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Abstract

The recent advent of third-generation sequencing technologies brings promise for better characterization of
genomic structural variants by virtue of having longer reads. However, long-read applications are still constrained
by their high sequencing error rates and low sequencing throughput. Here, we present NanoVar, an optimized
structural variant caller utilizing low-depth (8X) whole-genome sequencing data generated by Oxford Nanopore
Technologies. NanoVar exhibits higher structural variant calling accuracy when benchmarked against current tools
using low-depth simulated datasets. In patient samples, we successfully validate structural variants characterized by
NanoVar and uncover normal alternative sequences or alleles which are present in healthy individuals.
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Background
Structural variations are implicated in the development
of many human diseases [1, 2] and account for most of
the genetic variations by means of nucleotides in the hu-
man population [3, 4]. Structural variants (SVs), defined
as genomic alterations greater than 50 base pairs (bp)
[5], can functionally affect cellular physiology by forming
genetic lesions which may lead to gene dysregulation or
novel gene fusions, driving the development of diseases
such as cancer [6, 7], Mendelian disorders [8, 9], and
complex diseases [10]. SVs can exist as different classes
including deletion, duplication, insertion, inversion, and
translocation. Over the years, disease-associated SVs

were indicated as biomarkers for diagnosis [9, 11], prog-
nosis [12], and therapy guidance for patients [13], which
could be screened through sequencing-based and non-
sequencing-based methods in clinics. As the clinical
impacts of SVs continue to unveil, there is a clear need
for accurate, rapid, and inexpensive workflows for
routine SV profiling in patients to expedite biomarker
discovery and broaden clinical investigations [7].
There are currently two main standards of

sequencing-based methods for comprehensive SV detec-
tion: long-read or third-generation sequencing (3GS)
and short-read or second-generation sequencing (2GS).
Although 3GS technologies were made accessible to a
large audience, it has not yet supplanted 2GS technolo-
gies due to its higher sequencing error rate and lower
throughput [14]. While 3GS is currently mainly re-
stricted to the study of small genomes [15] or targeted
sequencing [16], recent studies have reported mamma-
lian whole-genome sequencing (WGS) [17, 18] but at a
higher sequencing cost per megabase as compared to
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the older technologies. In the domain of SV discovery,
many groups have reported that 3GS approaches pro-
vided higher SV detection sensitivity and resolution than
2GS, despite their higher sequencing error rate [9, 11,
19]. This is mostly due to the inadequacy of short reads
(50–200 bp) to elucidate large genomic variations also
involving novel sequence insertions or repetitive ele-
ments, which may give rise to high false discovery rates
[5, 20]. On the other hand, longer read lengths (> 1 kb)
reduce mapping ambiguity, resolve repetitive sequences
[21] and complex SVs [8], and discover a much larger
extent of SVs than short reads [17, 18]. Despite better
SV detection capabilities, the low throughput and high
sequencing cost per megabase of 3GS obstruct its feasi-
bility to be used in routine SV interrogation in patients.
To overcome these issues, we developed a new SV

caller tool, NanoVar, which utilizes low-depth Oxford
Nanopore Technologies (ONT) WGS data for accurate
SV characterization in patients. NanoVar adopts a
neural-network-based algorithm for high-confident SV
detection and SV zygosity estimation for all SV classes.
It is optimized to work with shallow long-read WGS
data at a minimum sequencing depth of 4X (12 giga-
bases (Gb)) for homozygous SVs and 8X (24 Gb) for
heterozygous SVs, which can be achieved with one to
ten ONT MinION sequencing runs, depending on the
flowcell chemistry, library preparation kit, and sample
quality. In this manuscript, we evaluated NanoVar’s SV
detection precision and recall among other tools using
simulation datasets and real data. When applied to
patient data, we demonstrated the feasibility and speed
of implementing the NanoVar workflow for SV dis-
covery in low-depth 3GS clinical samples.

Results
The NanoVar workflow
The NanoVar workflow is a series of processes that uti-
lizes 3GS long reads to discover and characterize SVs in
DNA samples. The sequencing of the genome of interest
is carried out by ONT MinION to produce long reads
reported in FASTQ/FASTA formats (Fig. 1a). The se-
quencing output of several sequencing runs can be com-
bined to achieve enough depth of coverage for SV
discovery. Based on our initial tests performed in simu-
lated datasets (cf. hereafter), we recommend having at
least 12–24 Gb of sequencing data (covering approxi-
mately 4–8X of the human genome), which can be
achieved through one to ten MinION runs depending
on the flowcell chemistry (R9.4, R9.5), library prepar-
ation kit (1D, 1D2, 2D), and DNA sample quality (purity,
quantity, and fragment length). The R9.4 flowcell chem-
istry with a 1D sequencing library using high purity
DNA with a mean fragment length of 8 kb provides the
highest throughput per MinION flowcell (above 12 Gb).

The combined FASTQ/FASTA file is used as input into
the NanoVar tool for SV processing. NanoVar begins by
mapping the long reads against a reference genome
using HS-BLASTN [22] to obtain the alignment profile
of each read (Fig. 1b). Reads with incomplete alignments
(containing divergent sequence/gap) are selected and
evaluated through an SV characterization algorithm
(Additional file 1: Fig. S1) to characterize for the possible
SV classes. NanoVar can distinguish six classes of SV:
deletion (DEL), inversion (INV), tandem duplication
(DUP), insertion (INS, novel sequence insertion/inser-
tion of sequences absent from reference genome), trans-
position (insertion of sequences found elsewhere in the
reference genome), and translocation. Due to the close
resemblance in altered sequences between a transpos-
ition and a translocation, they are collectively labeled as
“breakends” (BND) but are still dissociable by the “SV2”
field in the “INFO” column of the variant calling format
(VCF) file. After all reads are classified, NanoVar calcu-
lates the read-depth coverages for all the SV breakend
sites, separating the number of breakend-supporting
reads and breakend-opposing reads. Lastly, the read-
depth coverage of each SV, together with other SV char-
acteristics, are used as features for a simulation-trained
neural network classifier to determine a confidence score
for each SV. This confidence score is used to rank the
SVs by confidence and reduces false positives in the final
output. The filtered list of SVs is recorded in a VCF file
and an HTML report. The HTML report provides an
overview of the SV analysis and an SV output table con-
taining the information of each SV which can be filtered
and downloaded in MS Excel or CSV formats. The fig-
ures presented in the report also include an SV class dis-
tribution chart and read length distribution of the
sequencing reads which serves to QC for the input
(Fig. 1c). NanoVar also assigns a breakend read ratio
value to each SV to estimate their SV zygosity, where a
ratio of 1.0 refers to a homozygous estimation and 0.5
refers to a heterozygous estimation.

Benchmarking NanoVar using simulations
To evaluate NanoVar’s performance among other exist-
ing SV callers, we utilized a homozygous SV simulated
dataset (triplicate) and a heterozygous SV simulated
dataset (doi: https://doi.org/10.5281/zenodo.3569479).
Each dataset contains 42,000 SVs of the various SV clas-
ses with sizes estimated from real data (Additional file 1:
Fig. S2a). Most of the SV breakends (> 75%) are posi-
tioned within repetitive sequence regions demarcated by
UCSC Browser’s RepeatMasker track. Sequencing reads
of both long-read and short-read sequencing were simu-
lated to a sequencing depth of 4–12X and 53X respect-
ively and were used as input for the workflows of each
tool. Sniffles [19], SVIM [23], Picky [24], and NanoSV
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[25] are 3GS long-read SV callers while novoBreak [26]
and Delly [27] are 2GS short-read SV callers. To evalu-
ate predicted SVs fairly, we segregated each ground-
truth SV into its breakend coordinates and allow a 400-
bp error distance around it to create an 800-bp window.

Each DEL, INV, and DUP SV possesses two breakends,
while each INS and BND SV possesses one breakend.
SVs predicted by each tool were also segregated to SV
breakends and intersected with the ground-truth break-
end regions. A hit will be considered if a predicted SV

Fig. 1 The NanoVar workflow. a About 2 μg of human genomic DNA is set aside for library preparation and nanopore sequencing to generate
3GS long sequencing reads. Long reads from all sequencing runs are combined into a single FASTQ/FASTA file (at least 12 Gb, recommended
24 Gb) which is used as input into NanoVar. b NanoVar SV characterization process. (Left) Long reads are aligned to a reference genome using
HS-BLASTN to identify anchor sequences (blue) and divergent sequences or gaps (red) within each read. Next, the alignment information is used
to detect and characterize the different SV classes. (Right) For each characterized SV, read-depth coverage is calculated at their breakend(s) site
for the number of breakend-supporting and breakend-opposing reads. The breakend read depth, together with other alignment information, is
employed as features in a neural network model to infer a confidence score for each SV. c NanoVar outputs all characterized SVs in a VCF file and
produces an HTML report for QC and result visualization. The following figures can be found in the HTML report. (Top-left) Histogram showing
the length distribution QC of the input sequencing reads. (Top-middle) Donut chart showing the distribution of SV classes characterized in the
dataset (after confidence score filtering). Breakends represent translocation or genomic insertion SV. (Top-right) Scatter plot displaying the
confidence score and breakend read ratio (fraction of breakend-supporting reads at a breakend) of each SV, also showing the confidence score
threshold parameter used for filtering (red line). (Bottom) Table showing the details of all characterized SVs, which can be sorted, filtered, and
extracted in CSV or MS Excel formats
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breakend falls within any ground-truth breakend region.
We first performed a global SV breakend evaluation
where SV class prediction was omitted (Fig. 2a, b, Add-
itional file 1: Table S1). At a sequencing depth of 4X,
NanoVar outperformed the other 3GS tools in precision
and recall for homozygous and heterozygous SVs,
achieving the highest F1 scores of 0.95 and 0.85 respect-
ively. Sniffles and SVIM followed close behind with F1
scores of 0.86 and 0.75 for homozygous SVs and 0.70
and 0.66 for heterozygous SVs. For both SV zygosities,
NanoSV achieved the highest precision of more than
0.99 among all tools, but it displayed low detection sen-
sitivities (0.31, 0.16) which brought its F1 scores down to
0.48 and 0.27. Conversely, Picky performed slightly bet-
ter in recall (0.58, 0.38) but exhibited low precision
(0.02, 0.02). While NanoVar, Sniffles, and SVIM coped
reasonably well with 4X sequencing data, such sequen-
cing depth might not be appropriate for NanoSV and
Picky. To find out if a higher sequencing depth might
improve performance, we tested the 3GS tools at se-
quencing depths of 8X and 12X for heterozygous SVs
and observed a comparable increase in recall for all tools
(Fig. 2b). Despite the increase in recall, F1 score im-
provement was only seen in NanoVar and NanoSV as
the other tools had a decrease in precision as coverage
increases. The performance of NanoSV might continue
to improve with an increasing depth of coverage as it
was previously observed to perform better with high
coverage (79X) ONT real dataset [28]. Similar to 4X
depth, NanoVar exhibited the highest F1 scores of 0.92
and 0.95 at 8X and 12X depths respectively. In general,
when compared to 2GS SV callers such as Delly and
novoBreak, 3GS SV callers recalled more SVs for both
zygosity states, despite using considerably lower depth of
sequencing data.
Next, we carried out separate breakend evaluation for

the different SV classes to investigate the SV class
characterization accuracy of each tool at 4X depth for
3GS and 53X depth for 2GS (Fig. 2c, d; Additional file 1:
Table S2). A hit is only considered when a predicted SV
breakend falls into a ground-truth breakend region that
belongs to the same SV class as the predicted. NanoVar
portrayed relatively well-rounded accuracies for all the
SV classes for homozygous SVs (DUP 0.85, DEL 0.96,
INS 0.80, BND 0.88, INV 0.66) and heterozygous SVs
(DUP 0.81, DEL 0.83, INS 0.67, BND 0.73, INV 0.70),
exhibiting the best accuracies for DUP and INS among
all tools. Sniffles and SVIM also performed moderately
well, with their highest F1 scores pertaining to homozy-
gous DEL (0.91, 0.75) and lowest F1 scores pertaining to
heterozygous INS (0.40, 0.35). The low DEL and INS ac-
curacies observed in Picky were attributed to its high
false-positive rates when calling for these two classes
(precision < 0.03), suggesting an explanation for its poor

overall performance in the first evaluation. Despite that,
Picky performed considerably well for DUP, INV, and
BND SVs. NanoSV’s limited performance was due to its
inability to characterize INV SVs completely and its low
SV recall which was prominently observed in DEL and
INS, despite its capability of being highly precise. Both
2GS SV callers performed acceptably well especially for
INV SVs, which excelled over all other tools. However,
they were inadequate in characterizing INS SVs when
compared to most 3GS SV callers.
As SV formation is known to be associated with repeat

regions in the human genome, we investigated the ef-
fects of repetitive sequences on SV recall by all tools
within our simulations (Fig. 2e, f, Additional file 1: Fig.
S3). We intersected all ground-truth SV regions with the
RepeatMasker track from UCSC’s Browser to identify
their overlaps with the different repetitive sequence fam-
ilies such as short interspersed nuclear elements (SINE)
and long interspersed nuclear elements (LINE). In our
dataset, most of the ground-truth SVs overlapped with
SINE and LINE regions, while less were scattered among
DNA transposons, long terminal repeats (LTR), low
complexity, satellite, and simple repeat regions. For all
tools, SV recall was observed to be fairly consistent
across the different repeat families, suggesting that nei-
ther of the tools was greatly vulnerable to any specific
type of repetitive sequence. As expected with regard to
the previous SV breakend evaluations, NanoVar
displayed the greatest recall of SVs across all kinds of
repeats for both zygosity states. Taken together, our
simulation results demonstrated NanoVar’s higher SV
characterization sensitivity and precision among other
long-read 3GS SV callers at a sequencing depth of
4–12X.

Benchmarking NanoVar using real data
As simulated data may not capture all aspects of reality,
we also carried out benchmarking using real PacBio se-
quencing data for the Coriell DNA sample NA12878
[29]. We used the high-confidence SV benchmark set
distributed by Parikh et al. to evaluate the detection sen-
sitivity of the different tools [30]. The benchmark set
consisted of 2676 deletions and 68 insertions which were
used to evaluate SV recall at two sequencing depths of
4X and 8X (Additional file 1: Fig. S4). For deletions,
SVIM performed the best recall (0.79) at 4X depth,
followed by NanoVar (0.71), Sniffles (0.58), and Picky
(0.54). All the tools improved considerably at 8X depth
but the same trend was observed. For insertions at 4X
depth, NanoVar had the greatest recall (0.66), followed
by SVIM (0.62), Sniffles (0.28), and Picky (0.22). At 8X
depth, NanoVar and SVIM were tied for recall (0.82),
while improvement was also seen in other tools. Similar
to our simulations, NanoSV performed poorly in recall
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Fig. 2 (See legend on next page.)
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for both SV classes at both depths. Overall, NanoVar
was observed to perform comparably well with SVIM on
recalling deletions and insertions from real PacBio se-
quencing data. As the SVs in this benchmark set is non-
exhaustive and could not be considered as the ground
truth, the evaluation is incomprehensive and NanoVar
would still require further testing on real experimentally
validated SVs.

Precise SV characterization in AML patients using
NanoVar
We tested the NanoVar workflow on two Asian patients
diagnosed with acute myeloid leukemia (AML) (patient
1 and patient 2) to evaluate the workflow’s feasibility
and SV characterization accuracy in low sequencing
depth clinical samples. Genomic DNA extracted from
bone marrow mononuclear cells of each patient was se-
quenced by nanopore sequencing using two to five Min-
ION flowcells, generating about 12.4 Gb and 12.3 Gb of
sequencing data respectively (Additional file 1: Table
S3). The sequencing reads were applied to NanoVar for
read mapping and SV characterization with a minimum
support of two reads for each breakend to increase strin-
gency for clinical data. NanoVar discovered a total of 14,
215 SVs (3218 DUP, 6706 DEL, 2626 INS, 1348 BND,
317 INV) in patient 1 and 16,562 SVs (3019 DUP, 8727
DEL, 2576 INS, 1976 BND, 264 INV) in patient 2 (Add-
itional file 1: Fig. S5). To evaluate NanoVar’s accuracy in
these samples, we surveyed eight SVs from each patient
for PCR validation. We selected SVs with a range of
confidence scores and breakend read ratios which ap-
proximate SV zygosity (Fig. 3a). All the selected SVs are
situated in autosomal chromosomes (Additional file 1:
Table S4). Primer sequences were designed flanking the
breakend location(s) of each SV according to the refer-
ence genome, and their referenced amplicon lengths (in
silico PCR length without the SV) are recorded in Fig. 3b,
along with their breakend read ratios and estimated SV
sizes. PCR performed for each SV in their respective pa-
tient samples revealed that all 16 SVs were validated to
be true based on their product size deviation (Fig. 3c
lanes 1 and 8, Additional file 1: Table S5a). Moreover,
the PCR results were agreeable with the SV class, SV
size, and SV zygosities estimated by NanoVar, based on

the number of PCR products (one product for homozy-
gous, two products for heterozygous). All amplified
products were gel extracted and their sequence identity
validated by Sanger sequencing (Additional file 2). Be-
sides PCR validation, all 16 SVs were also found to be
supported by mapped 2GS short reads generated by Illu-
mina WGS (Additional file 1: Fig. S6). Figure 3d illus-
trates an example of how a deletion SV (SV 1-2),
characterized by 3GS nanopore long reads, can be sup-
ported by 2GS Illumina short reads and 1GS Sanger se-
quencing. The successful validation of SVs with varying
breakend read ratios and varying confidence scores
reinforces NanoVar’s precision in SV characterization in
clinical samples.

NanoVar recalls shared SVs validated by PCR
We went on to uncover shared SVs between patient 1
and patient 2 among the selected SVs by testing the SVs
reciprocally in each patient by PCR using the same
primers and cycle conditions (Fig. 3c lanes 7 and 2).
Patient 1 was discovered to possess all eight SVs that
were validated in patient 2, while patient 2 possesses six
of the eight SVs validated in patient 1. In total, 14 out of
16 validated SVs were discovered to be shared between
patient 1 and patient 2, leaving SVs 1-5 and 1-8 to be
patient 1 specific (Fig. 3c, Additional file 1: Table S5).
Next, we investigated if NanoVar was sensitive enough
to capture these shared SVs in the respective patient. In
patient 1, NanoVar was able to detect five out of eight
shared SVs, while in patient 2, all six shared SVs were
detected, aggregating to 11 out of 14 shared SVs recalled
(Additional file 1: Table S5). We investigated the three
undetected heterozygous shared SVs (SVs 2-2, 2-3, and
2-8) and discovered that they had insufficient or an
absence of SV-associated reads at their loci, while still
having reads originating from the “wild-type” allele.
These results suggest that a higher depth of coverage
(> 4X) would be required by NanoVar to confidently and
broadly capture heterozygous SVs as observed in the
simulated benchmarking.

NanoVar characterizes polymorphic SVs
Upon assessing the presence of these SVs across more
samples, we observed that most SVs appeared to be

(See figure on previous page.)
Fig. 2 NanoVar performance benchmarking. a, b SV breakend precision and recall by SV caller tools in simulation data with homozygous or
heterozygous SVs. There are three homozygous SV datasets with 42,000 SVs each and one heterozygous SV dataset with 42,000 SVs at different
sequencing depths. For tools with SV scoring, the optimal score was selected for them based on the F1 score at 4X sequencing depth (NanoVar,
1.0; NanoSV, 0; SVIM, 0; novoBreak, 27.5). The markers of different tools are separated by color, while different sequencing depths are separated by
shapes. b, c Radar charts showing the F1 scores for each SV class characterized by each tool for homozygous and heterozygous SVs in simulation
1. DUP tandem duplication, DEL deletion, INS insertion, BND breakend, INV inversion. We presented the tools separately according to their
utilization of 3GS and 2GS data. SV class annotation evaluation was included in this analysis. e, f Recall of homozygous and heterozygous SVs
intersecting with SINE and LINE regions as detected by the different tools. The tools are separated by the same color code as the other plots in
this figure. SV analysis of the other repetitive sequence families can be found in Additional file 1: Fig. S3
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Fig. 3 Precise patients’ SV characterization by NanoVar. a Scatter plots showing the confidence score and breakend read ratio of each SV
characterized in patient 1 (top) and patient 2 (bottom). SVs selected for validations are labeled on the plots by their SV id. The red horizontal line
indicates the confidence score threshold used for filtering. b Table displaying the details of SVs selected for validation for patient 1 and patient 2.
The in silico PCR size refers to the expected size of the PCR amplicon without the SV. c Gel electrophoresis images of PCR products
corresponding to each of the SVs in table b, amplified from the genomic DNA of patients 1 and 2, normal donors (normal A and normal B) and
cell lines (HCT116 and MCF10A). Sample names in red (left image lane 1, right image lane 2) indicate the sample where the SV was initially
detected. d Schematic illustrating a 409-bp deletion (SV 1-2) in the intronic region of the gene BPGM in patient 1, supported by 3GS nanopore
reads (top), 2GS Illumina reads (middle), and 1GS Sanger sequencing chromatogram (bottom). Blue and red arrows represent the primer locations
used for PCR amplification. For each nanopore read, base substitutions and base insertions are represented by red and orange markers
respectively. Base deletions are represented by gaps. All nanopore reads have at least 90% alignment identity. Illumina paired-end short reads are
represented by pink (forward) and blue (reverse) small rectangles, and the read coverages are displayed in gray above all the reads. The red
dotted line on the sequencing chromatogram marks the precise breakpoint of the deletion at single nucleotide resolution
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polymorphic. We tested the SVs in several samples con-
sisting of normal hematopoietic stem cells (HSCs) from
two non-AML Asian individuals (normal A and normal
B), an epithelial colorectal carcinoma cell line (HCT116)
and a Caucasian non-tumorigenic breast epithelial cell
line (MCF10A). We found out that normal HSC samples
do possess many of the SVs (13 out of the 16 SVs) which
existed in at least one allele in either one or both HSC
samples, while SVs 1-5, 1-8, and 2-4 were absent in both
HSC samples (Fig. 3c lanes 3, 4, 9, and 10). Interestingly,
these 13 shared SVs were also present in both patient 1
and patient 2, suggesting that these SVs might be preva-
lently found in cells, irrespective of AML disease. On the
contrary, SVs absent in the HSC samples (SVs 1-5 and
1-8) were exclusively found in patient 1, except for SV
2-4, which was found in both patient samples. Out of
these 13 shared SVs, 11 of them were also present in
non-hematopoietic cell lines such as HCT116 and
MCF10A (Fig. 3c lanes 5, 6, 11, and 12), leaving two SVs
(SVs 2-7 and 2-8) undetected in either cell lines. Taken
together, the majority of the SVs (11 out of 16 SVs) were
commonly found across the samples regardless of AML
disease status, cell type, and ethnicity. Moreover, most
SVs exhibited different zygosities among the samples (all
SVs excluding SV 1-1, 1-2, 1-8, and 2-5), which suggest
a polymorphic nature. Within the scope of this study,
we categorized the SVs into three groups based on their
prevalence and zygosity variation across the samples: (1)
rare sample-specific SVs (SV 1-8), (2) common SVs with
no zygosity variation which might be due to an incorrect
reference genome (SVs 1-1, 1-2, and 2-5), and (3) com-
mon SVs with zygosity variation or polymorphic SVs
(remaining SVs) which constituted most of the SVs
characterized by NanoVar.

The NanoVar workflow is time efficient
We compared the CPU time and maximum resident set
size (memory) used by the workflows of each tool for SV
characterization in patient 1 to evaluate their processing
speed and memory usage (Additional file 1: Table S6).
Among 3GS SV callers, NanoVar stood out as the most
time-efficient tool by requiring about tenfold lesser CPU
hours than the rest to process 12 Gb of sequencing data
using 24 threads. In real time, NanoVar took 196 min
for the entire analysis of patient 1 which is the fastest
among all other tools. In exchange for its speed, Nano-
Var employs about 1.7-fold more memory than the rest,
having a higher memory cap of 32 GB.

Discussion
NanoVar is a novel SV characterization tool that excels
in accuracy and speed while overcoming the low-depth
and error-prone sequencing of 3GS WGS. In simulated
data, we showed that NanoVar outperformed existing

3GS SV callers by achieving high SV detection accur-
acies (F1 > 0.92) when using only 4–8X coverage datasets
for homozygous and heterozygous SVs. NanoVar’s per-
formance was reflected in low-depth real data such as
sample NA12878 and clinical data where we successfully
validated a small subset of SVs discovered by NanoVar
(16/16) and demonstrated reliable estimations of SV
class, size, and zygosity. Results from both simulated and
real data also suggested that 4X sequencing depth may
be suboptimal for comprehensive heterozygous SV dis-
covery and would recommend a higher sequencing
depth of 8X.
Although we propose the confidence score of 1.0 as a

default threshold for running NanoVar, there might be
situations where it is less effective and requires the re-
training of the neural network model. The threshold
score was observed as the optimal score for the balance
of both precision and recall in simulated experiments.
Thus, the effectiveness of the threshold is dependent on
the resemblance of data characteristics between simu-
lated and real environments, which may be quite differ-
ent in certain situations. Such cases may include the
usage of long reads from new sequencing technologies
utterly different from ONT or PacBio, or analyzing
genomes with vastly more proportion of repetitive se-
quences than the human genome. In these situations,
the alignment profile of each read (e.g., mismatch errors,
number of multi-maps) might be exclusive and thus
requires re-training for a better fit using the tutorial
provided on GitHub (see the “Availability of data and
materials” section).
One major advantage of 3GS over 2GS SV calling ap-

proaches is the amount of raw sequencing data con-
sumed. In our study, we showed that 12 Gb of 3GS data
(4X coverage) produced a more comprehensive SV de-
tection outcome than 160 Gb of 2GS data (53X cover-
age) when comparing the analysis done by NanoVar and
2GS SV callers (Fig. 2c). The considerable reduction in
sequencing data requirements could speed up SV ana-
lysis and reduce computational resources. 3GS ap-
proaches may be used in large-scale SV-association
studies or routine sequencing-based clinical investiga-
tions to analyze and store massive amounts of sequen-
cing FASTQ/FASTA files more efficiently [5, 7].
Despite NanoVar’s high accuracy, many of its charac-

terized SVs might be SV polymorphisms commonly
found in the human population. We observed that most
of the validated SVs found in our AML patients also
existed with mixed zygosities in normal HSC samples
and other cell lines, suggesting that they might be be-
nign polymorphic SVs. As SV polymorphisms are wide-
spread in the human genome [31–36], it is important to
annotate these SVs by cross-referencing to collective
polymorphic-SV databases to facilitate the discovery of
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disease-associated SVs. Alternatively, the GRCh38 hu-
man reference genome could be improved to encompass
polymorphic sequence variations where polymorphic
SVs could be readily identified [37]. The use of low-
depth nanopore sequencing for accurate and routine SV
characterization could supply a steady flow of knowledge
to the construction of such cohort reference genome
and inclusive SV databases.

Conclusions
The NanoVar workflow is an accurate and cost-efficient
SV characterization method that utilizes low-depth
WGS nanopore sequencing data. As WGS approaches
are arising as a potential clinical strategy, we hope that
NanoVar will assist in the routine SV characterization in
patients and the discovery of novel pathological SVs for
precision therapeutics.

Methods
The NanoVar pipeline
NanoVar takes as input a WGS long-read FASTQ/FASTA
file (at least 12 Gb) and a reference genome and outputs
two VCF files (total SV and filtered SV) and an HTML
summary report. The NanoVar workflow comprises of
three main stages: (1) long-read sequence mapping, (2) SV
characterization with read-depth calculation, and (3) artifi-
cial neural network (ANN) inferencing from a simulation-
trained model.

Stage 1: Long-read sequence mapping
The first stage aligns long-read sequences to a user-
provided reference genome using the tool HS-BLASTN
[22] (version 0.0.5+). HS-BLASTN is an accelerated se-
quence alignment search tool that uses the MegaBLAST al-
gorithm. We selected HS-BLASTN over other long-read
aligner tools because of its faster computational speed and
accurate read alignment, based on our evaluation. Before
running HS-BLASTN, tools from NCBI-BLAST+ are used
to build a blast database (makeblastdb [38], version 2.6.0+)
and mask highly repetitive sequences (windowmasker [38,
39], version 2.6.0+). HS-BLASTN is run with the following
parameters: “-reward 2 -penalty -3 -gapopen 0 -gapextend
4 -max_target_seqs 3 -outfmt 6.” The output is a BLAST-
like tabular file containing alignment information of each
read. Due to overlapping alignments within some reads, a
Python script is used to trim the overlapped regions or
select the best alignment based on alignment bitscore.

Stage 2: SV characterization and read-depth calculation
The alignment anchor sequences and divergent se-
quences/gaps of each read are analyzed by Python scripts
to detect reads containing novel adjacencies (reads posses-
sing split-read or hard-clipped alignments) and subse-
quently characterize their SV class. A novel adjacency is

defined as two adjacent genomic coordinates in a sample
genome that are not found to be adjacent in the reference
genome. A novel adjacency is represented as two genomic
coordinates in the reference genome, each known as a
breakend. We use an algorithm of conditional control
statements for novel adjacency detection and SV
characterization, described in Additional file 1: Fig. S1.
Any read that is found to possess a novel adjacency is la-
beled as an SV-associated read, otherwise, labeled as a
normal read. Next, the read depth was calculated at each
breakend for SV-associated reads and normal reads separ-
ately. This gives us the number of breakend-supporting
reads B and breakend-opposing reads O at each breakend.
Due to repetitive sequences in the genome, artificial
breakends with unusually high B may be falsely detected.
In order to filter out these untrue breakends, we define
the upper limit of B as U, where breakends with B > U are
considered outliers and removed. U is calculated by

U ¼ 4 � k
n

Xn
i¼1

xi−m Xð Þj j þm Xð Þ

where n is the total number of genomic locations
chosen, xi is the read depth at genomic location i, m(X)
is the median read depth of all chosen genomic loca-
tions, and k is the constant scale factor 1.4826. The value
of U is defined as four times the mean absolute deviation
around the median (MAD) from the median in the dis-
tribution of a breakend read-depth assessment. This out-
lier detection method is an adaptation from Leys et al.
where they proposed that the median absolute deviation
is a more robust measure of dispersion than the stand-
ard deviation [40]. In our method, we use the MAD in-
stead of the median absolute deviation to reduce
fluctuations caused by discontinuous median integers.
The breakend read-depth assessment is a sampling pro-
cedure to approximate the read depth of SV throughout
the genome. It is performed by randomly choosing n
number of genomic locations and calculating the num-
ber of reads covering each location after adjusting for G.
This produces a distribution similar to a gamma distri-
bution, and the median m(X) and MAD can be com-
puted. According to our simulations, we empirically
defined U, the deviation of more than four times the
MAD from the median m(X), to be an outlier threshold,
in the context of the human genome. Hence, any break-
end which has B greater than U will be omitted and the
remaining breakends will proceed to the next stage of
ANN inferencing.

Stage 3: ANN inference
A trained ANN model is employed to improve SV
characterization accuracy by evaluating read alignment
characteristics and breakend read-depth information.

Tham et al. Genome Biology           (2020) 21:56 Page 9 of 15



For each novel adjacency, 23 scaled features are inferred
by the ANN model which produces an inference value P
ranging from 0 to 1. Next, P is exponentially scaled in-
versely according to the value of B and the final pre-
dicted score S is expressed logarithmically related to its
error rate. S is described as

S ¼ −10 log10 1− tanh 0:4Bð Þ � Pð Þð Þ

where B is the number of breakend-supporting reads at
a novel adjacency and P is the ANN inference value of a
novel adjacency. The hyperbolic tangent function is used
to decrease the value of P non-linearly when B is low
(B = [1, 2, 3]), as a low B confers low confidence. The
value of S is proportional to the confidence level of a
novel adjacency and is used to filter confident novel
adjacencies from the total VCF output file to create the
filtered VCF output file. A HTML summary report is
also generated at the end of each run.

Artificial neural network model and training
The features used by the ANN are described below
(number in parentheses represent the number of
neurons):

� Aligned/unaligned percentages flanking the novel
adjacency (5)

� Alignment E values flanking the novel adjacency (2)
� Relative alignment bit scores flanking the novel

adjacency (2)
� Alignment identities flanking the novel adjacency (2)
� The fraction of mismatches in alignments flanking

the novel adjacency (2)
� The fraction of gaps in alignments flanking the novel

adjacency (2)
� SV complexity—number of coexisting SV found at

the novel adjacency (1)
� Total number of alignments found on read (1)
� Total number of SV that seemed to be captured by

read (1)
� Number of different chromosomes the read

aligns (1)
� The fraction of alignments less than 5% of read

length (1)
� Number of breakend-supporting reads B (1)
� The fraction of breakend-supporting reads B over

total read depth B + O (1)
� If SV is an insertion/deletion, the size of the

inserted/deleted segment (1)

The value of each feature is scaled to the range of [0, 1]
by min-max normalization. The Python library Keras [41]
was used to build and infer the ANN model. The backend
engine used with Keras is TensorFlow [42]. The neural

network model is a feed-forward network consisting of a
23 neuron input layer, two hidden layers of 12 and 5 neu-
rons sequentially, and a single neuron output layer. The
rectified linear unit (ReLU) activation function is used for
the two hidden layers, while the Sigmoid activation func-
tion is used for the output layer. Dropout regularizations
were implemented after each hidden layer with probabil-
ities of 0.4 and 0.3 sequentially. If yk, i denotes the value of
the ith neuron in the k layer, we have that

yk;i ¼ F
X
j

Wk
j;i yk−1; j

 !

where F(x) = max(x,0) denotes the ReLU non-linearity
and Wk

j;i is the neural weight between the jth neuron of
the (k − 1)th layer and the ith neuron of the kth layer.
Ten million in silico 3GS reads simulated from a simu-

lated genome consisting of 61,316 mixed zygosity SV
were used to train a binary classifier ANN model
through supervised learning. The ten million reads were
distributed randomly into 20 sub-datasets before read-
depth clustering to reduce the sequencing depth to 1X.
The entire training dataset consists of 933,351 true and
41,186 false examples of novel adjacencies. Another sim-
ulated dataset (4X) with a different SV profile was used
as the test dataset. Binary cross entropy was used as the
loss function, and stochastic gradient descent (SGD) was
used as the optimizer algorithm with their default pa-
rameters. The classification accuracy is collected and re-
ported as a metric to assess the performance of the
model. Sixty-three epochs were performed for the model
training, with each epoch having 12,000 true and 12,000
false randomly selected examples and a batch size of 400
examples per iteration.

SV genome simulation for test datasets
The template genome used for genome simulation con-
sisted of the main nuclear chromosomes (chromosome 1
to Y) in the GRCh38 human reference genome assembly.
The R Bioconductor package, RSVSim [43], was used to
introduce novel adjacencies systematically in a reference
genome to create different classes of SV. One SV simula-
tion dataset consists of two genomes where one has 32,
000 SVs of deletions (20,000), balanced inversions (1000),
single tandem duplications (1000), and genomic sequence
transpositions (10,000), and the other has 10,000 SVs con-
taining only viral insertions which mimics novel inser-
tions. The amounts for each SV were based approximately
on SV occurrence reported by Chaisson et al. [44]. SV
lengths were estimated by the estimateSVSizes() function
in RSVSim, which takes reference from the Database of
Genomic Variants (DGV) (Additional file 1: Fig. S2a). SVs
were inclined to be positioned in repetitive regions using
the “repeatBias” parameter in RSVSim. Viral sequences
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used for viral insertions were part of 54 viral genomes
taken from GenBank [45] (Additional file 1: Table S7).
The virus selection was based on their ability to integrate
into the host genome. To simulate SV sequence variabil-
ity, each novel adjacency has a 20-bp flanking region
where bases had a 25% chance of single nucleotide poly-
morphism (SNP) and a 50% chance of introducing indels
with a maximum indel length of 5 bp. A total of three
datasets were generated consisting a total of six SV
genomes. Their FASTA files can be downloaded from doi:
https://doi.org/10.5281/zenodo.3569479.

Mix zygosity SV genome simulation for the training
dataset
The mix zygosity SV genome was created by three simu-
lated genomes with varying number of SV from the
same SV profile: genome A has 61,316 SVs (100%), gen-
ome B has 51,099 SVs (83%), and genome C has 30,659
SVs (50%). The SVs in genome C are a subset of SVs in
genome B. Different numbers of in silico 3GS reads were
generated for each genome: 2.5 million reads from gen-
ome A, 2.5 million reads from genome B, and 5 million
reads from genome C. The combination of all the reads
produced the simulation of homozygous SV (50%), het-
erozygous SV (33%), and low-confidence SV (17%). A
homozygous SV only has breakend-supporting reads at
their breakends while a heterozygous SV has both
breakend-supporting and breakend-opposing reads at
similar proportions. A low-confidence SV simulates a
true SV event in low-depth circumstances and has a
majority of its breakend reads being breakend-opposing.

In silico third-generation sequencing (3GS)
Nanosim [46] was used to generate in silico 3GS reads
from the simulated SV genomes. Read features, such as
read length, SNP, and indel profile, were modeled ac-
cording to that of real ONT MinION reads from patient
1 and patient 2, which are provided as input into Nano-
sim. 2,080,000 reads were generated for 4X depth, 4,160,
000 reads for 8X depth and 6,240,000 reads for 12X
depth datasets. Heterozygous SV datasets were created
by having half of the reads generated from an SV gen-
ome and another half from the GRCh37 reference gen-
ome. Comparisons for read length and indel proportion
between real reads and in silico generated reads are
shown in Additional file 1: Fig. S2b and Fig. S2c.
Statistics of reads and genome mapping can be found in
Additional file 1: Table S8.

In silico second-generation sequencing (2GS)
DWGSIM [47] was used to generate in silico 2GS reads
from the simulated SV genomes. The generation of 2GS
reads followed these settings: Illumina platform, 307-bp
average insert size, 59-bp standard deviation of insert

size, 150-bp read length, paired-end reads, 53X mean
coverage across all regions, uniformly increasing per
base error rate from 0.1% at the start of read to 1% at
the end of read, and contains no mutations, indels, or
random DNA reads. The insert size, read length, and
coverage follow that of real whole-genome 2GS data of
patient 1 and patient 2. Statistics of reads and genome
mapping can be found in Additional file 1: Table S8.

NA12878 benchmark sample
PacBio sequencing data and high-confidence SV truth
set of the Coriell DNA sample NA12878 was retrieved
from 1000 Genomes Project [29] and Parikh et al. [30]
respectively. We downsized the original data generated
by the Sanger Institute to 6.3 million reads and 12.53
million reads to archive 4X and 8X sequencing depth
datasets respectively.

Performance evaluation in simulation and real datasets
Each ground-truth SV breakend was treated as an indi-
vidual true event, and thus, the size of the SV was impli-
citly considered. A 400-bp error distance from the
coordinates of a ground-truth SV breakend was used to
create an 800-bp ground-truth SV breakend region. For
each tool we are testing, we extracted the breakend co-
ordinates of all the SVs predicted in their VCF file. In
order to justify a breakend match, the predicted break-
end coordinate must fall within a ground-truth SV
breakend region. This intersection was carried out by
BEDTools [48]. For each simulation dataset, the SV call-
sets from the 32,000 SV genome and 10,000 SV genome
were combined. Predicted SV breakends which fall near
the N-gap junctions of the reference genome were
manually filtered out as they were artifacts. Precision
and recall were computed manually or by Scikit-learn
(metrics.precision_recall_curve) [49], and F1 score was

calculated by the equation: F1 score ¼ 2ðRecall�PrecisionÞ
ðRecallþPrecisionÞ .

DNA sample source
DNA samples used in this study were acquired from
four individuals: two patients with AML (patient 1,
patient 2) and two healthy donors (normal A, normal B).
Patient 1 and patient 2 had the M5 AML classification
(acute monocytic leukemia) with FLT-3 Asp835 muta-
tions, but the absence of recurrent SV based on karyo-
typing. Patient 1 also has a mutation in the NPM1 gene.
All subjects are of Asian ethnicity.

Cell lines
The HCT116 and MCF10A cell lines were obtained
from Horizon Discovery (HD PAR-007) and ATCC
(ATCC CRL-10317™) respectively and grown in their re-
spective recommended growth culture conditions.
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Genomic DNA extraction
Mononuclear cells (MNCs) of all individuals were isolated
from the bone marrow. The bone marrow from the pelvic
bone was used for patients 1 and 2, and the bone marrow
from the femur was used for normal A and normal B. For
patients 1 and 2, the bone marrow was diluted in
phosphate-buffered saline (PBS) containing 2% HyClone™
fetal bovine serum (FBS) (GE Healthcare Life Sciences)
and 2mM EDTA. MNCs were then isolated by Ficoll-
Paque layering using Ficoll-Paque PLUS (GE Healthcare
Life Sciences) following the manufacturer’s protocol. For
normal A and normal B, additional processing steps were
carried out due to the presence of liquid fats. The femoral
marrow was diluted in PBS containing 10% FBS, 3 mM
EDTA, and 0.4% sodium citrate. Cells were strained using
a 100-μm cell strainer and pelleted by centrifugation at
300g for 10min at room temperature (RT) without accel-
eration and brakes. Red blood cells were lysed in 40ml
ACK lysis buffer (0.15M NH4Cl, 1 mM KHCO3, 0.1 mM
EDTA-Na2, pH adjusted to 7.2–7.4) at RT for 5min. Cells
were pelleted by centrifugation again with the same set-
tings. The cell pellet was resuspended in PBS containing
2% FBS and 2mM EDTA, and subsequently MNC isola-
tion by Ficoll-Paque layering following the manufacturer’s
protocol. MNCs of normal A and normal B were enriched
for hematopoietic stem cells (HSCs) by CD34 cell surface
marker selection using the CD34 MicroBead kit, human
(Miltenyi Biotec) according to the manufacturer’s instruc-
tions. The buffer used for CD34+ cell selection is PBS
containing 2% FBS and 2mM EDTA. Genomic DNA of
MNCs and CD34+ cells were extracted using AllPrep
DNA/RNA/miRNA universal kit (Qiagen) and genomic
DNA of HCT116 and MCF10A cells were extracted
using the conventional phenol-chloroform extraction
method.

Nanopore whole-genome sequencing and base calling
High molecular weight genomic DNA (1–1.5 μg) was
sheared to 6–10-kb fragments by the G-tube (Covaris). Li-
brary preparation was performed using ONT 1D or 2D
Ligation Sequencing kits (SQK-LSK108, SQK-LSK208) fol-
lowing their protocol. FFPE DNA repair was not carried
out. DNA ends were prepared using NEBNext Ultra II End
Repair/dA-Tailing Module (New England Biolabs) for ex-
tended incubation time (30min—20 °C, 30min—65 °C).
Ligation of sequencing adapters was performed using
Blunt/TA Ligase Master Mix (New England Biolabs). Li-
braries were sequenced using the MinION sequencer on ei-
ther R9.4 or R9.5 flowcells for 48 h without local base
calling. Base calling was carried out by Metrichor or Alba-
core. Details of sequencing runs are documented in Add-
itional file 1: Table S3. FASTQ/FASTA files were extracted
from FAST5 files using h5dump (version 1.8.16) from
HDF5 tools [50]. For the 2D protocol, the FASTQ/FASTA

was extracted from the template strand instead of the com-
bined strand if the complementary strand failed in quality.

Nanopore read mapping and SV calling
Simulated data and NA12878 PacBio reads were mapped
to GRCh37 genome assembly while patient samples were
mapped to GRCh38 genome assembly. SV calling with
NanoVar (version 1.2.7) was carried out with default set-
tings with confidence score threshold at 1.0 for all simu-
lated data and NA12878. For patient samples, “-f hg38”
gap exclusion parameter and breakend minimum read
coverage “-c 2” setting was used. For NanoSV [25] (ver-
sion 1.1.6), Minimap2 (v2.17-r941) [51] was used with the
“-ax map-ont” parameter for simulated data and “-ax
map-pb” for NA12878. For patient samples, LAST (ver-
sion 938) was used as the aligner instead with default pa-
rameters. The scoring parameters for LAST were
generated from a 20,000 reads subsample using last-train.
NanoSV was run with the default configuration parame-
ters, and we input our own hg38 random BED file for
coverage depth calculations. We called SV with Picky [24]
(version 0.2.a) using the BASH script they provided. We
used their recommended LAST parameters for read map-
ping: “-C2 -K2 -r1 -q3 -a2 -b1 -v -v.” Picky was run with
default parameters as in the BASH script. For SV calling
with Sniffles [19] (version 1.0.8), NGMLR (version 0.2.7)
was used for read mapping with default parameters. Snif-
fles was run with the -s 2 parameter which allowed at least
two reads as minimum support for an SV to be reported.
All SAM file sorting, BAM conversion, and BAM indexing
were carried out by SAMtools [52]. For calculating read
mapping statistics, Minimap2 was used for read alignment
and statistics were calculated using SAMtools.

Illumina whole-genome sequencing, mapping, and SV
calling
Genomic DNA (1 μg) was randomly sheared to 350-bp
fragments with Covaris cracker (Covaris) followed by se-
quencing library preparation using the Truseq Nano
DNA HT Library Prep kit (Illumina). Sequencing librar-
ies were sequenced paired-end 150 bp on the HiSeq X
Ten sequencing platform (Illumina) with the HiSeq X
Ten Reagent Kit v2.5 (Illumina) to a mean depth of
coverage of about 50x. Reads were mapped to GRCh38
genome assembly using BWA-0.7.17 [53] with the de-
fault BWA-MEM parameters and 24 threads. SAM files
were processed to sorted and indexed BAM files using
SAMtools [52]. 2GS simulated reads were mapped to
GRCh37 genome assembly using Minimap2 with the
“-ax sr” parameter. For SV calling with novoBreak [26]
(version 1.1.3rc), sorted and indexed BAM files were in-
put with default run parameters. A dummy BAM file
was simulated (GRCh38) to be used as a matched nor-
mal control. The confidence score for each breakend
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was obtained from the QUAL scores in the output VCF
file. For SV calling with Delly [27] (version 0.7.8), dupli-
cated reads in the BAM files were identified by Picard
MarkDuplicates [54] before running Delly with the
provided hg38 exclude file and its default parameters.

SV experimental validation
Polymerase chain reaction (PCR) was carried out to amplify
SV-containing regions in the genomes of each sample. We
used two different PCR master mixes. REDiant 2X PCR
Master Mix (Axil Scientific) was used for conventional PCR
amplification, whereas LongAmp Taq 2X Master Mix
(New England Biolabs) was used for longer (> 1.5 kbp) or
AT-rich PCR products. DMSO was added to a final con-
centration of 3% to increase the success rate of GC-rich
product amplification. Primer sequences were designed
using PrimerQuest Tool by Integrated DNA Technologies
and shown in Additional file 1: Table S9. Forward and re-
verse primers were added to a final concentration of
0.4 μM each. Two to 5 ng of genomic DNA was used as the
template in each 25 μl PCR reaction. Standard three-step
PCR settings were used for most PCR reactions on a ther-
mal cycler. Touchdown PCR conditions may be imple-
mented for some reactions to reduce nonspecific products.
PCR products were separated on 1% agarose TBE ethidium
bromide gel by gel electrophoresis, and DNA bands were
visualized by UV light. DNA fragments were excised and
extracted using a cotton wool gel filtration protocol as de-
scribed in [55] or QIAquick Gel Extraction Kit (Qiagen).
DNA was subsequently purified using Agencourt AMPure
XP beads (Beckman Coulter) following their protocol
for PCR purification. Primary or nested PCR product
sequences were validated by Sanger sequencing.

CPU time and maximum memory consumption
assessment
GNU Time (version 1.7) was used to assess the CPU
time and maximum memory consumption of each tool.
We assessed each tool by executing the following com-
mand: “/usr/bin/time -verbose -output=output.txt sh -c
‘Tool command’,” and the results are stored in the out-
put.txt file. The CPU time is calculated by combining
the user and system time, and the maximum resident set
size is taken as the maximum memory consumption.
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