable estimate for the VAF of a somatic cancer
variant.

False discovery rate control
Once the event probabilities defined in the “Classifica-
tion” section are available, FDR can be controlled in a
statistically sound way. In an ideal setting, the user spec-
ifies an FDR threshold γ , upon which a maximal amount
of variants is output such that the ratio of false discov-
eries among the discoveries overall does not exceed γ .
Only if the underlying model is statistically sound, max-
imal increases in terms of true discoveries among the
output (sensitivity or recall) can be expected. Note that
ad hoc style FDR control procedures such as “call merg-
ing” (raising only discoveries simultaneously supported by
several variant callers), while indeed controlling FDR, usu-
ally incur serious losses in terms of discoveries and tend
to lead to discovery blind spots, thereby (while not being
the main issue) contributing to the lack of “somatic twi-
light zone indels” so far discovered. Moreover, it becomes
next to impossible to fine-tune an analysis to a particular

FDR acceptable in the specific context. First tries on FDR
control procedures for variant calling have been reported
before [21, 27]. However, in this work, we present the first
fully Bayesian approach, and also the first for the calling of
somatic variants.
For a given set of putative somatic tumor variants C,

each of which is annotated with pi, i = 1, . . . , |C|, the
posterior probability (2) that variant i is indeed somatic
tumor, we can calculate the expected FDR [28] as:

FDRC = 1
|C|

|C|∑
i=1

1 − pi

In order to both control FDR at γ and raise maximal out-
put, one searches for the largest set of variants C∗ ⊆ C
such that FDRC∗ ≤ γ . One can efficiently implement this
by sorting variants by 1 − pi in ascending order, and sum-
ming up 1 − pi in that order until this sum divided by the
number of summands collected has reached the threshold
γ .

Data analysis reproducibility
The evaluation performed in this paper is available as a
reproducible Snakemake [29] workflow archive (https://
doi.org/10.5281/zenodo.3361700). In addition, we provide
a Snakemake report (Additional file 2) that allows to inter-
actively explore all figures shown in this article in the
context of the workflow, the parameters, and the code
used to generate them.

Data
A central challenge when evaluating somatic indel calling
is to sufficiently cover all relevant length ranges. Further-
more, the occurrence of already discovered true twilight
zone indels is biased towards easily accessible, hence
lesser uncertain regions of the human genome. However,
somatic variant databases contain only few twilight zone
indels (see the “Background” section). Hence, we chose
a dual approach based on designing a simulated dataset
with the desired properties for assessing precision and
recall, complemented by a concordance analysis on real
data.

Simulated data
We used a real genome (Venter’s genome [30]), previously
applied for NGS benchmarking purposes [18, 21] as the
control genome.
Our goal was to simulate a cancer genome that quali-

fies for statistically sound benchmarking, while reflecting
a scenario that is realistic in terms of tumor evolution.
We therefore simulated 300,000 somatic point muta-
tions, 150,000 insertions and 150,000 deletions, of which
279,509, 139,491, and 139,532 in the autosomes. Follow-
ing the clonal structure described in Fig. 2, we sampled

https://doi.org/10.5281/zenodo.3361700
https://doi.org/10.5281/zenodo.3361700
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Fig. 2 Simulated cancer clones. a The evolution of the cancer clones. b The simulated tumor sample. Each cell is assumed to be diploid. Cells of the
same type share the same genetic code. The relative prevalences of the various cell types are shown in the table. The level of impurity (α) is 25%

the mutations into four subclones. For example, 2/3 were
assigned to intermediate subclone I. Of these, the first half
was assigned to subclone I and the other half to subclone
II. This simulates an evolutionary process, where muta-
tions are inherited from parental intermediate subclones.
The combination of the subclones at different abundances
with an impurity caused by contamination with healthy
cells constitutes an artificial tumor sample.
To account for realistic proportions in terms of length,

indels follow the length distribution of Venter’s germline
indels (which roughly follows a power law distribution).
Allele frequencies range from 0.042 to 0.667 for the
somatic indels. The majority of indels are of relatively
low frequency, and they were randomly placed across the
genome. Both low frequencies (making indels hard to dis-
tinguish from noise) and random placement (rendering
the calling particularly difficult in repetetive regions), lead
to a particularly challenging benchmarking dataset.
Reads were sampled according to the above model

using the Assemblathon read simulator SimSeq [31]. For
the tumor sample, we chose a coverage of 40×, and
for the healthy sample, we simulated a 30× coverage.
Subsequently, reads were aligned using BWA-MEM [32].
The simulated reads are publicly available via Zenodo
(https://doi.org/10.5281/zenodo.1421298).

Synthetic data
In addition to the simulated reads above, we created a
synthetic tumor/normal dataset based on the synthetic
diploid benchmark from [33]. Using a combined assem-
bly of both long (PacBio) and short (Illumina) reads, [33]
provide high-quality variant calls for the two haploid cell
lines CHM1 and CHM13. While not originally designed

for this, the dataset can be slightly abused to approximate
a tumor/normal situation as follows. First, we use publicly
available short reads from CHM13 (SRR2088062, https://
www.ncbi.nlm.nih.gov/sra/?term=SRR2088062) to define
an artificial healthy or normal sample. Let n be the num-
ber of reads in SRR2088062, and f ∈[ 0, 1] be a mixture
rate. Then, we create a synthetic tumor sample, by taking
f · n read pairs from CHM1 (SRR2842672, https://www.
ncbi.nlm.nih.gov/sra/?term=SRR2842672 and (1 − f ) · n
read pairs from CHM13 (SRR2088062, our healthy sam-
ple). By this, variants exclusive to CHM1 can be seen as
somatic variants in the synthetic tumor sample. Thereby,
the mixture rate f defines the allele frequency of those
variants in the synthetic tumor sample. In contrast, vari-
ants in both CHM13 and CHM1 can be seen as (synthetic)
germline variants. We provide a reproducible Snakemake
workflow conducting all necessary steps to generate the
data (https://doi.org/10.5281/zenodo.3630241).
The upside of this approach is that one obtains a

tumor/normal dataset based on real sequencing reads,
with a known ground truth. However, the following
caveats that should be kept in mind. First, the variant
calls in CHM1 and CHM13 are mostly small, not evenly
covering all length ranges at sufficiently high numbers.
Manual inspection reveals that in particular, many larger
indels seem to come from repetitive regions, which are
notoriously hard to map. Second, all synthetic somatic
variants generated by this approach have the same allele
frequency f, violating the assumption in the Varlocirap-
tor model that allele frequencies in tumors are distributed
in the unit interval [ 0, 1]. This renders a fair assessment
of FDR control and allele frequency estimation on this
dataset impossible.

https://doi.org/10.5281/zenodo.1421298
https://www.ncbi.nlm.nih.gov/sra/?term=SRR2088062
https://www.ncbi.nlm.nih.gov/sra/?term=SRR2088062
https://www.ncbi.nlm.nih.gov/sra/?term=SRR2842672
https://www.ncbi.nlm.nih.gov/sra/?term=SRR2842672
https://doi.org/10.5281/zenodo.3630241


Köster et al. Genome Biology           (2020) 21:98 Page 8 of 25

Real data
To demonstrate the applicability in practice, we also evalu-
ated real cancer-control genome pairs. Since, as of today,
there are no real datasets with known ground truth
available (where the lack of real twilight zone indel
discoveries is of course an important factor), we opt
for a concordance analysis, as a procedure that has
been used previously. Namely, we analyzed the concor-
dance of reported variants with respect to four repli-
cates of cancer-control genome pairs, all of which have
been sampled from the same tumor cell line (melanoma
cell line COLO829), albeit in different institutions [34]
(https://ega-archive.org/datasets/EGAD00001002142). If
discoveries referring to the four replicates agree to a sen-
sible degree (considering that differences due to batch
effects and independent progression are conceivable), one
can conclude that performance is also of high quality on
real datasets.

Tools
For generating lists of candidate indels in form of VCF
files (see Fig. 1), we chose Delly 0.7.7 [9], Lancet 1.0.0 [13],
Strelka 2.8.4 [6], Manta 1.3.0 [35], BPI 1.5 (https://github.
com/hartwigmedical/hmftools/tree/master/break-point-
inspector), and NeuSomatic 0.2.1 [7, 36] as representative
state-of-the-art callers covering all length ranges. All
these callers provide their own “ad hoc” method of anno-
tating somatic variants from tumor/normal sample pairs,
which we applied with default parameters for comparison.
We provided BWA-MEM alignments with marked dupli-
cates (via Picard-Tools, https://broadinstitute.github.io/
picard) as input for all tools. When subsequently running
Varlociraptor (version 1.1.1), we used the output VCF
files of the tools in combination with the BAM files that
were the basis for generating the candidate variants.

Experiments
We first consider the simulated dataset (see the “Data”
section). Here, the true somatic variants are known from
the simulationprocedure.Toclassifypredictedvariants of the
different callers into true and false positives, we matched
them against the known truth using the vcf-match
subcommand of RBT (https://github.com/rust-bio/
rust-bio-tools) with parameters --max-dist 50 --
max-len-diff 50. This means that we consider a pre-
dicted somatic variant to be a true positive if its position
and length are within 50 bases of the true variant (which
reflects approved evaluation practice, see [37] for further
reasoning). Thereby, the position for a deletion is defined
as its center point, i.e., 	(e − s)/2
 with e being the end
position and s being the start position of the deletion. In
the following, we show the results for deletions. If results
for insertions essentially deviate from the deletion results,

we mention it in the corresponding section of the text. All
results for insertions can be found in the supplement.

Varlociraptor achieves substantial increases in recall without
notable losses in precision
In the following, recall is defined to be the ratio of true
variants that became predicted, while precision is the
ratio of correct predictions among the predictions over-
all. Figure 3 and S1 (Additional file 1) show recall and
precision for all tools considered on the simulated data.
In each plot, we juxtapose the tools’ recall and preci-
sion when run in stand-alone modus (dots or dotted
lines) with recall and precision when postprocessing the
respective output sheets of the tools with Varlociraptor
(lines). The lines referring to Varlociraptor result from
varying the posterior probability threshold: the greater the
threshold, the smaller the recall. While the reduction in
recall is merely a consequence of reducing the output, a
simultaneous increase in precision only shows if poste-
rior probabilities make sense, as (first) essential evidence
of the quality of the approach. Note that the only caller
that offers to vary an output-specific threshold is Lancet
(dotted green line in Figure 3 and S1 (Additional file 1)),
by scoring variants with p values. However, Lancet’s p
values are only one component of the ad hoc filtering
procedure performed by the tool, which relies on mul-
tiple scores. This explains while filtering based on the p
values alone (dotted green line) yields suboptimal perfor-
mance compared to the ad hoc calls provided by Lancet
(green dot).
The first, fundamental observation is that Precision

indeed increases on increasing the posterior probability
cutoff, across all size ranges and inputs. This points out
that Varlociraptor’s posterior probabilities for a variant to
be somatic indeed make sense.
When further comparing Varlociraptor’s (continuous)

lines with the dots or dotted lines referring to the stand-
alone modus of the other tools, it becomes immediately
evident that Varlociraptor improves on the tools’ results:
Varlociraptor’s lines are upper right of the tools’ dots or
dotted lines. This means that Varlociraptor achieves bet-
ter combinations of recall and precision. The most strik-
ing observation however is that Varlociraptor achieves
substantial increases in recall in comparison with the
stand-alone tools: in particular, in the twilight zone (30–
250 bp), Varlociraptor is able to double (Lancet, Delly) or
even more than double (Manta) the recall, while never
incurring notable losses in precision (sometimes even
improving the latter). The synthetic data (Figures S8, S9,
S10, S11 (Additional file 1)) in general confirms all find-
ings from the simulated data, however, in a more noisy
way, due to the caveats of the dataset mentioned in the
“Data” section.

https://ega-archive.org/datasets/EGAD00001002142
https://github.com/hartwigmedical/hmftools/tree/master/break-point-inspector
https://github.com/hartwigmedical/hmftools/tree/master/break-point-inspector
https://github.com/hartwigmedical/hmftools/tree/master/break-point-inspector
https://broadinstitute.github.io/picard
https://broadinstitute.github.io/picard
https://github.com/rust-bio/rust-bio-tools
https://github.com/rust-bio/rust-bio-tools
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Fig. 3 Recall and precision for calling somatic deletions on simulated data. Results are grouped by deletion length, denoted as interval at the top of
the plot. For our approach (Varlociraptor+*), curves are plotted by scanning over the posterior probability for having a somatic tumor variant (for
readability, each curve is terminated by a square mark). For other callers that provide a score to scan over (e.g., p value for Lancet), we plot a dotted
line. Ad hoc results are shown as single dots. Results are shown if the prediction of the caller did provide at least 10 calls. The sharp curves for our
approach reflect the favorable property of having a strong separation between the probabilities of true and false positives, see Fig. 4

Posterior probabilities allow for a clear distinction between
true and false positives
The precision-recall curves of Varlociraptor show a sharp
turning point at their upper right. This indicates that
Varlociraptor’s posterior probabilities allow for a clear
and fine-grained distinction between true and false pos-
itives. Note that the vertical parts of these lines there-
fore also indicate the maximum recall one can achieve,
the limit of which corresponds to the list of variant
calls provided by the caller. In other words, Varloci-
raptor is able to identify all, or nearly all of the true
variants that are provided as candidates. To further
solidify this observation, we investigated the posterior
probability distributions of Varlociraptor. Figure 4 and
S4 (Additional file 1) show that Varlociraptor’s prob-
abilities are indeed clearly separating true from false
positives.

Varlociraptor reliably controls false discovery rate
Varlociraptor summarizes the uncertainty about a puta-
tive variant in terms of a single and reliable quantity: an
estimate of the posterior probability for the putative vari-
ant to be somatic in the tumor. It remains to determine
which of the variants to output. This is a ubiquitous issue
in sequencing-based variant calling: optimally, one out-
puts maximum amounts of variants while ensuring that
the mistaken predictions among the output variants do
not exceed a preferably user-defined ratio. In other words,
we would like to control the false discovery rate (FDR).
Note that establishing statistically sound FDR control in

variant discovery, to the best of our knowledge, amounts
to a novelty: all of the state-of-the-art methods that we
benchmarked against either cannot control FDR, or estab-
lish it through ad hoc methods, such that theoretical
guarantees cannot be provided.



Köster et al. Genome Biology           (2020) 21:98 Page 10 of 25

Fig. 4 Posterior probability distributions for somatic deletions. Results are grouped by deletion length, denoted as interval at the top of the plot. The
x-axis indicates the (PHRED-scaled) probability, and the y-axis indicates relative amounts of calls with this probability. The distributions of posteriors
for true-positive calls are shown as solid lines; the distributions of posteriors for false-positive calls are shown as dotted lines

For Varlociraptor, it is rather straightforward to estab-
lish FDR control: well-known theory [28] points out how
to achieve maximally large output at a desired FDR, when
working with Bayesian type posterior probabilities. See
Fig. 5 and S2 (Additional file 1) for the evaluation of
how Varlociraptor’s FDR control performs. In general,
the closer to the diagonal, the better FDR control can be
established by the user.
For deletions (Fig. 5), Varlociraptor controls FDR, in the

sense that across all deletion length ranges the curve is
on or below the diagonal, and that deviations from the
diagonal are small. The latter means that Varlociraptor
tends to be slightly conservative in some combinations
of length range and FDR threshold provided. One reason
contributing to this is that, induced by too coarse MAPQ

values or base quality scores, the resolution of posterior
probabilities may be limited.
As for insertions (Fig. S2 (Additional file 1)), which,

as we recall, are generally more challenging, Varlocirap-
tor equally achieves high-quality FDR control, across all
length ranges and FDR thresholds. There is one caveat:
for insertions of length 30–100 provided by Lancet [13],
Varlociraptor’s FDR is slightly greater than the threshold
specified by the user (and, although deviations are tiny, in
this sense does not control FDR). An explanation for this
is the modus operandi of Lancet: Lancet bases insertion
calls on microassemblies that are computed from all reads
mapping to the variant locus. This approach is reason-
able for large insertions, which do not fit into single reads,
because their length either exceeds the read length or



Köster et al. Genome Biology           (2020) 21:98 Page 11 of 25

Fig. 5 FDR control for somatic deletions. Results are grouped by deletion length, denoted as interval at the top of the plot. The axes denote the
desired FDR, provided by the user as input (x-axis) and the true achieved FDR (y-axis). A perfect FDR control would keep the curve exactly on the
dashed diagonal. Below the diagonal, the control is conservative. Above the diagonal, the FDR would be underestimated. Importantly, points below
the diagonal mean that the true FDR is smaller than the threshold provided, which means that FDR control is still established; in this sense, points
below the diagonal are preferable over points above the diagonal

are too long to show in single reads at full length. How-
ever, microassembly may also lead to false positives in
repetitive areas where both alignments and assemblies
can lead to ambiguities; note that Lancet only reaches
a precision of 90% for larger insertions. Varlociraptor,
at this point in time, cannot quantify all uncertainties
emerging from microassemblies—we consider it a highly
interesting future work to also quantify uncertainties that
are associated with microassemblies (see the “Discussion”
section).

Varlociraptor accurately estimates variant allele frequency
Figure 6 and S3 (Additional file 1) show the difference
between the true VAFs and the ones predicted by Varloci-
raptor, henceforth referred to as prediction error. The first
observation is that the prediction error is approximately
centered around zero in all cases, which is the desired

scenario. We further investigated the effect of sequencing
depth on the accuracy of the VAF estimates. Figures S6
and S7 (Additional file 1) show how the prediction error
varies relative to sequencing depth (number of non-
ambiguously mapped fragments overlapping the variant
locus), denoted by n and true VAF, denoted by θ∗. For
each combination of n and θ∗, we determine an expected
baseline error, modeling that one samples n fragments
each of which stems from a variant-affected genome copy
with probability θ∗. In other words, the expected base-
line error is governed by a binomial distribution B(n, θ∗).
Accordingly, we determine:

1
n

√
nθ∗(1 − θ∗),

that is the standard deviation of B(n, θ∗), divided (nor-
malized) by the depth, as the expected baseline error.
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Fig. 6 Allele frequency estimation for somatic deletions. Results are grouped by deletion length, denoted as interval at the top of the plot. The
horizontal axis shows the true allele frequency; the vertical axis shows the error between predicted allele frequency and truth. The observable true
allele frequencies are a result of the subclone structure used in the simulation process outlined in Fig. 2. Note that there are only few data points for
allele frequencies below 0.125 with variant sizes above 30 bp. In consequence, those box plots have to be considered with care

This establishes the theoretical optimum of a VAF esti-
mation procedure. In other words, no sound estimator
can achieve smaller error in prediction. We see that, on
average, our prediction is close to this theoretical opti-
mum. Further, the accuracy of VAF estimates increases on
increasing sequencing depth, which is the desired, logical
behavior. In summary, these results point out that the esti-
mates are sound, and even close to what one can optimally
achieve in theory. A possible explanation for the remain-
ing small deviations from the theoretical optimum are
reads that stem from different loci and because of ambigu-
ity in placement get aligned to the variant locus. If the read
mapper is unable to reflect such ambiguity in the MAPQ
score, for example, because the true locus of origin is due
to the variation not properly represented in the reference
sequence, our model is as well not able to properly reflect
this in the allele frequency estimation. We expect such
problems to mitigate with longer reads and more accurate
(even non-linear) reference genomes in the future.

Varlociraptorachieves superior concordanceaboveVAFof 20%
We applied all callers (see the “Tools” section) on the four
replicates of cancer-control genome pairs described above
(the “Data” section), using their default parameters. In all
analyses, because of the lack of prior knowledge available,
Varlociraptor assumed a purity level α of 100%. We then
performed a concordance analysis in the following way.
For each caller, we collected calls for each of the four

replicates, both when run in stand-alone fashion and
when postprocessing calls with Varlociraptor. For each
of the calling strategies, we then computed matchings
across the four replicates as described at the beginning
of the “Experiments” section. For each calling strategy,
we then constructed a graph where each node represents
one variant call in one replicate, and edges indicate that
two calls (from different replicates) are matched. We then
consider the connected components of this graph: any
non-trivial connected component (that is any connected
component consisting of more than one node) counts as

concordant call. We then determine concordance as the
ratio of concordant calls over all connected components.
In Fig. 7 and S5 (Additional file 1), we display for each

possible VAF, the concordance of all calls with an at least
as high VAF. In other words, for each VAF threshold t ∈
[ 0, 1] , we display the concordance all calls with a VAF≥ t.
To allow for a fair comparison, we use Varlociraptor’s VAF
estimates for all calling strategies. It becomes immediately
evident that Varlociraptor achieves superior concordance
for VAFs of 20% and higher.

Varlociraptor’s variant counts of VAF below 20%agree with
the theoretical expectation under neutral evolution
When inspecting all calls with a minimum VAF below
20% (i.e., t < 0.2, see above), Varlociraptor’s concor-
dance drops below the rates achieved by callers run in
a stand-alone fashion. This does not mean, however,
that Varlociraptor’s performance is worse. Note first that
Strelka and Lancet, which appear to have superior con-
cordance, raise only very few (and, as we will point out
below, according to evolutionary models too little) dis-
coveries. This can be seen in the right panels of Fig. 7
and S5 (Additional file 1). In contrast, Varlociraptor raises
substantially more discoveries at these frequencies. Sec-
ond, for low-frequency variants, data may not reach the
necessary degree of certainty (which leads to a call by Var-
lociraptor) in sufficiently many of the four samples, and,
since the four replicates were raised in different labora-
tories, low-frequency variants unique to samples can be
expected [34].
To explore this further and assess whether the larger

numbers of low-frequency calls provided by Varlociraptor
are potentially correct, we compared the somatic vari-
ant count distributions with the theoretical expectation
under neutral evolution (see gray lines in the right panels
of Fig. 7 and S5 (Additional file 1)). For this, we employ
the tumor evolution model by Williams et al. [26] and
calculate the expected number of somatic variants of at
least allele frequency f as:
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Fig. 7 Concordance of somatic deletions on real data. For Varlociraptor, the interval between all calls with a posterior probability of at least 0.9 and
at least 0.99 is shown as shaded area. Left: concordance vs. minimum allele frequency. Right: number of calls vs. minimum allele frequency. The
different gray lines depict the theoretical expectation at different effective mutation rates according to Williams et al. [26] (see text)

M(f ) = μ

λ

(
1
f

− 1
fmax

)
.

Here, μ is the somatic mutation rate, λ is the growth
rate, and fmax is the maximum clonal allele frequency.
Because there are no reliable estimates for fmax available,
we set fmax = 1.0. We then plot the expected counts at
various values of μ

λ
(the effective mutation rate). It can

be seen that the counts of low-frequency variants pro-
vided by Varlociraptor (shaded violet and green areas)
are closer to the theoretical expectation than those of
Lancet and Strelka (dotted violet and green lines). This is
an indication that, by evolutionary principles, it is likely
that many low-frequency calls that were not recognized as
concordant are still correct.

Discussion
We have chosen to rely on external tools for the discovery
of variants and focus on providing a sound and rigorous
statistical treatment of the differential analysis (or the clas-
sification) of variants into the events relevant for somatic
variant calling. A benefit of this strategy will be that Var-
lociraptor can be conveniently integrated in large-scale
projects, as a postprocessing step in production-quality
somatic variant calling pipelines. This particularly applies
when projects are run by large consortia that manage var-
ious, often heterogeneous combinations of variant callers:
as per its design, Varlociraptor offers the first approach
that is able to analyze sets of variants raised by differ-
ent callers, all of which come with their own strengths,
weaknesses, and blind spots, in a statistically unifying way.
Because Varlociraptor preserves and combines the indi-
vidual strengths of the callers while eliminating any of

their particular weaknesses, it is able to provide substan-
tially improved variant calls. In summary, the application
of Varlociraptor has the potential to lead to substan-
tial increases in true somatic indel discoveries—possibly
even overwhelming in certain size ranges—in large-scale
matched tumor-normal genome sequencing projects.
The technical challenge has been to overcome a well-

known and notorious computational bottleneck that
relates to the quantification of the uncertainties affect-
ing the differential analysis. Thereby, not only ambiguities
in terms of gap placement and aligning reads in gen-
eral, which had been dealt with in the literature abun-
dantly before, but also effects such as cancer heterogeneity
(implying uncertain variant allele frequencies), purity of
tumor samples, bias in terms of sampling indel-affected
fragments, and strand bias are major factors. We have
presented, to the best of our knowledge, the first model
that allows to capture all relevant effects and quantify all
inherent uncertainties computationally efficiently. In par-
ticular, we want to stress that the presented model is the
first approach for somatic variant calling that takes strand
bias—as a major source for systematic artifacts—into a
statistically comprehensive account, which is not possible
if strand bias is quantified through independently raised
auxiliary scores. Note that for germline calling, integra-
tion of strand bias into the statistical model is imple-
mentated in Freebayes [38], albeit not yet mentioned in
the corresponding preprint and not considering mapping
quality as done in the integration presented here.
An important aspect is the fact that the presentedmodel

can be considered as a “white box,” in the sense that all
parameters have a direct biological interpretation. Hence,
it supports the investigation of variant calls at different
levels of detail, depending on the research question. First,
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one applies global filtering via FDR control. The remain-
ing calls can optionally be investigated more closely, by
looking at the estimated allele frequencies and their pos-
terior distribution, the estimated sampling bias (see the
“Sampling probability” section), the likelihoods and strand
support of each fragment with associated mapping qual-
ities, and, finally, the read alignments themselves (if nec-
essary). This becomes particularly important in the era of
personalized medicine, where variant calls for individual
patients might lead to therapy decisions, requiring utmost
certainty and transparency in the decision process.
Because the statistical model comprehensively

addresses all relevant effects and related uncertainties,
filtering the posterior probabilities derived from the
model gives immediate rise to accurate and statistically
sound (fully Bayesian) FDR control, for the first time in
the variant calling field.
The advantage of such a straightforward and statisti-

cally interpretable filtering procedure becomes apparent
when comparing it with the methodology of prior state-
of-the-art approaches: so far, they have been relying on
a variety of (often independently raised) scores, where
combinations of (often manually) fine-tuned default
thresholds are supposed to ensure that predictions con-
tain reasonably little amounts of false discoveries. Mod-
ifying these combinations of scores in order to change
the default FDR, provided by the developers through the
default settings, is tedious, difficult, and error-prone, if
not entirely impossible.
The analysis of somatic variants often serves the pur-

pose to yield further insight into the clonal structure of
a tumor which includes to assess the allele frequencies of
somatic variants appropriately. Varlociraptor, again as per
its design, does not only assess the probability of indi-
vidual putative somatic variants to be true discoveries,
but also equips them with an estimate for their allele fre-
quency. We have demonstrated that the corresponding
VAF estimates are of almost optimal accuracy.
Still, as always, there is room for improvements. First,

Varlociraptor so far only deals with insertions, deletions,
and single nucleotide variants (which are not analyzed
in this work). Note however the framework presented is
generic in terms of its dependency structures. Therefore,
efficient computation of the central likelihood function
is also warranted for other variant classes; the only thing
required is to adapt the computation of the typing uncer-
tainty (see “Computing ai, pi, and oi” section).
Second, we have been focusing on second-generation

paired-end reads in this treatment, motivated by the fact
that the vast majority of reads sequenced to date belong
to this class. However, our model is entirely agnostic to
any particular choice of sequencing platform and can
be used without any further adaptations: the only basic
requirement is that the sequencing/mapping protocol in

use yields (sufficiently reliable) MAPQ values. Any par-
ticular sequencing/mapping-specific issues will be taken
care of by the re-alignment step that Varlociraptor rou-
tinely makes use of for accurately quantifying alignment-
related uncertainties. When re-parameterizing the pair
HMM that underlies the re-alignment step (which reflects
a straightforward adaptation) to emerging long-read tech-
nologies like Nanopore (https://nanoporetech.com) or
SMRT sequencing (https://www.pacb.com/smrt-science/
smrt-sequencing), Varlociraptor will be particularly apt
for dealing with insertions and deletions within repeat
regions.
Third, all quantities relating to uncertainties or spelled

out probabilities that Varlociraptor (comprehensively)
provides can be used further in a whole range of down-
stream analyses. Intriguing examples of such potential
applications are the probabilistic assessment of larger
somatic gains and losses, or the (partial) phasing of tumor
subclones, which we will explore in future work.
Fourth, note that the ever more common use of

unique molecular identifiers (UMIs) also offers statisti-
cally sound ways to address PCR stutter errors that arise
when amplifying DNA molecules harboring short tan-
dem repeat (STR) extensions prior to sequencing, which
leads to ambiguities when removing duplicates [39]. Note
further that without using UMIs, such ambiguities can-
not be quantified in a statistically sound way. If UMIs are
available, “smart deduplication” is possible in theory and
already being implemented (https://github.com/rust-bio/
rust-bio-tools).
Fifth, when aiming for the aggregation over calls from

multiple callers that target the same type and size of
variants, an important aspect is the merging of variants
being called from more than one caller into a single
representation. This is particularly challenging for indels
and structural variants, which can, driven by alignment
ambiguity, be represented in various different ways. With
future releases of Varlociraptor, we aim to provide a strat-
egy to merge such variant calls under consideration of
alignment and mapping uncertainty. This will also enable
a fair comparison between Varlociraptor and ensemble
approaches like SmuRF [8].
Finally, it is important to note that the computational

insights and the model presented in this work is, although
motivated by, not at all limited to somatic variant call-
ing. In fact, it turns out that it can be generalized towards
arbitrary variant calling scenarios, where distinguishing
between variants affecting the primary tumor and variants
showing in metastases or relapse tumors, or distinguish-
ing variants recurringly showing in different individual
tumors from variants that do not, are immediate, rele-
vant examples. The latest release of Varlociraptor already
provides a variant calling grammar, as an interface for
defining such scenarios (https://varlociraptor.github.io/

https://nanoporetech.com
https://www.pacb.com/smrt-science/smrt-sequencing
https://www.pacb.com/smrt-science/smrt-sequencing
https://github.com/rust-bio/rust-bio-tools
https://github.com/rust-bio/rust-bio-tools
https://varlociraptor.github.io/docs/calling#generic-variant-calling
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docs/calling#generic-variant-calling) and thereby a foun-
dation for a unifying theory of variant calling, enabling us
to explore entirely new fields of applications.

Conclusions
We have presented a statistical framework for the calling
of somatic insertions and deletions from matched tumor-
normal genome samples whose application has yielded
substantial increases in terms of true discoveries, while
safely limiting the amount of false discoveries. The frame-
work is implemented in an easy-to-use open-source soft-
ware, called Varlociraptor (https://varlociraptor.github.
io). In comparison with the state of the art, we have
demonstrated to double or even triple the amount of true
discoveries while not increasing the false discovery rate
(FDR), or suppressing it even further. Because the statis-
tical model comprehensively addresses all relevant effects
and related uncertainties, filtering the posterior proba-
bilities derived from the model gives immediate rise to
accurate and statistically sound FDR control, for the first
time in the variant calling field. The model is extensible
to other scenarios than somatic indel calling (any variant
type, arbitrary sample relations and contaminations, other
data types like RNA-seq and single-cell sequencing), ulti-
mately yielding a unified theory of variant calling, which
is already partially available in Varlociraptor and will be
completed in the future.

Methods
Notation
We denote observable variables by Latin capital letters
(e.g., Z). Realizations of these variables are denoted by
small Latin letters (e.g., z). Hidden/latent variables are
denoted by small Greek symbols. Vectors are denoted by
boldface letters (e.g., Z = (Z1, ...,Zk) or z = (z1, ..., zk)).
We use super-/subscripts h and t for the healthy and the
tumor sample, respectively, and c to only refer to cancer
cells within the tumor sample.
Let us fix a particular variant locus; we then denote the

relevant read data in the healthy and the tumor sample
by Zh =

(
Zh
1 , ...,Z

h
k

)
and Zt = (

Zt
1, ...,Z

t
l
)
, respectively,

where each of the Zh
i ,Zt

j , i = 1, ..., k, j = 1, ..., l represents
one (paired-end) read that (or parts of which) became
aligned across or nearby the fixed variant locus. For select-
ing reads via alignments, we use BWA-Mem [23] in the
following, although the choice of particular aligner is free,
as long as the aligner outputs a MAPQ value, which quan-
tifies the certainty by which the reads stem from the locus
under consideration.
By variant allele frequency (VAF), we refer to the frac-

tion of genome copies in the sample affected by the vari-
ant. We denote this (unknown) frequency in the healthy
and the tumor sample by θh and θt , respectively. Since

healthy cells are diploid, θh is either 0, 1/2, or 1 correspond-
ing to absence, heterozygosity, and homozygosity, respec-
tively, when dealing with a germline variant. It is common
that healthy cells, beyond germline variation, also exhibit
somatic mutations. Somatic variants that affect healthy
cells usually occur at subclonal rates, i.e., are generally
not characteristic in terms of giving rise to subpopula-
tions among the healthy cells. It is therefore reasonable to
assume that somatic variants affect only less than half of
the cells, reflected by allowing θh ∈ (0, 0.5).
Prior to variant analysis, knowledge about θt is usually

not available, because only variant analysis itself can yield
insight into the clonal structure of a tumor. It is therefore
reasonable to assume that θt ∈[ 0, 1], that is, we allow any
possible VAF to apply for a somatic variant in a tumor cell.
A tumor genome sample can still contain non-negligible

amounts of healthy cells, which affects our considerations.
Therefore, let α ∈[ 0, 1] be the purity of the tumor genome
sample, that is, the relative amount of fragments in the
sample that stem from a cancerous genome copy. Thus,
1 − α is the relative amount of fragments that stem from
a healthy genome copy from within the tumor genome
sample. In addition to θt (the tumor allele frequency) and
θh (the healthy allele frequency), we introduce θc ∈[ 0, 1],
which describes the allele frequency in the cancer cells
only. We obtain the relationship:

θt = α · θc + (1 − α) · θh, (8)

i.e., θt is a mixture of the frequencies among the cancer
and the healthy cells that are in the tumor sample.
Finally, strand bias tends to introduce non-negligible

issues in variant analysis. Our analyses are affected by
strand bias as well. Strand bias refers to the fact that dur-
ing the sequencing process, certain sequence motifs can
cause the sequencing process to slow down, or even tem-
porarily stall. If such delays occur, systematic sequencing
artifacts affect the reads. Because the motif disappears
when considering the complementary strand (unless the
motif is a reverse complementary palindrome), artifact-
inducing motifs usually affect reads from only one of
the strands. This implies that the occurrence of artifacts
depends on the origin of the read: artifacts can only affect
reads from one of the strands, either the forward or the
reverse strand, while reads sampled from the other strand
are not affected by the sequencing artifact, see [40] for
more details.
In summary, there are three possible cases we need to

deal with: first, a putative variant affects only reads sam-
pled from the reverse strand; second, the putative variant
affects reads from forward and reverse strands at equal
rates; or third, the putative variant only affects reads sam-
pled from the forward strand. The exclusive support of a

https://varlociraptor.github.io/docs/calling#generic-variant-calling
https://varlociraptor.github.io
https://varlociraptor.github.io
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variant by reads from only one of the two strands is indica-
tive of an artifact [41]. The goal is to remove such artifacts
from the output.
We approach this by introducing a variable β taking val-

ues in
{
0, 12 , 1

}
reflecting the three cases from above (so

β = 1 reflects that the variant only shows on reads that
stem from the forward strand, and so on). In other words,
β reflects the probability that a read that is associated with
the variant stems from the forward strand.

Themodel
We present a graphical model that captures all depen-
dency relationships among the variables relating to the
computation of L

(
θh, θc,β | Zh,Zt

)
while taking all major

uncertainties into account (see Fig. 8b).
Beyond observable variables reflecting observable read

dataZh
i , i=1, ..., k,Zt

j , j=1, ..., l and latent variables θh, θc,β
for allele frequencies and strand bias, we first introduce
two additional latent variables. We denote with ξhi , ξ tj ∈
{0, 1} whether fragments Zh

i ,Zt
j are associated with the

variant
(
ξhi , ξ tj = 1

)
or not

(
ξhi , ξ tj = 0

)
. Further, ωh

i ,ωt
j ∈

{0, 1} indicate whether reads indeed stem from the locus(
ωh
i ,ωt

j = 1
)
or not (ωh

i ,ωt
j = 0).

Variables ωh
i ,ωt

j , ξhi , ξ tj refer to the abovementioned
three cases (a), (b), and (c). For example, ξhi = 1,ωh

i = 1
represents the case that read Zh

i stems from the locus of
interest and is indeed associated with the variant (case (c)
above). Note that the case ω = 0, which indicates that

the read does not stem from the locus (a), renders specifi-
cation of other variables obsolete, because this particular
read cannot provide information about the variant. Since
knowledge about realizations of the hyperparameters can-
not be observed at the time of the analysis, they are latent
variables.
In the following, we introduce the full model in three

steps, thereby deriving the conditional dependencies
between the different variables. First, we consider the
basic model. Second, we introduce impurity, modeling the
fact that the cancer genome sample also contains healthy
genome copies. This implies to distinguish between the
treatment of reads from healthy and tumor sample: while
reads from the healthy sample still follow the basic model,
processing reads from the tumor sample requires a mod-
ification to take impurity into account. Third, we intro-
duce strand bias, which would affect both reads from the
healthy and the tumor sample and thus requires to apply
modifications for both parts.

Part 1—Foundations: alignment and typing uncer-
tainty. We first model the two major sources of uncer-
tainty, (a) alignment uncertainty and (b) typing uncer-
tainty. Let Zi, i = 1, . . . , k be the observable alignment
data. Alignment uncertainty is handled via:

ωi ∼ Bernoulli (πi) (9)

where πi reflects the probability that the ith read has
been aligned to the correct position in the genome. Esti-
mates for πi are provided by the aligner of choice, via the

Fig. 8 Left: visualization of the parameter space 
 of the VAFs. Orange: somatic variants agree with (θh , θc) ∈ {0} × (0, 1], which means that no
healthy cells have the variant (θh = 0), while some cancer clones do have the variant (θc > 0). Germline variants (blue) are described by θh ∈ { 12 , 1}
and absent variants (red dot) by θh = 0, θc = 0. Subclonal somatic variants in the healthy (normal) tissue are described by θh ∈ (0, 0.5). Right:
diagram of the model presented in the “The model” section (white circles, latent variables; gray circles, observable variables). Each column
corresponds to one alignment (Zhi or Ztj ) with its hyperparameters ξhi ,ω

h
i or ξ

t
j ,ω

t
j . Due to (potential) sample impurity (denoted by α in the text), θh

has an influence on the alignments Ztj from the tumor sample
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reportedMAPQ values [42]. Note that for amulti-mapped
read, the different πi that apply for the different possible
alignments of that read are supposed to sum up to 1. This
is important if one read gets mapped to several putative
indel loci such that the read is considered several times.
For simplicity and performance reasons, our implementa-
tion of themodel in Varlociraptor currently only considers
the primary alignment. It is planned to optionally enable
the consideration of all alternative (secondary) alignments
as well. Typing uncertainty can be modeled as:

ξi ∼ Bernoulli (θτ ) . (10)

Thereby, the allele frequency θ , as per its definition,
reflects the probability to sample a read from a variant-
affected genome copy. Further, τ reflects the probability
that, if sampled from the variant-affected copy, the read
indeed covers the variant. That is, the product θτ reflects
to sample a fragment that is truly affected with the variant
(and hence provides real evidence about the variant), see
the “Sampling probability” section for how τ is computed.
Note that θ and τ vary depending on whether Zi refers
to fragment data from the healthy

(
Zh
i

)
or the tumor

genome (Zt
j ). Appropriate choices for θ , τ are specified in

the paragraph about impurity below.
Whether ξi = 1 or ξi = 0 is generally not immediately

evident from the observed (paired-end) read Zi, leading to
typing uncertainty. We define:

Zi | ξi,ωi ∼

⎧⎪⎨
⎪⎩

pi if ξi = 1,ωi = 1
ai if ξi = 0,ωi = 1
oi if ωi = 0

(11)

where ai, pi, and oi are the probability distributions that
reflect the situation that Zi stems from a genome copy
in which the indel is either present or absent, or comes
from an (unknown) other locus. In the last case, Zi is sup-
posed to have no influence on the posterior probability
distribution of θ .
In order to illustrate the nature of pi, ai, and oi, let us

consider a simplified case. The detailed definition can be
found in the “Computing ai, pi, and oi” section.We denote
two different haplotypes Href and Hvar. The former repre-
sents the reference sequence (no variant) and the latter the
alternative (variant affected) sequence at the considered
locus. Let x be a particular read. Let further:

Pref(x) and Pvar(x) (12)

be the probabilities that x has been sampled from Href
or from Hvar, respectively. Because x may contain errors,
one needs to take the sequencing error profile of x into
account when aiming at accurate computation of Pref(x)
and Pvar(x). The error profile is provided via the base

qualities reported by the sequencing machine. Base quali-
ties are reported along with read alignments in BAM files
(https://samtools.github.io/hts-specs/SAMv1.pdf).
As described in earlier work [43], probabilities (12) can

be reliably computed by means of a Pair HMM whose
parameters refer to the base quality profile of x, thereby
appropriately accounting for the sequencing errors affect-
ing x. Following this well-approved rationale, we model:

ai(Zi = x) def= Pref(x) and pi(Zi = x) def= Pvar(x) (13)
Note that for the sake of a clear presentation, we have

omitted the detail that pi, ai also reflect considerations
about the fragment length distributions of the involved
reads, see the “Computing ai, pi, and oi” section for how
ai, pi, and oi are computed in full detail.
Finally, oi reflects the case that x does not stem from

the locus. Without further knowledge available—which is
the case at the time of analysis—it is reasonable to assume
that oi is equal for all possible reads x. In other words, it
is reasonable to assume that oi reflects a uniform distribu-
tion. The only detail to consider (which follows from the
theoretical statements listed in the “Statements” section)
is that the particular value o(Zi = x) needs to scale
right relative to pi(Zi = x) and ai(Zi = x), see again
the “Computing ai, pi, and oi” section for the respective
details.

Part 2—Impurity. Let α be the purity of the tumor
genome sample. In turn, 1 − α is the ratio of fragments
stemming from a healthy genome copy, when sampled
from the tumor sample. Impurity does not affect the
healthy sample, so (9), (10), (11), and (13) apply with-
out further modifications for the healthy sample: vari-
ables can be indexed with super- or subscript h as they
appear, for example, ωh

i ∼ Bernoulli(πh
i ) in (9) or ξhi ∼

Bernoulli(θhτh) in (10).
However, variables referring to the tumor sample

(indexed using super- or subscript t) require different
treatment. Let Zt

j , j = 1, . . . , k be the observable read data
in the tumor sample. First, note that impurity does not
affect the degree of certainty of read alignments. So, (9)
applies without modifications:

ωt
j ∼ Bernoulli

(
π t
j

)
(14)

Modeling typing uncertainty however requires changes.
Recalling (8), we compute:

ξ tj ∼ Bernoulli (θtτt)
(8)= Bernoulli (αθcτt + (1 − α)θhτt)

(15)

This reflects that if reads stem from a cancerous genome
copy, which happens with probability α, variables θc, τt
apply, and if stemming from a healthy genome copy, which
happens with probability 1−α, variables θh, τt apply. Note

https://samtools.github.io/hts-specs/SAMv1.pdf
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that although stemming from a healthy genome copy (thus
θh), still τt applies, because the healthy genome copy was
sampled from the tumor sample and τ is specific to the
sample, healthy, or tumor (see the “Sampling probability”
section for details).
Equations (11) and (13) remain unchanged, that is,

super- and subscripts t can be introduced without further
modifications, because impurity does not matter in these
considerations.

Part 3—Strand bias. In the following, we will be dealing
with paired-end read data. We will therefore be focusing
on this case. Note however that our model also immedi-
ately applies for single-end and mate-pair read data, via
some straightforward modifications.
For the sake of simplicity, let us consider reads from

only the healthy sample, and for the sake of a clear pre-
sentation, we omit super- and subscripts. That is, we write

Z = (Zi)
k
i=1 when meaning Zh =

(
Zh
i

)k
i=1

, and we simply
write θ , τ when meaning θh, τh. Extending the following
arguments to the tumor sample is straightforward.
Following the usual protocols, in a paired-end read, one

read end stems from the forward strand, while the other
end stems from the reverse strand. When accounting for
strand bias, it is important to track whether the forward or
the reverse strand is associated with the variant, or even
both of them (reflecting the situation of a self-overlapping
read), because variants showing exclusively in only one of
the types of ends are likely to reflect artifacts.
We model strand direction of read pairs by expanding

Z into Z = (R, S), distinguishing between the read data
themselves R = (Ri)

k
i=1 and variables S = (Si)ki=1. Each of

the Si takes values in {−,+}, reflecting whether the reverse
(−) or the forward (+) end of read pair i is associated
with the variant. For the sake of a clear presentation, we
omit the case that a paired-end read has self-overlapping
ends, such that it is possible that both of its ends are
associated with the variant; see the “Strand bias: techni-
cal details” section for the corresponding, straightforward
modifications.
The value of Si only has meaning if the ith read pair

indeed stems from the variant haplotype, which refers to
the case ξi = 1,ωi = 1 in terms of the earlier latent vari-
ables. Ifωi = 0, that is the ith read pair does not stem from
the variant locus, or if ωi = 1, ξi = 0, that is, if the ith
read pair stems from the locus but is associated with the
reference haplotype, strand bias cannot affect the ith read
pair. Realizations of Si are observable: we retrieve the cor-
responding values from the initial standard read aligner in
the obvious way. Note that it is important to retrieve the
realizations from the standard alignment, but not the re-
alignment, because standard, reference-based alignments
are a major source of strand bias artifacts.

Integrating the Si, the likelihood function extends to:

L(θ ,β | Z = (R, S)) ∝ P(Z = (R, S) | θ ,β) =
k∏

i=1
P(Ri, Si | θ ,β)

So, when treating strand bias, we have to specify how to
evaluate P(Ri, Si | θ ,β). We compute:

P(Si,Ri | θ ,β) = P(Si | Ri, θ ,β) × P(Ri | θ ,β)

= P(Si | Ri, θ ,β) × P(Ri | θ) (16)

where the last equality follows from the fact that only Si
depends on β , while Ri, the observed read sequence itself,
does not depend on β . Note that Ri could be identical
both for (+,−)-oriented and (−,+)-oriented read pairs,
while only one of those orientations gives rise to a vari-
ant artifact. Computing P(Ri | θ) is identical with the
computations displayed for the cases not involving strand
bias, see parts 1 and 2. So, it remains to consider P(Si |
Ri, θ ,β). We refer to the “Strand bias: technical details”
section where we elaborate on the corresponding details;
here, we conclude that (16) points out that strand bias
can be handled efficiently by integrating additional factors
P(Si | Ri, θ ,β) into the overall likelihood function.
As further outlined in the last paragraph of the “Strand

bias: technical details” section, the factor P(Si | Ri, θ ,β)

in (16) has no influence on the likelihood of θ if β = 1
2 .

This is important, because only the loci where β = 0
or 1 reflect strand bias artifacts and are to be removed
from further considerations. Variants observed at the
loci where β = 1

2 are no strand bias artifacts. There-
fore, the desirable scenario is to deal with them as if
strand bias was not to take into account. This means that
L

(
θ , 12 | Z = (R, S)

)
should be proportional to L(θ | Z),

as treated before introducing strand bias, see again the
“Strand bias: technical details” section for further straight-
forward computations that prove this.

Computing ai, pi, and oi
We now specify distributions ai and pi for read pairs Zi.
We note in passing that our model does in general not
depend on a particular sequencing technology, so can also
deal with single-end third-generation sequencing reads
or other protocols, see the “Discussion” section for some
final remarks on that point.
As usual, let us fix a particular locus harboring a putative

variant and denote the corresponding reference haplotype
of that locus by Href and the alternative, variant-affected
haplotype of the locus by Hvar. We compute Hvar by
the application of the putative variant to the reference
sequence (Href) without any additional changes.
Let us consider a particular read pair x = (x1, x2), con-

sisting of two ends x1, x2 (which in general are of equal
length), that was found to align with the putative vari-
ant locus through the use of a standard read aligner (e.g.,
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BWA-MEM, [44]). After having collected x, we discard all
standard read alignment information about x, apart from
one detail: we store z, the length of the alignment com-
puted by the standard read aligner. Note that z is evaluated
as the distance between the rightmost alignment coor-
dinate of the right end (x2) and the leftmost alignment
coordinate of the left end (x1), including clipped bases.
The reason to discard the standard read alignment

information is as follows. Since the standard read aligner
does not know the true genome underlying the sample and
instead aligns against a reference genome, read alignments
coming from variant alleles can be biased in multiple
ways. When dealing with insertions and deletions, these
biases include well-known effects referring to mistaken
gap placement—note that placing gaps in alignments cor-
rectly has remained a notorious issue [20]. Incomplete
gaps (soft-/hard-clipped read alignments) output by the
standard aligner add to these difficulties; therefore, re-
aligning clipped alignments can be of particular value, see
Fig. 9a for an illustration and Fig. S12 (Additional file 1)
for a real world example.
Instead of using standard read alignments, we re-align

x with both haplotypes Href and Hvar using a Pair HMM
[45], as it was initially suggested by [43]. The Pair HMM
appropriately accounts for possible sequencing errors in x,
because its parameters reflect the sequencing error (base
quality) profile of x, and thereby reflects that x has been
sampled as a fragment from Href or Hvar, by providing
either x and Href or x and Hvar as input pair of sequences.
We derive values ai(x), pi(x),and oi(x) from these re-

alignments, reflecting probabilities that x has been sam-
pled from Href (ai) or from Hvar (pi), while oi, reflecting
the probability that x does not stem from the locus, needs
to scale right with ai and pi, in order to ensure numerical
stability.
For aligning x with Href and Hvar using a Pair HMM, we

need to consider the issue that we need to specify exactly
what Href and Hvar should look like. Of course, Href and

Hvar cannot reflect whole-chromosome length sequences,
because it is infeasible by runtime to align x against a full-
length chromosome. Hence, we need to cutHref out of the
full-length chromosome in an appropriate way. In partic-
ular, it is favorable that the parts of Href and Hvar against
which x is aligned (i.e., the parts provided as input to the
Pair HMM) should be of equal length (or differ by one or
two basepairs, but not differ by the length of the indel,
for example), to avoid biases induced by the length of the
indel under consideration.
To do this, we proceed in six steps:

1. Let l be the coordinate of the variant locus in the
reference genome G. We determine
Href := G[ l − h, l + h], that is as a window of size 2h
in the reference genome around the variant locus
(Varlociraptor uses h = 64 by default). We then
obtain Hvar by applying the variant to Href. Note that
this is not yet the input for the Pair HMM.

2. Let x1 be the left end of the read pair x = (x1, x2).
The following computations are executed also for x2,
which happens entirely analogously. Taking x1 as the
pattern and Href or Hvar, respectively, as the text, we
apply Myers’ bitvector algorithm [46] and obtain
coordinates ar , br and av, bv determined such that,
relative to edit distance, the optimal occurrence of x1
in Href and Hvar is Href[ ar , br] and Hvar[ av, bv],
respectively. Note that by virtue of Myers’ bitvector
algorithm, the lengths of Href[ ar , br] and
Hvar[ av, bv], that is, br − ar + 1 and bv − av + 1, tend
to differ only by at most 1 or two basepairs, which is
the desired scenario. As mentioned above, we also
obtain such coordinates for the right end x2.

3. We finally specify a maximal edit distance d, and
compute:

ai,left(x) := PHMM(x1,Href[ ar − d, br + d] ) (17)
pi,left(x) := PHMM(x1,Hvar[ av − d, bv + d] ) (18)

Fig. 9 Dealing with evidence from alignments. The reference genome is displayed as a thin line at the top, with an example deletion highlighted in
red. Paired-end reads are displayed as two connected thick bars. Deletions within the alignment of a read are displayed as thinner region. Soft clips
in the alignment are dotted. Fragment origin is encoded by color (red = variant; black = reference). a Reads coming from the variant allele can be
aligned with soft-clipped ends or with the variant being encoded in the alignment itself. Due to ambiguities, the positions are not necessarily
perfectly aligned with the variant (see Fig. S12 (Additional file 1) for a real example). b Depending on the size of the variant and properties of the
read mapper on a specific genome, it can become less likely to obtain fragments from the variant allele. Here, the first and the second fragments are
mappable, and the third is not, because the soft clip would become too large to be considered by the read mapper
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where PHMM(x1,Href[ ar − d, br + d] ) and
PHMM(x1,Hvar[ av − d, bv + d] ) are computed by
means of the forward algorithm for Pair HMMs as
defined by [45]. Again, probabilities ai,right(x) and
pi,right(x) referring to the right read end x2 are
computed in the entirely analogous way, by replacing
x1 with x2 and coordinates ar , br , av, bv with
coordinates resulting from running Myers’ algorithm
with x2 as pattern and Href and Hvar as texts.

4. Let f specify the fragment length distribution
referring to the sequencing library protocol in use.
Here, we assume f to be approximately Gaussian and
hence specify it by its mean μ and standard deviation
σ . While, without any further adaptations, we can
work with arbitrary (empirical) fragment length
distributions.
We recall that z is the length of the (standard)
alignment of x. Note that z agrees with the length of
the underlying fragment if x is not affected by the
variant. If, however, x is affected by the variant,
which is of length δ, then the length of the underlying
fragment would evaluate as z + δ. Hence, we define:

ai,int(x) := f (z) (19)
pi,int(x) := f (z + δ) (20)

to reflect that ai,int is supposed to reflect that
alignment and fragment length agree, while pi,int is
supposed to reflect that they differ by the length of
the variant.

5. We combine the evidence for the left and right read
with the insert size by calculating:

ai(x) := ai,left(x) × ai,int(x) × ai,right(x) (21)
pi(x) := pi,left(x) × pi,int(x) × pi,right(x). (22)

6. Finally, we denote:

oi(x) := 1
2
(ai(x) + pi(x)). (23)

The formal justification for determining oi(x) as such
follows from the proofs provided in the “Statements”
section, which lists the formal statements that make
the theoretical foundation of our model.

Note that we discard all reads from being considered if
neither the left read end (x1) nor the right read end (x2)
overlap the variant locus as per their Pair HMM-based re-
alignments.
Finally, let us revisit the decision to combine evidences

of left and right reads with the insert size. Splitting up
of ai, pi into read end-specific factors would effectively
weaken the variant-related signals from reads that can
only be ambiguously placed, that is whose exact placement
remains dubious even after re-alignment. To understand
the advantage of combining evidences, consider a read x

whose first end supports the variant, which yields large
pi,left(x), but small ai,left(x), whereas the second end sup-
ports the reference, which yields large ai,right(x), but small
pi,right(x). In consequence, overall, both ai(x) and pi(x)
are approximately equal. The same argument holds, for
example, if one or both reads support the variant, but the
insert size does not. Following our model, reads x with
(approximately) equal ai(x) and pi(x) yield an approxi-
mately uniform probability distribution with respect to θ ,
the allele frequency of the variant, which is just our prior
distribution on θ . In other words, x does not contribute to
making a statement in favor of a particular (range of) θ ,
which is the correct scenario.

Sampling probability
See Fig. 9b for illustrations of the following. In the initial
step, we select reads using a standard read aligner, which
determines placement of reads by mapping them against
the reference genome. Because differences between non-
variant-affected reads and the reference sequence are
small, the standard read aligner will be able to align all
(or at least nearly all) of such reads successfully against
the putative variant locus. The situation is different for
reads that are affected by the variant. Because such reads
differ from the reference sequence by, in our case, an
insertion or deletion of considerable length, the standard
read aligner may fail to align such reads successfully. Such
failure occurs in particular if variant size and placement
within the read interfere unfavorably with the alignment
procedure. As a consequence, there can be a bias towards
reads from the reference allele.
The effect was first systematically treated in [47]. The

corresponding quantification means to assume that non-
variant-affected reads align against the locus with proba-
bility 1, while variant-affected reads align with sampling
probability τ , which is smaller than 1. The sampling
probability τ is a locus-, donor genome-, and sequencing-
specific parameter, because τ depends on the sequence
context, which varies relative to the locus considered and
also relative to the donor genome investigated as well as
the used sequencing protocol (in terms of read length and
targeted insert size). So, τ can be different for cancer and
control genome, which wemake explicit by dealing with τh
and τt , referring to the healthy (h) and tumor (t) genome.
In the following, we briefly specify how τ is com-

puted based on the considerations made by [47]. First, τ
depends on the fragment length distribution f, which can
be retrieved from the read aligner, see also the explana-
tions referring to formulas (19) and (20) above. Further, τ
depends on the number of bases δ the deletion or insertion
covers in the donor genome (deletion: δ = 0; insertion:
δ = length of insertion). It also depends on the number of
bases the aligner requires to be aligned with the reference
genome sequence upstream or downstream of the variant,
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in the upstream (left) or the downstream (right) read end,
respectively, which are referred to as kup and kdown. This
reflects that it is critical for a read aligner to get the outer
ends of a paired-end read mapped. Values kup and kdown
depend on the read aligner and the variant. In the fol-
lowing, k is one of kup or kdown, depending on whether
we consider the information referring to the upstream or
downstream read end; when dealing with single-end reads
(see below), k is unique. k can be estimated by inspect-
ing a representative subset of all aligned reads of a sample,
and recording the maximum deletion and insertion size
encoded in the CIGAR strings [48] of this subset of reads,
as well as the maximum soft clip size, retrieved from par-
tial alignments from that representative subset of reads. If
the variant is smaller than the maximum deletion or inser-
tion encoded in the CIGAR strings, we can set k = 0
because the variant is small enough to be part of the align-
ment. Otherwise, k can be set to the read length minus
the maximum soft clip size, that is, the smallest observed
partial alignment.
Let further o denote the fragment length (which is

unknown) and f denote the fragment length distribution
(see the “Computing ai, pi, and oi” section). Following
[47], we compute τ as:

τs =
∞∑
o=1

f (o)
o − δ − kup − kdown

o − δ
, (24)

where s = h, t specifies the healthy or tumor sample, see
above; note that all of f , kup, and kdown differ relative to
the sample. The formula reflects that one sums over all
possible fragment lengths, weighted by the probability to
sample a fragment of that length, and calculates the prob-
ability to get a fragment of that length aligned, relative to
the relevant parameters δ, kup, and kdown. Note that in case
of single end reads, (24) simplifies to:

τs = r − δ − k
o − δ

, (25)

with r being the read length.

Strand bias: technical details
In the following, observable strand bias variables Si will
take values in {−,+,±} to also reflect the case that a
paired-end read has self-overlapping reads both of which
are affected by the variant (±). Note that existence of a ±
read rules out strand bias, because it means that read ends
from both strands are affected by the variant.
Let us define:

A := {ωi = 1, ξi = 1} (26)
B := {ωi = 1, ξi = 0} (27)

C := {ωi = 0} (28)
D := B ∪̇ C (29)

and recall that strand bias can only occur if event A
applies, that is, if the read is indeed associated with the
variant. Note that A and D span the entire space of cases
(ωi, ξi) ∈ {0, 1} × {0, 1}, which allows to apply the law of
total probability. We obtain:

P(Si | Zi, θ ,β) = P(Si,A | Zi, θ ,β) + P(Si,D | Zi, θ ,β)

(30)

So, we will continue to put further focus on the two sum-
mands in (30). Let zi be the observed realization (the
read itself including its error profile) of Zi. For a clear
presentation of what follows, we define:

γA(Zi) := pi(zi)πiθτ and (31)
γD(Zi) = ai(zi)(πi(1 − θτ)) + oi(zi)(1 − πi).

For the first summand from (30), we compute:

P(Si,A | Zi, θ ,β) = P(Si | A,Zi, θ ,β) · P(A | Zi, θ ,β)

= P(Si | A,β) · P(A | Zi, θ)

(32)

where the last equation follows from the fact that, on the
one hand, given A and β , Si is independent of Zi and θ

(note that all information Si depends on about Z and θ is
captured by A) and, on the other hand, A is independent
of β , the strand bias. We continue:

P(A | Zi, θ) = P(A,Zi | θ)

P(Zi)
= 1

P(Zi)
P(Zi | A, θ)P(A | θ)

= 1
P(Zi)

P(Zi | A)P(A | θ) = 1
P(Zi)

γA(Zi)

where the second to last equation follows from the depen-
dency structure of the model, because Zi is independent
of θ given A, and the last equation follows from the fun-
damental considerations of part 1. Note at last that it is
reasonable (and common in analogous settings) to assume
that P(Zi), the prior probability to observe a read is con-
stant across all reads, so 1

P(Zi)
turns out to be a constant.

In summary, we obtain:

P(Si,A | Zi, θ ,β) ∝ γA(Zi) · P(Si | A,β). (33)

Recalling that read pairs were selected where at least one
of the ends overlapped the locus, let q1 and q2 = 1−q1 be
the probabilities to have one or both reads overlapping the
variant locus. Probabilities q1, q2 can be determined from
the insert size distribution provided by the read mapper,
in combination with the length of the read ends. Note
that usually q1 >> q2 and that for single-end sequenc-
ing, obviously q1 = 1, q2 = 0. Our considerations are then
finalized by providing the table:
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P(Si | A,β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if
{
Si = +,β = 1
Si = −,β = 0

1
2q1 if Si �= ±,β = 1

2
q2 if Si = ±,β = 1

2

0 if

⎧⎨
⎩
Si = +,β = 0
Si = −,β = 1
Si = ±,β �= 1

2 .

(34)

By entirely analogous considerations, we also obtain:

P(Si,D | Zi, θ ,β) ∝ γD(Zi) · P(Si | D,β) (35)

where here, however:

P(Si | D,β) = 1
3

for all combinations of realizations of Si,β

(36)

As an exemplary case, consider γA(Zi) = 0, γD(Zi) = 1,
reflecting the case that the read is not associated with the
variant with probability one. Here, we obtain that P(Si |
Zi, θ ,β) ∝ 1

3γD(Zi) for all choices of β . This means that
the ith read assigns equal likelihood to all choices of β ,
which is the correct scenario, because the ith read cannot
provide any information about β .
Consider also the opposite case, γA(Zi) = 1, γD(Zi) = 0,

reflecting full certainty about the read being associated
with the variant. If for example Si = +, the likelihood for
β = 0 is 0. Further (recalling that usually q1 >> q2, mean-
ing that q1 is close to one), the likelihood for β = 1 is
approximately double the amount as for β = 1

2 . This again
is the correct scenario.
Finally, we observe that if β = 1

2 , the factor P(Si |
Zi, θ ,β) in (16) has no influence on the likelihood of θ .
This is important, because we will only consider the loci
where β = 1

2 with large enough likelihood, and for such
loci, we will base our further decisions on the evaluation
of L(θ , 12 | Z, S). It is therefore essential that L(θ , 12 |
Z, S) is proportional to L(θ | Z), that is when not con-
sidering strand bias. Considering strand bias should only
lead to excluding variant artifacts—if variants are sup-
posed to be real, strand bias considerations should not
have an influence on decisions about whether variants
are somatic or not, or, more specifically, about what their
allele frequencies are.
To understand this, note that the only appearance of

θ in the computation of P(Si | Zi, θ ,β) is in the factors
γA(Zi) and γD(Zi). Note further that these factors deter-
mine to what degree the ith read makes a statement about
β : the larger γA(Zi) relative to γD(Zi), the stronger the
statement. If β = 1

2 , however, both P(Si | A,β) and
P(Si | D,β) evaluate as 1

2 , independently of the particular
realization of Si. Therefore, if β = 1

2 , varying θ does not
vary P(Si | Zi, θ ,β). Of course, still, varying θ varies (16)
because it varies P(Zi | θ). So, θ varies L(θ , 12 | Z, S), just
as if β was not considered. In summary, this is the desired
scenario.

Statements
We finally obtain the result outlined in the “Foundation
of the approach” section as a corollary to the following
theorem.

Theorem 3 Let Zh =
(
Zh
1 , ...,Zh

k

)
,Zt = (

Zt
1, ...,Zt

l
)

be the observable read data from a healthy and a tumor
sample, covering the locus of a putative variant. Then:

• (i) The likelihood function

L(θh, θc,β | Zh,Zt) =
k∏

i=1
L

(
θh, θc,β | Zh

i

)

×
l∏

j=1
L

(
θh, θc,β | Zt

j

)

factors into likelihood functions referring to
individual read pairs.

• (ii) Let Zi refer to any of the read data
Zh
1 , ...,Z

h
k ,Z

t
1, ...,Z

t
l and let ωi, ξi be its latent

uncertainty hyperparameters. Then:
L(θh, θc,β | Zi) = P(Zi | θh, θc,β)

=
∫

ξi ,ωi
P(Zi | ξi,ωi) × P(ξi,ωi | θh, θc,β) d(ξi,ωi)

(37)

Proof (i) follows immediately from the fact that the
Zh
i ,Zt

j are conditionally independent given θh, θc,β ; see
Fig. 8b. (ii) follows from application of the Chapman-
Kolmogorov equation, incombination with the dependency
relationships captured by ourmodel, see again Fig. 8b.

We distinguish between read data Zh
i from the healthy

sample and read data Zt
j from the tumor sample. In the

following, we make use of the fact that ωh
i and θh are inde-

pendent (see Fig. 8b). Let shi = P
(
Shi |ωh

i = 1, ξhi = 1,β
)

be the likelihood of the strand bias given read pair i as
defined in Eq. (34). We compute the likelihood function
for Zh

i =
(
Rh
i , Shi

)
, which does not depend on θc, as:

P
(
Zh
i |θh, θc,β

)
=

∫

ξhi ,ω
h
i

P
(
Zh
i |ξhi ,ωh

i ,β
)
× P

(
ξhi ,ωh

i |θh, θc
)
d

(
ξhi ,ωh

i

)

=
∫

ξhi ,ω
h
i

P
(
Zh
i | ξhi ,ωh

i ,β
)
× P

(
ξhi ,ωh

i | θh
)
d

(
ξhi ,ωh

i

)

= P
(
Zh
i | ωh

i =1, ξhi = 1,β
)
P

(
ωh
i =1, ξhi =1 |θh,β

)
+

P
(
Zh
i | ωh

i =1, ξhi =0,β
)
P

(
ωh
i =1, ξhi =0 | θh,β

)
+

P
(
Zh
i | ωh

i = 0,β
)
P

(
ωh
i = 0

)

= phi s
h
i (θhτh) πh

i + ahi 1/3(1 − θhτh)π
h
i + ohi 1/3

(
1 − πh

i

)

= πh
i

⎛
⎜⎝θhτhphi s

h
i︸ ︷︷ ︸

present

+ (1 − θhτh)ahi 1/3︸ ︷︷ ︸
absent

⎞
⎟⎠

︸ ︷︷ ︸
correctly mapped

+
(
1 − πh

i

)
ohi 1/3︸ ︷︷ ︸

incorrectly mapped

.

(38)
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Analogously, while slightly more involved due to the
purity considerations causing Zt

j = (
Rt
i , Sti

)
to depend on

both θh and θc, we compute:

P
(
Zt
i |θh, θc,β

) =
∫

ξ tj ,ω
t
j

P
(
Zt
j | ξ tj ,ωt

j ,β
)

× P
(
ξ tj ,ωt

j | θh, θc
)
d

(
ξ tj ,ωt

j

)

= P
(
Zt
j | ωt

j = 1, ξ tj = 1,β
)
P

(
ωt
j = 1, ξ tj = 1 | θh, θc

)
+

P
(
Zt
j | ωt

j = 1, ξ tj = 0,β
)
P

(
ωt
j = 1, ξ tj = 0 | θh, θc

)
+

P
(
Zt
j | ωt

j = 0,β
)
P

(
ωt
j = 0

)

= π t
i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α

⎛
⎜⎝θcβτtpti s

t
i︸ ︷︷ ︸

present

+ (1 − θcτt)ati 1/3︸ ︷︷ ︸
absent

⎞
⎟⎠

︸ ︷︷ ︸
from cancer cell

+

(1− α)
(
θhβτhpti s

t
i︸ ︷︷ ︸

present

+ (1−θhτh)ati 1/3︸ ︷︷ ︸
absent

)

︸ ︷︷ ︸
from healthy cell

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+(
1−π t

i
)
oti 1/3,

(39)

with sti = P
(
Sti | ωi = 1, ξi = 1,β

)
analogously to the

healthy case above. As can be seen, the integral turns into
a sum over the three cases {ωi = 0}, {ωi = 1, ξi = 0},
{ωi = 1, ξi = 1}, reflecting that Zi is either (1) incorrectly
mapped, (2) correct and not affected by the variant, or (3)
correct and affected by the variant. For computing pi, ai,
and oi, we need a linear runtime in the length of the con-
sidered window, since we are using a banded Pair HMM
(see the “Computing ai, pi, and oi” section). However, this
only needs to be done once for all likelihood computa-
tions in the parameter space. We can therefore infer the
following central corollary.

Corollary 1 L
(
θh, θc,β | Zh,Zt

)
can be computed in

O(k + l) operations.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s13059-020-01993-6.

Additional file 1: Supplement: This contains all supplementary sections
and figures referenced in the main text.

Additional file 2: Snakemake Report: A Snakemake report that allows to
interactively explore all figures shown in this article in the context of
workflow, parameters, software versions, and code.

Additional file 3: Review History.

Peer review information
Anahita Bishop was the primary editor of this article and managed its editorial
process and peer review in collaboration with the rest of the editorial team.

Acknowledgements
We thank David Lähnemann for fruitful discussions and help with
benchmarking, implementation, and performance optimization of
Varlociraptor.

Review history
The review history is available as Additional file 3.

Authors’ contributions
JK, LD, TM, and AS developed the method. JK, LD, and AS wrote the
manuscript. JK conducted the data analysis. JK implemented the software. LD
developed the prototypes of the software. All authors read and approved the
final version of the manuscript.

Authors’ information
Twitter handles: @johanneskoester (Johannes Köster); @tobiasmarschall
(Tobias Marschall); @ASchonhuth (Alexander Schönhuth).

Funding
JK was supported by the Dutch Scientific Organization (NWO) via Veni grant
016.173.076 (salary, data analysis, development of Snakemake). AS was
supported by funding from the NWO, via VIDI grant 639.072.309 (salary for AS,
JK, LD, study design, method development, writing).

Availability of data andmaterials
The Snakemake workflow containing the entire evaluation (see the “Data
analysis reproducibility” section) conducted in this work can be downloaded
from https://doi.org/10.5281/zenodo.3361700.
A Snakemake report that allows to interactively explore all figures shown in this
article in the context of workflow, parameters, software versions, and code is
provided as Additional file 2 (see below). The workflow needs two datasets as
input (see the “Data” section). The simulated dataset can be downloaded from
https://doi.org/10.5281/zenodo.1421298.
The real data can be downloaded from https://ega-archive.org/datasets/
EGAD00001002142.
Installation and usage instructions for running the evaluation workflow can be
found at https://github.com/varlociraptor/varlociraptor-evaluation.
The software Varlociraptor that implements the presented model can be
installed via Bioconda, following the instructions at https://bioconda.github.
io/recipes/varlociraptor/README.html. It is MIT licensed, and the source code
is available at https://github.com/varlociraptor/varlociraptor and via Zenodo
[49]. Varlociraptor is publicly available at https://varlociraptor.github.io and can
be easily installed via Bioconda (https://bioconda.github.io) [50].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Algorithms for Reproducible Bioinformatics, Genome Informatics, Institute of
Human Genetics, University Hospital Essen, University of Duisburg-Essen,
Essen, Germany. 2Dana-Farber Cancer Institute, Harvard Medical School,
Boston, USA. 3Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.
4Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen,
Germany. 5Institute for Medical Biometry and Bioinformatics, Medical Faculty,
Heinrich Heine University, Düsseldorf, Germany. 6Genome Data Science,
Faculty of Technology, Bielefeld University, Bielefeld, Germany.

Received: 16 September 2019 Accepted: 9 March 2020

References
1. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and

consquences of genetic heterogeneity in cancer evolution. Nature.
2013;501(7467):338–45.

https://doi.org/10.1186/s13059-020-01993-6
https://doi.org/10.5281/zenodo.3361700
https://doi.org/10.5281/zenodo.1421298
https://ega-archive.org/datasets/EGAD00001002142
https://ega-archive.org/datasets/EGAD00001002142
https://github.com/varlociraptor/varlociraptor-evaluation
https://bioconda.github.io/recipes/varlociraptor/README.html
https://bioconda.github.io/recipes/varlociraptor/README.html
https://github.com/varlociraptor/varlociraptor
https://varlociraptor.github.io
https://bioconda.github.io


Köster et al. Genome Biology           (2020) 21:98 Page 24 of 25

2. The International Cancer Genome Consortium. International network of
cancer genome projects. Nature. 2010;464(7291):993–8.

3. Weinstein JN, Collisson EA, Mills GB, Shaw Mills KR, Ozenberger BA,
Ellrott K, Shmulevich I, Sander C, Stuart JM, The Cancer Genome Atlas
Research Network. The Cancer Genome Atlas Pan-Cancer analysis project.
Nat Genet. 2013;45:1113–20.

4. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y.
Comprehensive evaluation of structural variation detection algorithms for
whole genome sequencing. Genome Biol. 2019;20:117.

5. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C,
Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic
point mutations in impure and heterogeneous cancer samples. Nat
Biotechnol. 2013;31(3):213–9. https://doi.org/10.1038/nbt.2514. Accessed
29 Jan 2020.

6. Saunders CT, Wong W, Swarny S, Becq J, Murray LJ, Cheetham K.
Strelka: Accurate somatic small-variant calling from sequenced
tumor-normal sample pairs. Bioinformatics. 2012;28(14):1811–7.

7. Sahraeian SME, Fang LT, Mohiyuddin M, Hong H, Xiao W. Robust cancer
mutation detection with deep learning models derived from
tumor-normal sequencing data. bioRxiv. 2019667261. https://doi.org/10.
1101/667261. Accessed 28 Jan 2020.

8. Huang W, Guo YA, Muthukumar K, Baruah P, Chang MM,
Jacobsen Skanderup A. SMuRF: portable and accurate ensemble
prediction of somatic mutations. Bioinformatics (Oxford, England).
2019;35(17):3157–9. https://doi.org/10.1093/bioinformatics/btz018.

9. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY:
structural variant discovery by integrated paired-end and split-read
analysis. Bioinformatics. 2012;28(18):333–9. https://doi.org/10.1093/
bioinformatics/bts378. Accessed 10 Mar 2013.

10. Layer RM, Chiang C, Quinlan AR, Hall IM. Lumpy: a probabilistic
framework for structural variant discovery. Genome Biol. 2014;15:84.

11. Cameron DL, Schröder J, Penington JS, Do H, Molania R, Dobrovic A,
Speed TP, Papenfuss AT. Gridss: sensitive and specific genomic
rearrangement detection using positional de bruijn graph assembly.
Genome Res. 2017;27:2050–60.

12. Chong Z, Ruan J, Gao M, Zhou W, Chen T, Fan X, Ding L, Lee AY,
Boutros P, Chen J, Chen K. novoBreak: local assembly for breakpoint
detection in cancer genomes. Nat Methods. 2017;14(1):65–67. https://doi.
org/10.1038/nmeth.4084. Accessed 29 Jan 2020.

13. Narzisi G, Corvelo A, Arora K, Bergmann EA, Shah M, Musunuri R, Emde
A-K, Robine N, Vacic V, Zody MC. Genome-wide somatic variant calling
using localized colored de Bruijn graphs. Commun Biol. 2018;1(1):1–9.
https://doi.org/10.1038/s42003-018-0023-9. Accessed 28 Aug 2019.

14. Alioto TS, Buchhalter I, Derdak S, Hutter B, Eldridge MD, et al. A
comprehensive assessment of somatic mutation detection in cancer
using whole-genome sequencing. Nat Commun. 201510001. https://doi.
org/10.1038/ncomms10001.

15. Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and
characterization of microsatellite instability across 18 cancer types. Nat
Med. 2016;22(11):951–9. https://doi.org/10.1038/nm.4191.

16. Maruvka YE, Mouw KW, Karlic R, Parasuraman P, Kamburov A, et al.
Analysis of somatic microsatellite indels identifies driver events in human
tumors. Nat Biotechnol. 2017;35(10):951–9. https://doi.org/10.1038/nbt.
3966.

17. Mandoiu I, Zelikovsky A. Computational methods for next generation
sequencing data analysis, 1st edn: Wiley; 2016. https://doi.org/10.1002/
9781119272182.

18. Marschall T, Hajirasouliha I, Schönhuth A. MATE-CLEVER:
Mendelian-inheritance-aware discovery and genotyping of midsize and
long indels. Bioinformatics. 2013;29(24):3143–50.

19. Trappe K, Emde AK, Ehrlich HC, Reinert K. Gustaf: detecting and correctly
classifying SVs in the NGS twilight zone. Bioinformatics. 2014. https://doi.
org/10.1093/bioinformatics/btu431.

20. Lunter G, Rocco A, Mimouni N, Heger A, Caldeira A, Hein J. Uncertainty
in homology inferences: assessing and improving genomic sequence
alignment. Genome Res. 2008;18(2):298–309.

21. Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A,
Schönhuth A. CLEVER: clique-enumerating variant finder. Bioinformatics.
2012;28(22):2875–82. https://doi.org/10.1093/bioinformatics/bts566.
Accessed 11 Mar 2013.

22. Garcia M, Juhos S, Martin M, Alneberg J, Pallolason, Eisfeldt J, Larsson
M, Peltzer A, KochTobi, Ewels P, Tommaso PD, Sebastian-D, Arontommi,

Tawari N, Delicious MG. SciLifeLab/Sarek: Sarek 2.3.FIX1. Zenodo. 2019.
https://doi.org/10.5281/zenodo.2582812. https://zenodo.org/record/
2582812. Accessed 13 Jan 2020.

23. Li H, Homer N. A survey of sequence alignment algorithms for
next-generation sequencing. Brief Bioinforma. 2010;11(5):473–83. https://
doi.org/10.1093/bib/bbq015.

24. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.
https://doi.org/10.1101/gr.078212.108. Accessed 05 Aug 2019.

25. Liu F, Bayarriy MJ, Bergerz JO. Modularization in bayesian analysis, with
emphasis onanalysis of computermodels. Bayesian Anal. 2009;4(1):119–50.

26. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identification
of neutral tumor evolution across cancer types. Nat Genet. 2016;48(3):
238–44. https://doi.org/10.1038/ng.3489.

27. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,
Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ,
Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly
MJ. A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
https://doi.org/10.1038/ng.806.

28. Mueller P, Parmigiani G, Robert C, Rousseau J. Optimal sample size for
multiple testing: the case of gene expression microarrays. J Ame Stat Soc.
2004;99(468):990–1001.

29. Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow
engine. Bioinformatics. 2012;28(19):2520–2. https://doi.org/10.1093/
bioinformatics/bts480. Accessed 03 May 2019.

30. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. The diploid genome
sequence of an individual human. PLoS Biol. 2007;5(10):254. https://doi.
org/10.1371/journal.pbio.0050254.

31. Earl D, Bradnam K, St.John J, Darling A, Lin D, et al. Assemblathon 1: a
competitive assessment of de novo short read assembly methods.
Genome Res. 2011;21:2224–41.

32. Li H, Durbin R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://
doi.org/10.1093/bioinformatics/btp324.

33. Li H, Bloom JM, Farjoun Y, Fleharty M, Gauthier L, Neale B, MacArthur
D. A synthetic-diploid benchmark for accurate variant-calling evaluation.
Nat Methods. 2018;15(8):595–7. https://doi.org/10.1038/s41592-018-
0054-7. Accessed 28 Jan 2020.

34. Craig DW, Nasser S, Corbett R, Chan SK, Murray L, Legendre C, Tembe
W, Adkins J, Kim N, Wong S, Baker A, Enriquez D, Pond S, Pleasance E,
Mungall AJ, Moore RA, McDaniel T, Ma Y, Jones SJM, Marra MA,
Carpten JD, Liang WS. A somatic reference standard for cancer genome
sequencing. Sci Rep. 2016;6:24607. https://doi.org/10.1038/srep24607.
Accessed 06 Mar 2019.

35. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M,
Cox AJ, Kruglyak S, Saunders CT. Manta: rapid detection of structural
variants and indels for germline and cancer sequencing applications.
Bioinformatics. 2016;32(8):1220–2.

36. Sahraeian SME, Liu R, Lau B, Podesta K, Mohiyuddin M, Lam HYK. Deep
convolutional neural networks for accurate somatic mutation detection.
Nat Commun. 2019;10(1):1–10. https://doi.org/10.1038/s41467-019-
09027-x. Accessed 28 Jan 2020.

37. Wittler R, Marschall T, Schönhuth A, Mäkinen V. Repeat- and error-aware
comparison of deletions. Bioinformatics. 2015;31(18):2947–54.

38. Garrison E, Marth G. Haplotype-based variant detection from short-read
sequencing. 2012. arXiv: 1207.3907. Accessed 27 Aug 2019.

39. Sena JA, Galotto G, Devitt NP, Connick MC, Jacobi JL. Unique molecular
identifers reveal a novel sequencing artefact with implications for rna-seq
based gene expression analysis. Sci Rep. 2018;8:13121.

40. Allhoff M, Schönhuth A, Martin M, Costa IG, Rahmann S, Marschall T.
Discovering motifs that induce sequencing errors. BMC Bioinformatics.
2013;14 Suppl 5:1. https://doi.org/10.1186/1471-2105-14-S5-S1.

41. Li H. Toward better understanding of artifacts in variant calling from
high-coverage samples. Bioinformatics. 2014;30(20):2843–51. https://doi.
org/10.1093/bioinformatics/btu356. Accessed 14 Mar 2019.

42. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.

43. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der
Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, Shakir
K, Thibault J, Chandran S, Whelan C, Lek M, Gabriel S, Daly MJ, Neale B,

https://doi.org/10.1038/nbt.2514
https://doi.org/10.1101/667261
https://doi.org/10.1101/667261
https://doi.org/10.1093/bioinformatics/btz018
https://doi.org/10.1093/bioinformatics/bts378
https://doi.org/10.1093/bioinformatics/bts378
https://doi.org/10.1038/nmeth.4084
https://doi.org/10.1038/nmeth.4084
https://doi.org/10.1038/s42003-018-0023-9
https://doi.org/10.1038/ncomms10001
https://doi.org/10.1038/ncomms10001
https://doi.org/10.1038/nm.4191
https://doi.org/10.1038/nbt.3966
https://doi.org/10.1038/nbt.3966
https://doi.org/10.1002/9781119272182
https://doi.org/10.1002/9781119272182
https://doi.org/10.1093/bioinformatics/btu431
https://doi.org/10.1093/bioinformatics/btu431
https://doi.org/10.1093/bioinformatics/bts566
https://doi.org/10.5281/zenodo.2582812
https://zenodo.org/record/2582812
https://zenodo.org/record/2582812
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1101/gr.078212.108
https://doi.org/10.1038/ng.3489
https://doi.org/10.1038/ng.806
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1371/journal.pbio.0050254
https://doi.org/10.1371/journal.pbio.0050254
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1038/s41592-018-0054-7
https://doi.org/10.1038/s41592-018-0054-7
https://doi.org/10.1038/srep24607
https://doi.org/10.1038/s41467-019-09027-x
https://doi.org/10.1038/s41467-019-09027-x
https://doi.org/10.1186/1471-2105-14-S5-S1
https://doi.org/10.1093/bioinformatics/btu356
https://doi.org/10.1093/bioinformatics/btu356


Köster et al. Genome Biology           (2020) 21:98 Page 25 of 25

MacArthur DG, Banks E. Scaling accurate genetic variant discovery to tens
of thousands of samples. bioRxiv. 2018. https://doi.org/10.1101/201178.
https://www.biorxiv.org/content/early/2018/07/24/201178.full.pdf.

44. Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. 2013. arXiv: 1303.3997. Accessed 06 Aug 2019.

45. Durbin R, Eddy S, Krogh A, Mitchison G. Biological sequence analysis.
Curr Top Genome Anal 2008. 1998. https://doi.org/10.1017/
CBO9780511790492. 0304372.

46. Myers G. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. J ACM. 1999;46(3):395–415. https://doi.
org/10.1145/316542.316550. Accessed 11 May 2012.

47. Sahlin K, Frånberg M, Arvestad L. Structural variation detection with read
pair information: an improved null hypothesis reduces bias. J Comput
Biol. 2017;24(6):581–9. https://doi.org/10.1089/cmb.2016.0124.

48. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup.
The sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25(16):2078–9.

49. Köster J, Lähnemann D. Varlociraptor. Github. 2020. https://doi.org/10.
5281/zenodo.3687016.

50. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH,
Valieris R, Köster J. Bioconda: sustainable and comprehensive software
distribution for the life sciences. Nat Methods. 2018;15(7):475–6. https://
doi.org/10.1038/s41592-018-0046-7. Accessed 20 Aug 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1101/201178
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/07/24/201178.full.pdf
https://doi.org/10.1017/CBO9780511790492
https://doi.org/10.1017/CBO9780511790492
http://arxiv.org/abs/0304372
https://doi.org/10.1145/316542.316550
https://doi.org/10.1145/316542.316550
https://doi.org/10.1089/cmb.2016.0124
https://doi.org/10.5281/zenodo.3687016
https://doi.org/10.5281/zenodo.3687016
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7

	Abstract
	Keywords

	Background
	Results
	Workflow
	Foundation of the approach
	Efficient computation of the fundamental likelihood function
	Classification
	Estimating allele frequencies for somatic tumor variants
	False discovery rate control

	Data analysis reproducibility
	Data
	Simulated data
	Synthetic data
	Real data

	Tools
	Experiments
	Varlociraptor achieves substantial increases in recall without notable losses in precision
	Posterior probabilities allow for a clear distinction between true and false positives
	Varlociraptor reliably controls false discovery rate
	Varlociraptor accurately estimates variant allele frequency
	Varlociraptor achieves superior concordance above VAF of 20%
	Varlociraptor's variant counts of VAF below 20% agree with the theoretical expectation under neutral evolution


	Discussion
	Conclusions
	Methods
	Notation
	The model
	Part 1—Foundations: alignment and typing uncertainty.
	Part 2—Impurity.
	Part 3—Strand bias.

	Computing ai, pi, and oi
	Sampling probability
	Strand bias: technical details
	Statements


	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-01993-6.
	Additional file 1
	Additional file 2
	Additional file 3

	Peer review information
	Acknowledgements
	Review history
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

