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Abstract

Background: Early single-cell RNA-seq (scRNA-seq) studies suggested that it was unusual to see more than one
isoform being produced from a gene in a single cell, even when multiple isoforms were detected in matched bulk
RNA-seq samples. However, these studies generally did not consider the impact of dropouts or isoform quantification
errors, potentially confounding the results of these analyses.

Results: In this study, we take a simulation based approach in which we explicitly account for dropouts and isoform
quantification errors. We use our simulations to ask to what extent it is possible to study alternative splicing using
scRNA-seq. Additionally, we ask what limitations must be overcome to make splicing analysis feasible. We find that the
high rate of dropouts associated with scRNA-seq is a major obstacle to studying alternative splicing. In mice and other
well-established model organisms, the relatively low rate of isoform quantification errors poses a lesser obstacle to
splicing analysis. We find that different models of isoform choice meaningfully change our simulation results.

Conclusions: To accurately study alternative splicing with single-cell RNA-seq, a better understanding of isoform
choice and the errors associated with scRNA-seq is required. An increase in the capture efficiency of scRNA-seq would
also be beneficial. Until some or all of the above are achieved, we do not recommend attempting to resolve isoforms
in individual cells using scRNA-seq.

Keywords: scRNA-seq, Single cell, Alternative splicing, Isoform, Gene, Isoform choice, Dropouts

Background
Single-cell RNA-seq (scRNA-seq) theoretically enables
transcriptomic analysis at single-cell resolution. If mea-
surements are accurate, the data would allow fundamental
molecular biology questions regarding how alternative
splicing is regulated at the cellular level to be addressed.
However, to date, the majority of scRNA-seq studies have
been analysed at the gene rather than the transcript
level. Isoform quantification remains a challenging prob-
lem for bulk RNA-seq [1, 2], and we suspect that many
researchers are concerned that the high degree of techni-
cal noise associated with scRNA-seq could overwhelm any
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biological signal from alternative splicing events. Effec-
tively distinguishing between technical and biological
noise is made all the more challenging by a lack of orthog-
onal methods for validating scRNA-seq. Single molecule
FISH (smFISH) can be used to validate some of the
predictions of scRNA-seq, but resolving between highly
similar isoforms remains challenging [3–6]. Although the
throughput of smFISH is improving [7], to the best of
our knowledge, no smFISH technology currently exists
which could accurately resolve a high proportion of the
transcriptome at an isoform level.
A recent benchmark of isoform quantification for

scRNA-seq found that many isoform quantification soft-
wares perform almost as well for full-length scRNA-seq
datasets as for bulk RNA-seq [8]. Whilst this is encour-
aging, it is important to note that the benchmark only
evaluated the ability of quantification softwares to cor-
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rectly assign simulated scRNA-seq reads to the transcripts
that generated them. It is well known that a substantial
amount of scRNA-seq technical noise occurs prior to the
bioinformatic analysis of reads, most notably dropouts
due to a low capture efficiency and PCR amplification
bias due to a low amount of starting material [9–11]. To
the best of our knowledge, the impact of these and other
sources of technical noise on splicing analysis accuracy
in scRNA-seq experiments has not been systematically
studied. Consequently, the extent to which it is possible
to accurately perform splicing analysis with scRNA-seq is
not well understood.
It has been known for some time that not all isoforms

are equally likely to be expressed from a given gene.
Bulk RNA-seq studies have shown that most genes have
a ‘major’, highly abundant isoform and will sometimes
additionally have ‘minor’, more lowly expressed isoforms
[12, 13]. It is not currently understood how isoform choice
is regulated at the cellular level for most genes. In partic-
ular, it is not clear whether all cells express all isoforms
but at different levels, or whether each cell exclusively
expresses one or a subset of the total number of possible
isoforms for a given gene. Such knowledge has the poten-
tial to contribute to a greater understanding of splicing
mechanisms. For example, it is not known to what extent
a common mechanism might be used to regulate isoform
number at a cellular level, or whether every gene is sub-
stantially different. Several scRNA-seq studies have found
that for genes which expressed multiple isoforms in bulk
RNA-seq, only one or a small number of isoforms were
detected in matched scRNA-seq [14–17]. However, many
of these studies did not consider the impact of dropouts
and quantification software errors, potentially confound-
ing their conclusions. The deceptively simple question:
‘How many isoforms are produced from a gene in a single
cell?’ has a central place in our understanding of molecular
biology, yet its answer remains unclear.
In this study, we return to this basic biological question

using a fundamentally different approach. We take real
scRNA-seq datasets and select genes for which four iso-
foms are detected. We then use these genes to simulate
the following four scenarios: (1) all cells express one iso-
form per gene per cell, (2) all cells express two isoforms
per gene per cell, (3) all cells express three isoforms per
gene per cell and (4) all cells express four isoforms per
gene per cell. Importantly, in each scenario, we explic-
itly simulate dropout events and quantification errors.
We then use the simulated output of each scenario to
ask two questions. Firstly, to what extent are we able to
distinguish between these global differences in alterna-
tive splicing using scRNA-seq? And secondly, what should
be done to enable more accurate splicing analysis with
scRNA-seq?

Results
A detailed description of our simulation approach can be
found in the “Methods” section, where a brief descrip-
tion is given here for convenience. Our approach for the
first scenario, in which we simulate one isoform being
expressed per gene per cell, is to first identify genes for
which the expression of exactly four isoforms is detected
in a real scRNA-seq dataset. In the second step, we ran-
domly select one isoform based on a plausible model of
isoform choice for the first of our genes in the first cell
in our simulated dataset. For our default model of iso-
form choice, we choose the isoform based on a model of
alternative splicing described by Hu et al. [18]. Third, we
simulate dropouts based on a Michaelis-Menten model
described by Andrews and Hemberg [9]. Fourth, we simu-
late quantification errors based on isoform detection error
estimates based on work by Westoby et al. [8]. We repeat
these four steps for every four isoform gene and cell in
our simulated dataset, then calculate the mean number
of isoforms detected for that gene per cell. The entire
process described above is one complete simulation. We
run 100 simulations for each of our four scenarios, where
each scenario corresponds to one, two, three or four iso-
forms being expressed per gene per cell. We can then
plot the distributions of the mean number of isoforms
detected per gene per cell for each scenario. A schematic
of our simulation approach is displayed in Fig. 1. Nega-
tive control models, in which our simulations are repeated
but with no dropouts and/or quantification errors are
simulated, can be found in Additional file 1: Figs S1–3.
In Fig. 2, we apply our simulation approach to a dataset

of H1 and H9 human embryonic stem cells (hESCs)
[19, 20]. In this dataset, each cell’s cDNA was split into
two groups and sequenced at two different sequencing
depths, enabling us to directly compare our simulation
results at different sequencing depths without biological
confounders. One group was sequenced at approximately
1 million reads per cell and the other group at approxi-
mately 4 million reads per cell on average. Our simulation
results for the two H1 groups are compared side by side in
Fig. 2a. scRNA-seq experiments have been found to sat-
urate in terms of the number of genes detected per cell
at approximately 1 million reads per cell [21, 22]. How-
ever, we observe differences in the number of isoforms
detected per gene per cell at 1 and 4 million reads per
cell, indicating that the saturation depth may differ for
gene- and isoform-level analyses. Next, we calculate the
fraction of overlap between the isoforms expressed in the
ground truth and the isoforms detected as expressed in
our simulations. In Fig. 2b, we show the distributions of
the mean fraction of overlap for each gene. We will refer
to each gene’s mean fraction of overlap between isoforms
expressed in the ground truth and isoforms detected as
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Fig. 1 Schematic of our simulation approach

expressed as the ‘overlap fraction’ hereafter in the text.
The mean overlap fraction is consistently higher at 4 mil-
lion reads per cell compared to at 1 million reads per
cell, indicating that our ability to accurately detect iso-
forms is improved at higher sequencing depths. Similar
results were observed for the H9 hESC dataset in Addi-
tional file 1: Fig S4.
Figure 2 a and b illustrate some of the difficulties

associated with splicing analysis in scRNA-seq. At both
sequencing depths, the distributions of the observedmean
number of isoforms per gene per cell are shifted to the
left of their true value. In addition, the highest mean over-
lap fraction observed is less than 0.8, indicating that even
in a best case scenario, we fail to detect over 20% of the
isoforms expressed in the ground truth. These effects are
less extreme, but still present, for the group sequenced at

approximately 4 million reads per cell compared to the
group sequenced at 1 million reads per cell. This is consis-
tent with the hypothesis that sequencing at higher depth
reduces the extent to which isoform number is underes-
timated. However, even at approximately 4 million reads
per cell, our simulations suggest that scRNA-seq substan-
tially underestimates the mean number of isoforms per
gene per cell for almost all genes. A naive analysis of these
two datasets would most likely underestimate the number
of isoforms expressed per gene per cell. This casts doubt
on the biological relevance of previous observations sug-
gesting only one isoform was typically produced per gene
per cell, although admittedly the sequencing depth per
cell was generally much greater than 4 million reads per
cell in those studies (for example, Shalek et al. sequenced
approximately 27 million reads per cell [14]).
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Fig. 2 The effect of sequencing depth on isoform detection. a Distributions of the mean number of isoforms detected per gene per cell for H1
hESCs whose cDNA was split and sequenced at approximately 1 million reads per cell or 4 million reads per cell on average. b Distributions of the
overlap fraction. Black vertical lines represent the mean value of the distributions

One hypothesis for why our ability to detect isoforms
increases with increased sequencing depth is that the
rate of dropouts is reduced. In Fig. 3a, we investigate
this hypothesis by plotting the distribution of the prob-
abilities of dropout for each isoform (p(dropout)), as
estimated using the Michaelis-Menten equation [9] (see
the “Methods” section). We find that the distribution
is skewed towards high probabilities of dropout for the
group sequenced at around 1 million reads per cell. In
contrast, the distribution for the group sequenced at
around 4 million reads per cell is more skewed towards
low probabilities of dropouts. This demonstrates that our
estimated dropout probabilities are different at the two
sequencing depths, as expected.
Overall, the data in Figs. 2 and 3a support the hypothe-

sis that when the rate of technical dropouts decreases, the
accuracy of isoform number estimation increases. How-
ever, as our dataset was only sequenced at two depths,

we only have two data points available to investigate
our hypothesis. To extend our investigation, we assume
that the distributions of dropout probabilities observed in
Fig. 3a can bemodelled as beta distributions. The beta dis-
tribution is parameterised by two values, α and β , and we
find that it approximates our probability distributions well
(see bottom panels of Fig. 3a). Therefore, we select five
values of α and β that generate differently shaped dropout
distributions, as shown in Fig. 3b. We then perform five
further simulation experiments. In each simulation exper-
iment, we sample our dropout probabilities from one of
our beta distributions. The results of these experiments
are shown in Fig. 3c and d.
In Fig. 3c, we show the mean detected number of

isoforms per gene per cell for the scenario where each
gene produces one isoform per gene per cell. As we
move from the top to the bottom of Fig. 3c, the value
of α decreases, corresponding to scenarios where the
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Fig. 3 The impact of dropouts on isoform detection. a The distribution of the probabilities of dropouts (p(dropout)) in each group of H1 hESCs and
an approximation of these distributions using a beta distribution. At 1 million reads per cell, α = 1.31 and β = 0.74 in the approximated beta
distribution. At 4 million reads per cell, α = 0.72 and β = 1.03 in the approximated beta distribution. b Five beta distributions from which dropout
probabilities were sampled from the simulations used to generate c and d. In c, the distribution of the mean number of isoforms detected per gene
per cell is shown for simulations in which one isoform was produced per gene per cell. Each plot corresponds to a simulation in which dropout
probabilities were sampled from one of the distributions shown in b. d The overlap fraction for each simulation. Plots shown in c and d are for H1
hESCs sequenced at 4 million reads per cell. Black vertical lines represent the mean value of the distributions

probability of dropout is more frequently close to zero.
As α decreases, the distributions of mean detected
isoforms per gene per cell shift further to the right
and closer to the true number of isoforms produced
per cell. In Fig. 3d, we find that the mean overlap frac-
tion increases as α decreases, corresponding to the
mean probability of dropout decreasing. We conclude
from Fig. 3c and d that reducing the dropout rate
would likely improve the accuracy of splicing analyses

performed using scRNA-seq. Similar results were
observed for the H9 hESCs in Additional file 1: Fig. S5,
lending further support to this conclusion.

Quantification errors are a relatively minor obstacle to
studying alternative splicing
A benchmark of isoform quantification softwares in full-
length coverage mouse scRNA-seq datasets found that
the error rate of many software tools was low and
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comparable to bulk RNA-seq [8]. This is encouraging;
however, it should be noted that the error rate is likely
to be substantially higher for non-model organisms with
less well-annotated genomes than the mouse genome. As
isoform quantification is a key step of many scRNA-seq
alternative splicing analysis pipelines, it would be benefi-
cial to understand how quantification errors impact our
ability to study alternative splicing, both when the error
rate is high and when the error rate is low.
As our interest in this study is the detected number

of isoforms per gene per cell, we are only interested in
quantification errors which lead to changes in the number
of isoforms detected. We simulate two types of quantifi-
cation errors, false positives and false negatives. In this
context, a false positive occurs when an isoform is called
as expressed by the quantification software when there are
no reads from that isoform. Note that this means that if
an isoform is expressed in a cell but no reads are captured
from it (i.e. a dropout), but the quantification software
calls it as expressed, we would define this as a false-postive
event. A false negative occurs when an isoform is not
called as expressed by the isoform quantification software
when reads from that isoform are present. Based on our
previous benchmark [8], we estimate that the probability
of false-positive events (pFP) is around 1% and that the
probability of false negative (pFN) events is around 4%
(see the “Methods” section). In our simulations in Fig. 4,
we vary both of these probabilities in the range of 0 to
50% . Figure 4a shows how the mean number of iso-
forms detected per gene per cell distributions changes as
the probability of false positives and false negatives alters
when every gene expresses one isoform per cell. Impor-
tantly, even when the probability of false positives and
false negatives is zero, there are many genes for which
the mean number of detected isoforms per gene per cell
is not equal to one, the true number of expressed iso-
forms. This indicates that even if a perfect, 100% accurate
isoform quantification tool existed, there would still be
substantial barriers to studying alternative splicing using
scRNA-seq. We suspect that the reason a 100% accu-
rate isoform quantification tool would underestimate the
number of isoforms per gene per cell is that isoform quan-
tification tools usually only quantify the reads that are
present. Due to the high number of dropouts in scRNA-
seq, many expressed isoforms do not generate reads and
thus would be called as unexpressed by a 100% accurate
isoform quantification tool, leading to an underestimate
of the number of isoforms present.
Unsurprisingly, increasing the probability of false posi-

tives causes an increase in the mean number of detected
isoforms, whilst increasing the probability of false neg-
atives causes the mean number of detected isoforms to
decrease, as shown in Fig. 4b. Somewhat counterintu-
itively, increasing the probability of false positives from 0.0

to 0.1 could be considered to ‘improve’ the accuracy of the
mean number of isoforms detected by shifting the distri-
bution to slightly higher values and away from zero. This
is probably because slightly increasing the probability of
false positives allows some dropout events to be detected.
In Additional file 1: Fig. S6, we investigate how the overlap
fraction is affected by changes in the probability of false
positives and negatives. We find that the overlap fraction
increases as the probability of false positives increases,
supporting the hypothesis that some dropout events are
‘rescued’ by false positive events. However, we note that in
addition to ‘rescuing’ some dropouts, many unexpressed
isoforms are also called as expressed, as indicated by the
mean numbers of detected isoforms per gene per cell
that are greater than one. Interestingly, when the prob-
ability of false positives and false negatives are equally
increased (the diagonal of Fig. 4a), the mean number of
detected isoforms increases, suggesting that the increased
rate of false positives dominates over the increased rate
of false negatives. This is likely because more isoforms
are unexpressed than are expressed, and thus, there are
more opportunities for false positive events than for false
negative events. Overall, we find that high probabilities of
false positives and false negatives decrease our ability to
accurately detect expressed isoforms in scRNA-seq.
In Fig. 4a, we showed that even when isoform quantifi-

cation is 100% accurate, we underestimate the number of
expressed isoforms for many genes. One hypothesis for
why we are less able to detect isoforms in scRNA-seq data
compared in bulk RNA-seq data is that the sequencing
depth is typically lower. A lower sequencing depth could
mean that for many expressed isoforms, there are too few
or no reads that would allow the expressed isoform to be
uniquely identified.
To investigate whether sequencing depth could explain

the difference in our ability to detect isoforms in bulk
and scRNA-seq, we first identified a matched bulk and
scRNA-seq dataset. The dataset we selected was a mouse
embryonic stem cell (mESC) dataset in which mESCs
were cultured in 2i + LIF media [23, 24]. In the mESC
dataset, each cell was sequenced to approximately 7 mil-
lion reads on average, whilst the matched bulk data was
sequenced to approximately 44 million reads.
To determine whether sequencing depth was responsi-

ble for the difference in our ability to detect isoforms in
bulk and scRNA-seq, we randomly downsampled the bulk
mESC RNA-seq dataset to 7 million reads 50 times. Using
the original, un-downsampled bulk RNA-seq dataset as
the ground truth, in Additional file 1: Fig. S7, we plotted
the mean overlap fractions for each gene in the downsam-
pled bulk RNA-seq dataset and the matched scRNA-seq
dataset. We found that the mean overlap fraction was sig-
nificantly higher (p < 2.2e−16, Welch two sample t test)
for the downsampled bulk RNA-seq than for the matched
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Fig. 4 The impact of quantification errors on isoform detection. aDistributions of the mean number of isoforms detected per gene per cell when one
isoform is expressed per gene per cell. The probability of false positives (pFP) increases from left to right, and the probability of false negatives (pFN)
increases from top to bottom. The dataset shown is H1 hESCs whose cDNA was split and sequenced at approximately 4 million reads per cell on
average. b Summary plots of the average of the mean number of isoforms detected per gene per cell when pFP, pFN, or pFP and pFN are increased

scRNA-seq. This indicates that a lower sequencing depth
does reduce our ability to detect isoforms, but that this
does not fully explain the reduction in ability to detect iso-
forms between bulk and scRNA-seq. One explanation for
the reduction in ability to detect isoforms in scRNA-seq,
over and above the reduction expected due to reduced
sequencing depth, is that there could be heterogeneous
isoform expression between individual cells. If this were
the case, using the isoforms detected in bulk RNA-seq as
the ground truth would not be appropriate. There are also

potential technical explanations for the reduced ability to
detect isoforms using scRNA-seq. For example, the enzy-
matic reactions associated with library preparation may
have reduced efficiency when there is a lower amount of
starting material, as is the case for scRNA-seq. Determin-
ing to what extent heterogeneous isoform expression and
technical factors are responsible for our reduced ability to
detect isoforms in scRNA-seq will require further study
of cellular isoform heterogeneity and the technical noise
associated with scRNA-seq.
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Different models of isoform choice meaningfully change
our simulation results
It is possible that different mechanisms of isoform choice
at the cellular level could alter our ability to correctly
detect which isoforms are present in scRNA-seq. Because
there is uncertainty over the mechanism of isoform choice
within single cells, we implement four different models of
isoform choice in our simulations. We then ask whether
different models of isoform choice alter the mean number
of detected isoforms per gene per cell in our simulations.
We give a detailed description of how each of these

models was implemented in the “Methods” section; here,
we provide a brief description of each model and the
rationale behind it. We first model the alternative splicing
process as a type III Weibull distribution, using a model
described by Hu et al. [18]. Based on observations about
the molecular process of alternative splicing, Hu et al.
suggested that the process could be well modelled by an
extreme value distribution, and they found that a Weibull
distribution best fit the expression levels of isoforms in
bulk RNA-seq. In our second implemented model, we
attempt to infer the probability of each isoform being ‘cho-
sen’ to be expressed in a cell. We calculate the probability
of an isoform being chosen based on the observed prob-
ability of the isoform being detected. Our third model is
identical to the second except that we allow the proba-
bility of an isoform being ‘chosen’ to vary between cells.
We achieve this by sampling the probability of an iso-
form being chosen from a beta distribution, using a similar
approach as Velten et al. [4]. In our final model, we choose
a random number between 0 and 1 for each isoform. The
random number is assigned to be that isoform’s proba-
bility of being chosen, weighted against the probabilities
of the gene’s other isoforms being chosen. For brevity, we
will refer to these four models as the Weibull model, the
inferred probabilities model, the cell variability model and
the random model below.
Figure 5 shows the distributions of the mean number

of detected isoforms when one, two, three or four iso-
forms are expressed per gene per cell for each model.
Figure 5 shows our simulation results for the H1 hESC
dataset sequenced at 4 million reads; results for the other
hESC datasets including distributions of overlap fractions
can be found in Additional file 1: Figs. S8–14. Importantly,
the distributions in Fig. 5 visibly differ between models.
To quantitatively confirm this, we perform a K-sample
Anderson-Darling test on each row of graphs in Fig. 5. We
find that the distributions for 1, 2 and 3 isoforms signifi-
cantly differ between the isoform choicemodels (p<0.001,
see Additional file 1: Supplementary Tables for details). In
contrast, the distributions for 4 isoforms have a p value
of 0.999999, consistent with these distributions originat-
ing from the same population. This is as expected, as in
the 4 isoform simulations all of the isoforms are picked,

and thus, we would not expect isoform choice to matter.
Our qualitative and quantitative analyses indicate that dif-
ferent mechanisms of isoform choice alter our ability to
detect splice isoforms in scRNA-seq. Therefore, a better
understanding of the mechanism of isoform choice across
the transcriptome could be key to enabling splicing anal-
ysis using scRNA-seq data. Without knowing how best to
model isoform choice, our results suggest the presence of
a substantial confounder.
Interestingly, our simulation results when using the

inferred probability model compared with the cell vari-
ability model are almost identical. Given that the only
difference between these models is whether or not iso-
form preference is allowed to vary between cells, this
indicates that cellular heterogeneity in isoform prefer-
ence does not change our ability to detect isoforms under
the inferred probability model. We perform a K-sample
Anderson-Darling test between the inferred probabilities
and cell variability models for each row of Fig. 5, and
we find that these distributions do not significantly differ
(see Additional file 1: Supplementary Tables). Interest-
ingly, the results of the random model of isoform choice
look more like the inferred probability and cell variability
models than theWeibull model. This could be because the
Weibull model determines the probability of an isoform
being chosen based on the rank of that isoform, whereas
all of the other models do not use a rank-based approach.
These observations and the difficulty we have interpreting
them illustrate the need for a better understanding of how
best to model isoform choice.
We hypothesise that the reason that different models of

isoform choice differ in ability to detect isoforms could
be because some models of isoform choice prefentially
pick isoforms with a low probability of dropout, whereas
other models do not exhibit this preference. To investi-
gate whether different models of isoform choice differ in
their preference for picking isoforms with a low proba-
bility of dropout, in Additional file 1: Figs. S15–18, we
plot the distributions of the probabilities of dropout for
the isoforms chosen when one, two, three or four iso-
forms are picked using each of our four models. We would
expect models with a preference for picking isoforms
with a low probability of dropout to have distributions
of dropout probabilities more skewed towards zero when
small numbers of isoforms are chosen. When larger num-
bers of isoforms are chosen, we would expect to observe
less skewed distributions, because the model is effec-
tively forced to choose isoforms with higher probabilities
of dropout due to a lack of alternatives. In contrast, if
a model had no preference for picking isoforms with a
low probability of dropouts, we would expect the dis-
tributions of the probabilities of dropout to be identical
regardless of whether one, two, three or four isoforms are
chosen.
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Fig. 5 Different models of isoform choice alter our ability to detect isoforms. a Distributions of the mean number of isoforms detected per gene per
cell for H1 hESCs sequenced at approximately 4 million reads per cell using the Weibull model of isoform choice. b The same distributions when the
randommodel is used. c The distributions when the inferred probabilities model is used. d The distributions when the cell variability model is used.
See the main text for a detailed description of each model

In Additional file 1: Figs. S15–18, we find that only
the random model does not exhibit any preference for
choosing isoforms with a low probability of dropout.
Of the Weibull, inferred probability and cell variability
models, the Weibull model has the dropout probability
distribution most skewed towards zero when one iso-
form is picked, indicating that the Weibull model has the
strongest preference for picking isoforms with a low prob-
ability of dropout. The Weibull model also detects the
highest mean number of isoforms per gene per cell when

one isoform is expressed in the ground truth, consistent
with the hypothesis that the difference in the performance
of the isoform choice models may be related to their
preference for picking isoforms with a low probability of
dropout.
If isoform detection ability of the isoform choice models

is mainly determined by their preference for picking iso-
forms with a low probability of dropout, we would expect
that if the probability of dropout was globally changed, it
would alter the isoform choice models’ abilities to detect
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isoforms. We investigate this in Additional file 1: Fig. S19
by sampling dropout probabilities from the beta distribu-
tions shown in Fig. 3b. We find that more isoforms are
detected by all isoform choice models when dropouts are
sampled from distributions that are more skewed towards
zero. This supports the hypothesis that choosing isoforms
with a low probability of dropout improves the ability of
isoform choice models to accurately detect isoforms.

Somemodels of isoform choice are more plausible than
others
In the previous section, we observed that our simula-
tion results for the inferred probability and cell variability
models were extremely similar. To investigate how general
our observation that allowing isoform preference to vary
between cells does not alter our simulation results is, we
developed three additional models of isoform choice. In
the first model, the probability of selecting each isoform
was sampled from a truncated normal distribution with a
mean of 0.25 and a standard deviation of 0.06 in each cell.
In the second model, we sample the probability of select-
ing each isoform from a Bernoulli distribution, in which
the value 1 is chosen 25% of the time and the value 0 is
chosen 75% of the time in each cell. In the final model,
the probability of selecting each isoform is always 0.25
(the ‘p = 0.25’ model). The three models are illustrated in
Fig. 6a, and additional details are given in the “Methods”
section. Under the normal and the Bernoulli models, the
probability of picking each isoform varies between cells,
whereas the probability of picking each isoform is con-
stant between cells under the p = 0.25 model. Importantly,
although the distributions we are sampling isoforms from
have very different shapes, the mean probability of picking
each isoform is 0.25 for all three distributions.
In the second row in Fig. 6a, we show the distribu-

tion of the mean number of isoforms detected per gene
per cell when we simulate one isoform being expressed
per gene per cell. There is no visible difference between
our simulation results regardless of which model of iso-
form choice is used. This is supported by a non-significant
result in a K-sample Anderson-Darling test (p = 0.998).
These findings are consistent with the hypothesis that
our simulation results are unchanged whether or not the
model of isoform choice used allows cell variability in
isoform choice. We suggest that this is because we are
reporting the mean number of isoforms detected per gene
per cell in our simulations. Across many cells and rounds
of simulation, the mean probability of selecting isoforms
seems to determine the shape of our simulation result dis-
tributions, whereas the higher moments of the isoform
choice probability distribution are apparently unimpor-
tant. Thus, including cell variability in our isoform choice
model appears to not matter. For future scRNA-seq stud-
ies in which the mean number of isoforms detected per

gene per cell is an important metric, we conjecture that
there is no need to model cellular variability in isoform
choice, regardless of whether or not such variability exists
in reality. Of course, if future studies are interested in
precisely what isoforms are present in individual cells
rather than a population mean, understanding whether or
not cell variability in isoform choice exists is likely to be
important.
We have established that our ability to detect isoforms

using scRNA-seq is severely affected by the high rate
of dropouts in scRNA-seq. Therefore, attempts to infer
a biologically meaningful model of isoform choice from
scRNA-seq data are likely to fail. However, we can make
some general observations to help rule out certain mod-
els of isoform choice. In Fig. 6b, we have ranked isoforms
by their mean expression relative to other isoforms from
the same gene (so for example, an isoform with rank 1 has
the highest mean expression, an isoform with rank 2 has
the second highest mean expression and so on). Unsur-
prisingly, we find that the most highly ranked isoforms are
substantially more highly expressed than lowly ranked iso-
forms. This is consistent with the finding that many genes
appear to have a ‘major’, more highly expressed isoform,
and one or more ‘minor’, less highly expressed isoform
[12, 13]. We suggest that this behaviour needs to be rep-
resented in some way in future models of isoform choice,
and models that do not represent it (for example, our ran-
dom, normal, Bernoulli and p = 0.25 models) are probably
overly simplistic. In Fig. 6c, we rank isoforms by their
probability of dropout, where the isoform with the low-
est probability of dropout compared to other isoforms
from the same gene has rank 1. We observe a very similar
pattern in which highly ranked isoforms have a substan-
tially lower probability of dropout relative to lowly ranked
isoforms, further supporting the finding that ‘major’ and
‘minor’ isoforms exist for many genes. The results shown
in Fig. 6 are for the H1 hESCs sequenced at 1 million reads
per cell; equivalent plots and overlap fraction distributions
for all of the hESC datasets can be found in Additional file
1: Figs. S20–24.

Amixture modelling approach suggests genes for which
four isoforms are detected typically express around three
isoforms per cell
We ask whether our simulation-based approach could
shed any light on the biological question of howmany iso-
forms are expressed per gene per cell. To do this, we sim-
ulate one, two, three and four isoforms being expressed
per gene per cell and compare the mean isoforms detected
distributions to the distribution of isoforms detected per
gene per cell for genes for which four isoforms were
detected in the real dataset (see Fig. 7a and b). We then
approximate each distribution as a log normal distribu-
tion and take a mixture modelling approach to estimate
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Fig. 6 Some models of isoform choice are more plausible than others. aWemodel the probability of picking any given isoform as a normal
distribution, a Bernoulli distribution and a constant probability, all with the same mean (0.25) (top row of graphs). In the bottom row, we show the
distributions of the mean number of isoforms per gene per cell detected when each model of isoform choice is used. b Histograms of mean isoform
expression, ordered by isoform rank. c Histograms of dropout probability, ordered by isoform rank. All plots shown are for H1 hESCs sequenced at 1
million reads per cell

the mixing fraction for each of our simulated distributions
in the real distribution.
Figure 7c shows the mixing fractions found over 100

iterations of expectation maximisation for H1 hESCs
sequenced at approximately 1 million reads per cell. In
Fig. 7c, the mixing fraction for the distribution corre-
sponding to four isoforms being expressed per gene per
cell is over 90%. This suggests that genes detected to
express four isoforms in this dataset typically express four
isoforms per gene per cell. However, in Fig. 6d, after
100 iterations of expectation maximisation for H1 hESCs
sequenced at 4 million reads per cell, the distribution
with the largest mixing fraction is that corresponding
to three isoforms per gene per cell. This suggests that
genes detected to express four isoforms in this dataset

most often express three isoforms per gene per cell. As
the cDNA sequenced at 1 and 4 million reads per cell
came from the same population of cells, it is unlikely
that both of these statements are true. We propose sev-
eral possible explanations for why we might observe this
result.
First, we might be over-estimating the dropout rate at

1 million reads per cell. As there is less information with
which to infer the dropout rate at 1 million reads per cell
compared to at 4 million reads per cell, it is plausible that
our estimates of the dropout rate are less accurate at 1
million reads per cell. Whether or not there is a system-
atic bias towards over-estimating the dropout rate at low
sequencing depths is unknown and goes beyond the scope
of this paper.
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Fig. 7Mixture models. a, b Distributions of detected isoforms per gene per cell (blue) and log normal fitted distributions (orange) for H1 cells
sequenced at 1 million reads per cell (a) or 4 million reads per cell (b) under the Weibull model. c, dMixing fractions vs iterations of expectation
maximisation for 1 million reads per cell (c) and 4 million reads per cell (d). Each coloured line represents the distributions for one, two, three or four
isoforms being simulated as expressed per gene per cell. Equivalent plots for other isoform choice models and H9 cells can be found in Additional
file 1: Figs. S25–31

Second, we have established that the model of isoform
choice influences the outcome of our simulations but we
do not know which model of isoform choice is correct.
Therefore, we are (almost certainly) attempting to fit dis-
tributions that do not represent reality. Figure 5 shows our
mixture modelling approach using the Weibull model of

isoform choice. We note however that fitting our alter-
native models of isoform choice achieves a similar result,
in that the largest mixing fraction goes to four isoforms
at 1 million reads per cell and to three or fewer iso-
forms at 4 million reads per cell (see Additional file 1:
Figs. S25–31).
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Third, the genes detected to express four isoforms differ
between the sequencing depths of 1 and 4 million reads.
More genes are detected to express four isoforms at 4 mil-
lion reads (1443 versus 1543 for the H1 cells, 1453 versus
1524 for the H9 cells). Whilst this is not a dramatic differ-
ence, it doesmean that themixing fractions between these
two depths could genuinely differ, although this is unlikely
to fully explain the observed difference.
Fourth, we assume all genes for which four isoforms are

detected in the real data actually express four isoforms.
Due to dropouts and quantification errors, this may not
be accurate, and some genes for which four isoforms are
detected may express a different number of isoforms in
reality.
Fifth, our parameter estimation for quantification errors

and isoform choice modelling is not 100% accurate. We
can not rule out that this could be confounding the results
of our mixture modelling approach.
Our mixture modelling experiments broadly support

the hypothesis that it might be common for a cell to pro-
duce more than one isoform per gene. However, there
are clearly a lot of potential confounders in our approach,
many of which relate to uncertainty about dropouts, quan-
tification errors and isoform choice. We note that without
having either a ground truth knowledge of how many
isoforms are produced from given genes in given cells,
or good estimates of dropout probabilities, quantification
errors and isoform choice mechanism, it is hard to imag-
ine how an accurate and reliable estimate of the number
of isoforms produced per gene per cell could be obtained.

Discussion
In this study, we use a novel simulation-based approach
to ask whether it is possible to study alternative splicing
at the level of individual cells using scRNA-seq. In our
simulations, we simulate four scenarios in which every
gene produces one, two, three or four isoforms per gene
per cell. That we struggle to clearly distinguish between
these four situations emphasises the challenges associated
with distinguishing the much subtler and more complex
patterns of alternative splicing that likely exist in reality.
Whilst scRNA-seq is capable of detecting some splicing
events, confounding due to dropouts means we are likely
to underestimate the number of splicing events occurring
in individual cells.
We next ask what limitations must be overcome tomake

alternative splicing analysis possible using scRNA-seq.We
find that reducing the probability of dropouts improves
our ability to accurately detect isoform number. There-
fore, reducing the frequency of dropouts could be one
method to improve the accuracy of splicing analyses in
scRNA-seq. To some extent, this could be achieved by
sequencing cells more deeply, although we note that at

4 million reads per cell we still substantially underesti-
mate isoform number in the H1 hESCs. Unfortunately,
extremely deeply sequenced datasets (e.g. >10 million
reads per cell) are likely to suffer more with PCR arte-
facts and potentially a higher false positive rate of isoform
detection [11, 25]. Fundamentally, the low capture effi-
ciency of scRNA-seq is likely a consequence of a small
amount of starting material. This can probably be rescued
to some extent by more PCR cycles and sequencing at
higher depths; however, we would not expect this to fully
solve the problem.
A more radical way to overcome confounders due to

dropouts would be if scRNA-seq technologies changed in
some fundamental way that increased capture efficiency.
Whether this is feasible is unclear. Alternatively, we note
that if we could estimate the probability of dropout for
each isoform more accurately, in theory, it should be
possible to correct for confounding due to dropouts in
splicing analyses. Therefore, to enable splicing analysis
using scRNA-seq, either the capture efficiency of the tech-
nology needs to improve or more work characterising the
probability of dropouts at an isoform level is required.
We note that in our study, we exclusively consider the

impact of technical dropouts on isoform detection. How-
ever, it is known that many genes are heterogeneously
expressed, whether due to ‘bursty’ transcription or cell
type-specific expression [26]. Ideally, the impact of bio-
logical dropouts on isoform detection would be evaluated
alongside the impact of technical dropouts. Unfortunately,
to the best of our knowledge, there is currently no reliable
methodology to distinguish between biological and tech-
nical dropouts. The goal of imputation approaches is to
identify and correct for technical dropouts, but a recent
benchmark found that imputation approaches often intro-
duce a high rate of false positive results [27]. This indicates
that the problem of distinguishing between biological and
technical dropouts is not yet solved. As it is not cur-
rently possible to resolve between biological and technical
dropouts, it is also challenging to accurately model biolog-
ical dropouts, as little is known about their prevalence and
how the frequency of biological dropouts might vary with
genomic features. We hope that future work in this space
will enable more accurate identification of biological and
technical dropouts, thus enabling studies such as ours to
be extended to account for biological as well as technical
dropouts.
Long read technologies could in theory enable 100%

accurate isoform quantification, if issues due to a high
base calling error rate could be overcome [28]. However,
we find that even when no isoform detection errors occur,
our ability to accurately detect isoforms is very limited.
Therefore, long read technologies or isoform quantifica-
tion software improvements alone are not sufficient to
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enable accurate splicing analysis in scRNA-seq. In addi-
tion, we note that at present, the read throughput of
long read platforms is too low to enable meaningful iso-
form detection and quantification across a large num-
ber of cells [29]. A more immediate way in which long
read technologies could improve isoform quantification
accuracy is by using long read technologies to improve
transcriptome annotations. In many non-model organ-
isms, a high proportion of isoforms are missing from
reference transcriptomes, making the problem of isoform
detection and quantification substantially harder. Long
read approaches combined with tissue-specific transcrip-
tome curation could dramatically improve isoform quan-
tification accuracy in poorly annotated organisms. More
accurate isoform detection and quantification would in
turn improve our ability to gain biological insight from
sequencing data collected from these organisms.
A limitation of this study is that our approach for simu-

lating quantification errors is very simplistic. In particular,
we assume that the probability of a false positive or a
false negative event is constant and does not depend on
the GC content, length, magnitude of expression or any
other relevant features of the isoform being simulated. In
reality, the probability of isoform detection errors proba-
bly does depend on factors such as GC content and how
highly expressed the isoform is. However, relatively lit-
tle research has been done into the relationship between
features of isoforms, such as GC content and magnitude
of expression, and the probability of isoform detection
errors. Further research into how genomic and other fea-
tures of isoforms affect the likelihood of isoform detection
and quantification errors would enable more accurate
error models to be built in future. This would be valuable
both in studies such as this one and more generally, as it
would enable more sophisticated error correction models
to be developed.
Little is known about the biological process of isoform

choice in individual cells for most genes. Thus, accu-
rately modelling this process is challenging. We find that
different models of isoform choice alter our simulation
results. This indicates that without better understanding
of the process of isoform choice, alternative splicing anal-
yses are potentially confounded by this unknown factor.
Research into the process of isoform choice within indi-
vidual cells across the transcriptome would enable more
accurate models of isoform choice to be built, reducing or
removing this confounder from future alternative splicing
analyses. An important finding from our study is that the
ability of isoform choice models to accurately detect iso-
forms is correlated with the preference of isoform choice
models for choosing isoforms with a low probability of
dropout. It would therefore be highly relevant to establish
whether cells have a preference for expressing isoforms
with a low probability of dropout. Isoforms with a low

probability of dropout are in practice usually isoforms
which are highly expressed. Therefore, if cells have a pref-
erence for expressing highly expressed isoforms with a
low probability of dropout, we would expect it to be rel-
atively easy to accurately detect how many isoforms are
expressed in individual cells. In contrast, if it is com-
mon for cells to express lowly expressed isoforms with
a high probability of dropout, we would expect it to be
much harder to accurately detect the number of expressed
isoforms using scRNA-seq. Establishing which scenario
is more biologically relevant would therefore be highly
valuable to the single-cell community.
It is important to note that the probabilistic models of

isoform choice used in our study are unlikely to be realistic
models of isoform choice for two reasons. Firstly, we know
little about the underlying biological process of isoform
choice for most genes. Therefore, at best, the models we
have devised in this study are educated guesses as to what
the true underlying process might be. Secondly, it is likely
that the isoforms chosen by our isoform choice models
will have an impact on the probability of a quantification
error occurring. Different isoforms have different read
generation biases and will generate reads with different
mapping properties. In our simulations, we have not mod-
elled the impact of, for example, different splice junction
abundances on our ability to detect isoforms, although
factors such as this are likely to have an impact on our
ability to detect isoforms. We would welcome future stud-
ies addressing the more nuanced issues associated with
the interplay between isoform choice and quantification
errors, although we believe that a better understanding
of how to accurately model isoform choice and quantifi-
cation errors would be a prerequisite to such studies. If
isoform expression is found to be heterogeneous between
cells, interplay between isoform choice and isoform quan-
tification errors could partly explain why we were less able
to detect isoforms present in mESC scRNA-seq data than
in downsampled bulk RNA-seq.
We observe that when studying the mean number of

isoforms detected per gene per cell, it appears to be unim-
portant whether or not there is cell variability in isoform
choice from a modelling perspective. Of course, if the goal
is to accurately detect which isoforms are present in each
cell, establishing whether cell variability exists and mod-
elling any variability will be essential. However, we note
that imputation remains challenging and often inaccurate
at the gene level for scRNA-seq [27]. We therefore antic-
ipate it will be some time before accurate imputation is
feasible at the isoform level.
We are able to detect evidence in support of ‘major’

and ‘minor’ isoforms, and propose that future models of
isoform choice should attempt to capture this behaviour.
However, we note that whilst our observations help dis-
card models of isoform choice, we believe that scRNA-seq
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is currently too confounded by dropouts to accurately
infer a model of isoform choice at the single-cell level.
We suggest that smFISH would be a more appropriate
technology to investigate how isoform choice is regulated
in individual cells. Indeed, smFISH has previously been
used to study alternative splicing and isoform choice in
individuals cells for a small number of genes [3, 4, 6]
The results of our mixture modelling experiments are

consistent with multiple isoforms being produced per
gene per cell; however, we note that our mixture mod-
elling experiments are heavily confounded by a lack of
understanding about dropouts, isoform choice and per-
haps quantification errors to a lesser extent. Therefore, we
argue that at this time, scRNA-seq will not be able to pro-
vide the answer to basic biological questions about how
many isoforms are produced per gene per cell.
We note that in our study, we exclusively focused on full-

length scRNA-seq datasets collected using the SMARTer
or SMART-seq2 protocols [19, 23, 30, 31]. Our ratio-
nale for using full-length scRNA-seq data is that full-
length library preparation protocols have reduced 3′ bias
relative to UMI-based protocols [30, 31]. Consequently,
we would expect to be more able to accurately resolve
between isoforms using a full-length protocol compared
to a UMI-based protocol. However, a disadvantage of
full-length protocols is that they do not usually contain
UMIs, meaning that we have limited ability to correct
for PCR amplification bias. A new library preparation
protocol called SMART-seq3 was recently developed by
Hagemann-Jensen et al. which generates both full-length
reads and UMI-containing reads [32]. It is currently
unclear whether information from the full-length reads
and the 3′ biased UMI-containing reads could be utilised
in some way to combine the advantages of reduced cover-
age bias and PCR bias correction in the context of isoform
detection. Clearly, if this is feasible, it would be highly
relevant to solving some of the problems associated with
isoform quantification using scRNA-seq data.
We have exclusively considered the problem of isoform

detection using isoform quantification tools in this study.
We have chosen to use isoform quantification software
in preference of exon centric approaches, such as the
approach used by MISO [33], because an independent
benchmark of the performance of isoform quantifica-
tion tools run on scRNA-seq data has been performed
[8]. To the best of our knowledge, there is no inde-
pendent benchmark of the performance of exon centric
approaches run on scRNA-seq data. As most exon cen-
tric approaches were designed for bulk RNA-seq, this is
potentially problematic as it is unclear whether existing
exon centric software gives accurate results when run on
scRNA-seq data. Consequently, we have focused exclu-
sively on isoform quantification software in this study.
However, we hypothesise that dropouts are also likely

to be a confounder when studying scRNA-seq using exon
centric approaches.
In addition to detecting isoforms, isoform quantifica-

tion tools attempt to determine how highly expressed
isoforms are. Isoform quantification is a substantially
harder problem than isoform detection. Due to uncer-
tainties over how highly expressed isoforms are in indi-
vidual cells, how best to model PCR amplification bias
and differences in library sizes between individual cells
and how best to incorporate relative expression into a
model of isoform quantification errors, we suspect iso-
form quantification is also likely to be substantially harder
to model than isoform detection. For these reasons, we
have focused on isoform detection in this study, but sug-
gest that future work investigating our ability to detect
the relative expression of isoforms would be highly valu-
able to the field. We note that although we have not
directly evaluated our ability to resolve the relative expres-
sion magnitude of isoforms in this study, that we often
struggle to accurately detect isoforms implies that we
would often struggle to determine how highly expressed
they are.
Based on our findings in this study, at this time, we do

not recommend attempting alternative splicing analysis
using scRNA-seq. However, we make actionable sugges-
tions for how splicing analysis could be enabled in the
future. An improved understanding of the prevalence of
technical dropouts at the isoform level could enable us
to reduce confounding due to dropouts. Improvements
to the capture efficiency of scRNA-seq would similarly
reduce confounding. Increased study of isoform choice at
the single-cell level using technologies such as smFISH
would enable better models of isoform choice to be gener-
ated, eliminating confounders. Although we find quantifi-
cation errors to be a relatively small confounder, further
reducing quantification errors using long read technolo-
gies and more accurate quantification tools would be
welcome. Although we have concluded that accurate alter-
native splicing analysis with scRNA-seq is not possible
today, we are optimistic that it could become possible in
the near future.

Conclusions
At present, alternative splicing analyses using scRNA-seq
are substantially confounded. Better characterisation of
dropouts or improvements in capture efficiency would
reduce confounding due to dropouts. Further research
into the process of isoform choice at a single-cell level
would reduce confounding due to a lack of knowledge
about isoform choice. Quantification errors are a relatively
minor confounder, although improvements in this area are
still welcome. At present, to the best of our knowledge, a
large-scale unconfounded analysis of the number of iso-
forms produced per gene per cell has not been performed.
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Therefore, we still do not know how many isoforms are
typically produced per gene per cell.

Methods
Data preprocessing
Our simulation approach requires an isoform-cell count
matrix as input. To generate isoform-cell count matrices,
we used Kallisto to quantify reads from each cell against
the Gencode mouse vM20 transcriptome for our mESC
datasets and against the Gencode human v20 transcrip-
tome for our hESC dataset [34, 35].

Simulation approach
Our simulation approach is summarised as an algorithm
below.

Algorithm 1:Our simulation approach
Step 1: Select genes for which four isoforms are
detected in scRNA-seq data
for simulation in 1:100 do

for gene in DetectedGenes do
for i in 1:4 do

for j in 1:NumCells do
Step 2: Choose i isoforms to be
expressed the jth cell based on isoform
choice model
Step 3: Introduce dropouts based on
Andrews and Hemberg’s
Michaelis-Menten model
Step 4: Introduce isoform
quantification errors

end
Step 5: Find mean number of isoforms per
gene per cell.

end
end

end
Step 6: Plot distributions of mean number of isoforms
per gene per cell (eg. as in Fig. 1)

We expand upon each step below.

Step 1: Select genes for which four isoforms are detected in
scRNA-seq data
Our simulation approach takes an isoform-cell count table
as input. We define an isoform as detected if it has more
than five counts in at least two cells. We select genes for
which exactly four isoforms pass this threshold.

Step 2: Choose i isoforms to be expressed the jth cell-based on
the isoform choicemodel
In this step, we probabilistically choose i isoforms to be
expressed in each cell, where i is one, two, three or four.

The default model used in this study was the Weibull
model, which was used to produce all of our main figures
unless otherwise stated.

The Weibull model In [18], Hu et al. found that the
median frequency,mf (k,M), of the kth dominant isoform
of a gene withM detected isoforms can be described as:

mf (k,M) = 1
k × HM

exp
[
−

(
1 + k

M

)2]

where HM is theMth generalised harmonic number:

HM =
M∑

m=1

1
m

exp
[
−

(
1 + m

M

)2]

In our implementation of this model of isoform choice,
we first rank the isoforms in order of magnitude expres-
sion for each gene, with themost highly expressed isoform
having rank 1, the second most highly expressed isoform
having rank 2 and so on. We calculate the magnitude
of expression by summing the total number of counts
across all cells for that isoform. We then use the median
frequency formula above to find the predicted median
frequency for each isoform. We define the probability of
picking an isoform with rank k for a gene withM detected
isoforms as:

p(isoformk) = mf (k,M)∑M
m=1mf (m,M)

With M = 4, the probabilities become [0.55, 0.28, 0.12,
0.05].

The inferred probability model In this model, we
attempt to infer the probability of an isoform being chosen
from its probability of being detected. The formula below
relates the probability of choosing an isoform, P(Choice),
to its probability of being detected, P(Detected):

P(Detection) = P(Choice)P(Detection|Choice) +
P(¬Choice)P(Detection|¬Choice) (1)

where P(¬Choice) is the probability of not choosing an
isoform. In practice:

P(Detection) = P(Choice)P(¬Dropout)(1 − pFN) +
P(¬Choice)pFP (2)

where P(¬Dropout) is the probability that there is not a
dropout, pFN is the probability that there is a false neg-
ative event due to a quantification error and pFP is the
probability that there is a false positive event due to a
quantification error. This rearranges to:

P(Choice) = |P(Detection) − pFP|
|P(¬Dropout)(1 − pFN) − pFP|

In practice, we sometimes find P(Choice) is greater
than 1, probably because our estimation of P(¬Dropout),
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pFN and/or pFP is inaccurate for that isoform. When this
occurs, we set P(Choice) equal to one. We take abso-
lute values of the numerator and denominator to avoid
negative or complex numbers, which probably also occur
due to inaccurate estimation of P(¬Dropout), pFN and/or
pFP.
In our simulations, we calculate P(Choice) for each iso-

form from a given gene. The probability of picking a
particular isoform to be expressed in our simulation is that
isoform’s P(Choice) divided by the sum of P(Choice)s for
that gene’s isoforms.

The cell variability model The cell variability model is
identical to the inferred probabilities model except that
the probability of picking a given isoform i is allowed to
vary between cells. This is achieved by sampling the prob-
ability of picking isoform i in a given cell c, pic, from a beta
distribution, taking a similar approach to that described
in [4] :

pic ∼ beta(α,β)

where

α = (
1 − μ

σ 2 − 1
μ

) × μ2

β = α × (
1
μ

− 1),

where μ is the mean probability of choosing i across all
cells, i.e. μ = P(Choice). Based on attempts to charac-
terise themean-variance relationship for the probability of
choosing a particular gene by Velten et al. [4], we estimate
that the sample standard deviation, σ , is approximately
0.002.We find pic for each isoform for a given gene. In our
simulations, the probability of picking isoform i in cell c is
that isoform’s pic divided by the sum of pics for that gene’s
isoforms.

The random model For this model, each isoform is
associated a weight randomly sampled between zero and
one. The probability of picking a particular isoform to
be expressed in our simulation is that isoform’s weight
divided by the sum of all the weights for that gene’s
isoforms.

The normal model The weights for each isoform were
sampled from a truncated normal distribution with a
mean of 0.25 and a standard deviation of 0.06. This sam-
pling was performed for each isoform in each cell. Within
each cell, the probability of picking a particular isoform
to be expressed in our simulation is that isoform’s weight
divided by the sum of all the weights for that gene’s
isoforms.

The Bernoulli model The weights for each isoform were
sampled from a Bernoulli distribution with amean of 0.25.
This sampling was performed for each isoform in each
cell. Within each cell, the probability of picking a par-
ticular isoform to be expressed in our simulation is that
isoform’s weight divided by the sum of all the weights for
that gene’s isoforms. If all four isoforms for a given gene
had a zero weight, we set the probability of picking each
isoform to 0.25.

The p = 0.25 model The probability of choosing each
isoform was always 0.25.

Step 3: Introduce dropouts based on Andrews et al.’s
Michaelis-Mentenmodel
We calculate the probability of dropouts for each isoform
using a Michaelis-Menten model proposed by Andrews
and Hemberg [9].We calculate the probability of dropouts
for each isoform as:

P(Dropout) = 1 − S
KM + S

where S is the mean expression of that isoform across cells
and KM is the Michaelis-Menten constant. To find S and
KM, we normalise the isoform expression values by con-
verting counts to counts per million (CPM), as suggested
in the M3Drop vignette [9]. We estimate the value of KM
for each dataset by applying maximum-likelihood estima-
tion using the equation above and the rate of dropouts
and the mean expression of isoforms across the entire
transcriptome.

Step 4: Introduce quantification errors
Based on our previous benchmarking study [8], we esti-
mate that the probability of a false positive given an
isoform has no reads mapping to it, pFP, is about 0.01 and
the probability of a false negative given an isoform has
reads mapping to it, pFN, is about 0.04 for Kallisto when
run on full-length coverage scRNA-seq data. Unless oth-
erwise stated in the text, these were the error rates applied
in our simulations.

Step 5: Findmean number of isoforms per gene per cell
After iterating over every cell in our simulation, we sum
the number of isoforms detected in each cell and divide by
the number of cells to find the mean number of detected
isoforms per gene per cell.

Step 6: Plot distributions ofmean number of isoforms per
gene per cell
Step 5 is carried out in each simulation, for every gene
in which four isoforms were detected in the real scRNA-
seq data. Consequently, a large list of mean number of
detected isoforms per gene per cell is generated which we
plot as distributions (e.g. see Fig. 1).
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Mixture modelling
In our mixture modelling experiments, we begin by fitting
log normal distributions to each of our simulation distri-
butions and to the distribution of mean isoforms detected
for genes with four detected isoforms in the real data.
We then use expectation maximisation to estimate the
mixing fraction of each of the simulated distributions in
the real distribution. In our expectation step, we calcu-
late the probability that each data point belongs to a given
distribution, which we refer to as the responsibility. The
responsibility for the ith mean number of isoforms per
gene per cell and the cth simulation distribution is:

ric = kc × LN(xi|μc, σc)∑j=4
j=1 kj × LN(xi|μj, σj)

where k is the mixing fraction, xi is the ith mean num-
ber of isoforms per gene per cell and LN(xi|μc, σc) is the
probability density function for the log normal with mean
μc and variance σ 2

c . The maximisation function for the
mixing fraction is:

kc =
∑

i ric
n

where n is the number of datapoints in ric. Note that
we only perform expectation maximisation for the mix-
ing fractions of the distributions and not for the means or
standard deviations.

Overlap fraction
The overlap fraction is the proportion of isoforms
detected in our simulations that were expressed in the
ground truth. The formula for the overlap fraction is:

OverlapFraction = |GroundTruth ∩ Detected|
|GroundTruth|

where GroundTruth is the set of isoforms that are
expressed in the ground truth and Detected is the set of
isoforms that are detected in our simulations. The over-
lap fractions reported in all figures and Supplementary
Figures are the mean overlap fractions for each gene, aver-
aged across all of the simulated cells in that simulation
round.

Downsampling
Random downsampling of reads was performed using
seqtk [36].
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