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Abstract

Background: With the expanding applications of mass cytometry in medical research, a wide variety of clustering
methods, both semi-supervised and unsupervised, have been developed for data analysis. Selecting the optimal
clustering method can accelerate the identification of meaningful cell populations.

Result: To address this issue, we compared three classes of performance measures, “precision” as external
evaluation, “coherence” as internal evaluation, and stability, of nine methods based on six independent benchmark
datasets. Seven unsupervised methods (Accense, Xshift, PhenoGraph, FlowSOM, flowMeans, DEPECHE, and kmeans)
and two semi-supervised methods (Automated Cell-type Discovery and Classification and linear discriminant
analysis (LDA)) are tested on six mass cytometry datasets. We compute and compare all defined performance
measures against random subsampling, varying sample sizes, and the number of clusters for each method. LDA
reproduces the manual labels most precisely but does not rank top in internal evaluation. PhenoGraph and
FlowSOM perform better than other unsupervised tools in precision, coherence, and stability. PhenoGraph and
Xshift are more robust when detecting refined sub-clusters, whereas DEPECHE and FlowSOM tend to group similar
clusters into meta-clusters. The performances of PhenoGraph, Xshift, and flowMeans are impacted by increased
sample size, but FlowSOM is relatively stable as sample size increases.

Conclusion: All the evaluations including precision, coherence, stability, and clustering resolution should be taken
into synthetic consideration when choosing an appropriate tool for cytometry data analysis. Thus, we provide
decision guidelines based on these characteristics for the general reader to more easily choose the most suitable
clustering tools.
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Background
During the last decade, single-cell technology has pro-
gressed tremendously. With the ability to simultaneously
measure multiple features at the single-cell level, biologists
are now capable of depicting biological and pathological
processes with unprecedented complexity [1]. Mass cy-
tometry, which is achieved with Cytometry by Time-Of-
Flight (CyTOF), is an advanced experimental technology

that measures levels of multiple proteins (up to 40) in a
large amount (usually several millions) of cells [2]. The su-
preme ability to access a large panel of proteins simultan-
eously makes CyTOF useful in drug optimization [3],
vaccine development [4], and disease marker discovery
[5]. Compared to the well-known technology of single-cell
RNA-sequencing (scRNA-seq) [6–8], which processes on
average tens of thousands to hundreds of thousands of
cells, CyTOF achieves a higher throughput (on average up
to millions of cells) and classifies cells from a mixture into
distinct subtypes based on expression levels of their sur-
face antigen. Cells are first stained by antibodies labeled
with metal isotopes and then travel through a time-of-
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flight mass spectrometer, where the density of each iso-
tope label is quantified [2]. Compared with traditional flow
cytometry, which utilizes fluorescent labels, CyTOF over-
comes the issues of spectral overlap and autofluorescence,
enabling biologists to obtain high-dimensional protein
analysis on the single-cell level within the same experi-
mental batch [9].
The rapid advance in experimental technologies inevit-

ably introduces many challenges for data processing and
analysis. One key task of mass cytometry data analysis is
the investigation of functionally distinct cell populations
in high-dimensional spaces [10]. Conventionally, the
identification of cell population is achieved by “manual
gating,” which is manually defining distinct cell popula-
tions on a series of bi-axial plots (dot plots showing the
expression of two proteins for all cells) base on prior
knowledge [2, 11, 12]. This labor-intensive method pro-
vides slow but accurate cell classification. In some cases,
this prior knowledge is considered “ground truth” and is
used to develop a semi-supervised classifier. For ex-
ample, Automated Cell-type Discovery and Classification
(ACDC) [13] utilizes a marker × cell type annotation
table to define landmark points for all populations, then
links the remaining cells to these landmarks using ran-
dom walking. Another linear algorithm called linear dis-
criminant analysis (LDA) [11] also achieves high
clustering precision with predetermined manual labels.
An alternative strategy to identify cell populations is to

automatically partition cells according to the data struc-
ture, regardless of prior knowledge. A handful of math-
ematical model-based unsupervised clustering tools have
been developed for this purpose [12]. Among the differ-
ent algorithms for processing high-dimensional data, t-
distributed Stochastic Neighbor Embedding (t-SNE) is a
mainstream method for dimension reduction and data
visualization [14] and is widely used in the area of
single-cell analysis. Many clustering tools have been de-
veloped with t-SNE embedded in their functionalities.
Clustering methods, such as Accense [15] and ClusterX
[16], carry out density estimation and cluster partition-
ing on the 2D projection of t-SNE, while others, such as
viSNE [17] and PhenoGraph [18], include t-SNE only for
visualization. Since CyTOF data do not have as many di-
mensions as other single-cell data, such as scRNA-seq
data, many clustering approaches do not contain a di-
mension reduction step. The classic clustering method,
kmeans, which has been applied to the analysis of
CyTOF data [19, 20], can directly group cells into clus-
ters with a minimum within-cluster sum of squares in
high-dimensional spaces. Other algorithms that partition
cells based on local density also estimate the density dis-
tribution in original high-dimensional spaces [12, 13],
though they visualize the distribution on a 2D projection
of t-SNE. Two popular clustering tools, PhenoGraph

[18] and Xshift [21], utilize the k-nearest neighbors
(KNN) [22] technique to detect connectivity and density
peaks among cells embedded in high-dimensional spaces
[23, 24].
Since various clustering methods have been used in

many different CyTOF data analyses, researchers are
often overwhelmed when selecting a suitable clustering
method to analyze CyTOF data. There have been a few
efforts devoted to comparing some existing tools, but
they mainly focus on accuracy [25] or stability [26], pro-
viding comparison results based on various aspects of
clustering performance. The performance aspects con-
sidered in previous literature can offer some guidance in
choosing a suitable tool for CyTOF analysis; however,
some vital problems remain unevaluated: Do the charac-
teristics of the dataset impact clustering method choice?
What is the difference between unsupervised and semi-
supervised methods? How does one balance the tradeoffs
among cluster performance, stability, and efficiency
(runtime)? Answering such questions requires the inclu-
sion of more heterogeneous datasets and more indica-
tors that measure the performance of cluster analysis
from multiple aspects.
To address these challenges, we compared the per-

formance of nine popular clustering methods (Table 1)
in three categories—precision, coherence, and stability—
using six independent datasets (Additional file 1: Figure
S1). This comparison would allow cytometry scientists
to choose the most appropriate tool with clear answers
to the following questions: (1) How does one select be-
tween unsupervised and semi-supervised tools? (2) How
does one choose the most suitable unsupervised or
semi-supervised tool in its category?

Results
To perform a comprehensive investigation on all nine
methods, we defined three types of performance assess-
ment categories (Additional file 1: Figure S1): “precision”
as external evaluation, “coherence” as internal evalu-
ation, and stability. All clustering methods were investi-
gated on six CyTOF datasets: three well-annotated bone
marrow datasets (Levine13dim, Levine32dim, Samu-
sik01) [18, 21], two datasets for muscle cells [28] and
in vitro cell lines (Cell Cycle) [29], and one of our own
experimental datasets on colon cancer (see the
“Methods” section, Additional file 1: TableS1). The per-
formance evaluation procedure was carried out in the
following sequential logic, which can be summarized
into three parts:

1) For the “precision” as external evaluation
assessment, regarding the manually gated labels as
“ground truth” as performed by Weber and
Robinson [25], we separately explored the
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performances of semi-supervised and unsupervised
tools. Meanwhile, we analyzed the efficiency of each
compared tool.

2) For the “coherence” as internal evaluation
assessment, we no longer took manually gated
labels into account, and directly discussed the
ability of each tool to identify the inner structure of
data sets by three internal indicators. In this part,
since no manually gated labels were considered, we
could compare semi-supervised and unsupervised
tools between each other.

3) For the stability assessment, we explored the
robustness of each tool on clustering accuracy and
the identified number of clusters, in terms of
varying sampling sizes. Based on the results of
stability evaluation for the number of identified
clusters, we further evaluated the extended question
of clustering resolution. Finally, we integrated the
analysis results to provide a clear guidance for tool
selection.

Before our analysis began, we encountered the prob-
lem that different tools recommend distinct data trans-
formation procedures and the impact of different
procedures on clustering results has not been thoroughly
analyzed. Thus, we applied five popular transformation
procedures (Additional file 1: Supplementary methods)
on the colon dataset, consolidated them into one opti-
mal procedure, and used this procedure throughout our
study. As shown in Additional file 1: Table S2, both the
classic arcsinh procedure and its two modified versions
(raw data minus one before arcsinh transformation then
set negative values to zero, or a randomized normal dis-
tribution) yielded similar clustering results across vari-
ous tools. Compared with the two modified procedures,

the classic arcsinh transformation provided a higher pre-
cision for flowMeans. The Logicle transformation and
0–1 scaling, two procedures widely applied in the field
of flow cytometry [20], led to relatively poor results for
mass cytometry data in our analysis. Taken together, we
decided to process all the datasets using an arcsinh
transformation with a co-factor of 5 (see the “Methods”
section), and we did not use any of the other transform-
ation options that had previously been implemented in
all of the tools we tested.

External evaluations of semi-supervised tools suggest
that LDA is the preferred semi-supervised tool in terms of
precision
We started the analysis by evaluating the ability to re-
produce manual labels. This was achieved by evaluating
our first performance assessment category, the “preci-
sion,” as external evaluation, using four indicators (see
the “Methods” section) on all nine clustering methods
(Table 1): accuracy, weighted F-measure, Normalized
Mutual Information (NMI), and Adjusted Rand Index
(ARI) [30, 31].
Table 2 summarizes the comparison results of semi-

supervised methods. As expected, the two semi-
supervised methods showed better performance than
unsupervised methods (Table 3). In all datasets, both
ACDC and LDA had greater accuracy, F-measure, NMI,
and ARI than all unsupervised methods. This observa-
tion is most noticeable in Cell Cycle data (F-measure >
0.82 vs. F-measure = 0.2–0.68), where the number of fea-
tures [32] is significantly larger than the number of la-
bels [4]. Next, we found that in all datasets except for
Levine32dim, LDA had moderately better performance
than ACDC. The significant lower runtime of LDA
(Fig. 1 and Additional file 1: Figure S2) also indicates

Table 1 Methods compared in the study

Methods Implementation
tools

Description Ref

Unsupervised Accense MATLAB tSNE dimension reduction and 2D projection, kernel-based estimation of density, density-based
peak-finding and partitioning

[15]

PhenoGraph R (cytofkit
package)

Detection of k-nearest neighbors of each cell, Jaccard similarity coefficient as connectivity,
community detection based on connection density

[18]

Xshift Vortex Weighted k-nearest neighbor density estimation, detection of density centroids, cells linked to
centroid via density-ascending paths

[21]

FlowSOM R Self-organizing map (SOM) trained on scaled data, nodes of SOM connected by minimal
spanning tree, consensus hierarchical meta-clustering of nodes

[27]

flowMeans R K estimated by peak numbers of kernel density, kmeans clustering of estimated K, merging
clusters by distance metrics

[20]

DEPECHE R Tuning penalty by resampling dataset, penalized kmeans clustering [19]

kmeans MATLAB Standard kmeans procedure

Semi-
supervised

ACDC Python Marker × cell matrix and cell type ×marker table, detect landmark points by community
detection, link cells to landmarks by random walkers

[13]

LDA MATLAB Linear discriminant analysis with training datasets [11]
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that LDA may be the top choice for the task of reprodu-
cing manual labels.
Although LDA is superior to ACDC in terms of

precision, we all know that the precision of semi-
supervised tool relies more on the availability of prior
information. Since a training set is only necessary for
LDA but not for ACDC, which requires a
“marker × cell type” table instead, it is questionable
whether LDA can still outperform ACDC when the
training set is less sufficient. To answer this question,
we first trained LDA with only a limited proportion
of samples (randomly choosing 20%, 40%, 60%, and
80% of all samples in colon dataset) as the training
set. We observed that the performance of LDA stayed
constant when the size of training set varied (Add-
itional file 1: Figure S3). Then, we trained LDA with
all the cells from healthy colon tissue in the colon
dataset, and predicted the labels of all the remaining
cells from polyps, early-stage cancer tissue, and late-
stage cancer tissue. We then applied ACDC to the
entire colon dataset as well as the subset excluding
cells from healthy tissue (Additional file 1: Figure S3).
The predicted result from LDA was then compared
to that from ACDC. Under these conditions, the F-
measure of LDA dropped from 0.85 to 0.73, which
was not better than that of ACDC (0.80 for the entire
dataset, 0.74 for the subset excluding cells from
healthy tissue). Similar tests were repeated on the Cell
Cycle dataset with consistent results (Additional file 1:
Figure S3): when only one cell line (THP, HELA, or
293 T) was chosen as the training set, LDA could not
precisely classify samples from other cell lines. Thus,
we concluded that LDA can be regarded as the opti-
mal semi-supervised tool as long as the training set
and the test set are homogenous.

External evaluations of unsupervised tools highlight the
precision of FlowSOM and flowMeans
Next, we performed external evaluation for seven un-
supervised methods and observed that the precisions of
different tools varied among different datasets. Com-
pared to other methods, FlowSOM had relatively high
precision values among all datasets (Table 3). In the Cell
Cycle dataset, FlowSOM was the only unsupervised tool
that had an F-measure larger than 0.5. FlowSOM also
had a relative short runtime (Fig. 1 and Additional file 1:
Figure S2), which is another advantage to be considered
when choosing a suitable tool. In other datasets, such as
the muscle and colon datasets (Table 3), flowMeans had
similar precision to FlowSOM. In fact, flowMeans out-
performed FlowSOM in Samusik01 data (ARI 0.92 vs.
0.85). However, PhenoGraph had the best performance
in the Levine13dim (ARI 0.927) and Samusik01 (ARI
0.925) datasets but performed poorly in the muscle, Cell
Cycle, and colon datasets. On the contrary, DEPECHE
exhibited excellent performance in datasets with rela-
tively small numbers of cell types such as Levine32dim
(F-measure = 0.92), muscle (F-measure = 0.89), and colon
(F-measure = 0.68). In summary, FlowSOM and flow-
Means had overall better precisions in our external
evaluation, followed by PhenoGraph and DEPECHE.

Internal evaluations indicate that DEPECHE, FlowSOM,
and PhenoGraph best captured the inner structure of
CyTOF data
We have exploited external evaluation metrics to analyze
whether a clustering tool can accurately reproduce the
manual-gated labels as the “ground truth.” However, re-
searchers often wish to partition cells based on the nat-
ural structure of biomarker expression profile without
considering any assumptions about cell partitions. Here,

Table 2 Summary of external evaluations for semi-supervised methods

Datasets Methods External evaluations

Accuracy F-measure NMI ARI

Cell Cycle ACDC 0.8342 ± 0.0071 0.8466 ± 0.0093 0.4325 ± 0.0212 0.5579 ± 0.0129

LDA 0.9095 ± 0.0006 0.9110 ± 0.0005 0.6189 ± 0.0032 0.7225 ± 0.0021

Colon ACDC 0.7439 ± 0.0026 0.7874 ± 0.0076 0.5705 ± 0.0088 0.5952 ± 0.0041

LDA 0.8576 ± 0.0011 0.8587 ± 0.0012 0.7410 ± 0.0012 0.7626 ± 0.0017

Levine13dim ACDC 0.9010 ± 0.0029 0.9275 ± 0.0026 0.8635 ± 0.0041 0.9011 ± 0.0052

LDA 0.9582 ± 0.0005 0.9586 ± 0.0005 0.9275 ± 0.0008 0.9539 ± 0.0007

Levine32dim ACDC 0.9943 ± 0.0006 0.9939 ± 0.0007 0.9380 ± 0.0052 0.9791 ± 0.0020

LDA 0.9809 ± 0.0003 0.9807 ± 0.0004 0.9595 ± 0.0006 0.9830 ± 0.0002

Muscle ACDC 0.8787 ± 0.0101 0.8784 ± 0.0089 0.6750 ± 0.0168 0.7593 ± 0.0190

LDA 0.9240 ± 0.0011 0.9238 ± 0.0011 0.7606 ± 0.0031 0.8295 ± 0.0031

Samusik01 ACDC 0.9682 ± 0.0027 0.9731 ± 0.0019 0.9347 ± 0.0047 0.9616 ± 0.0021

LDA 0.9757 ± 0.0002 0.9759 ± 0.0002 0.9482 ± 0.0004 0.9735 ± 0.0005

Data shown as mean ± standard deviation
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Table 3 Summary of external evaluations for unsupervised methods

Datasets Methods External evaluations

Accuracy F-measure NMI ARI

Cell Cycle Accense 0.3529 ± 0.0471 0.3500 ± 0.0636 0.2490 ± 0.0240 0.1682 ± 0.0395

PhenoGraph 0.2309 ± 0.0268 0.2789 ± 0.0196 0.1364 ± 0.0087 0.0683 ± 0.0074

Xshift 0.3622 ± 0.0419 0.3970 ± 0.0383 0.1710 ± 0.0165 0.0752 ± 0.0353

kmeans 0.3969 ± 0.0021 0.4224 ± 0.0019 0.0963 ± 0.0016 0.0681 ± 0.0016

flowMeans 0.3055 ± 0.0061 0.3506 ± 0.0051 0.1849 ± 0.0047 0.0694 ± 0.0058

FlowSOM 0.6605 ± 0.0021 0.6897 ± 0.0029 0.1040 ± 0.0035 0.1171 ± 0.0025

DEPECHE 0.2808 ± 0.0126 0.3551 ± 0.0110 0.1361 ± 0.0246 0.0546 ± 0.0197

Colon Accense 0.3209 ± 0.0353 0.3495 ± 0.0442 0.4504 ± 0.0286 0.2304 ± 0.0304

PhenoGraph 0.3772 ± 0.0201 0.3994 ± 0.0137 0.4254 ± 0.0073 0.2696 ± 0.0094

Xshift 0.3187 ± 0.0167 0.3094 ± 0.0124 0.3763 ± 0.0076 0.2399 ± 0.0299

kmeans 0.4480 ± 0.0216 0.4951 ± 0.0086 0.4688 ± 0.0073 0.3235 ± 0.0132

flowMeans 0.5095 ± 0.0894 0.5901 ± 0.0582 0.4705 ± 0.0619 0.3724 ± 0.1125

FlowSOM 0.5597 ± 0.0284 0.5888 ± 0.0230 0.5303 ± 0.0157 0.4157 ± 0.0288

DEPECHE 0.5902 ± 0.0186 0.6898 ± 0.0132 0.4694 ± 0.0239 0.5042 ± 0.0188

Levine13dim Accense 0.6055 ± 0.0946 0.6745 ± 0.0929 0.7486 ± 0.0603 0.6408 ± 0.1034

PhenoGraph 0.8880 ± 0.0015 0.9123 ± 0.0167 0.8639 ± 0.0078 0.8884 ± 0.0159

Xshift 0.7573 ± 0.0091 0.7606 ± 0.0125 0.7359 ± 0.0118 0.7465 ± 0.0116

kmeans 0.5684 ± 0.0504 0.6293 ± 0.0325 0.7070 ± 0.0193 0.5721 ± 0.0465

flowMeans 0.8470 ± 0.0486 0.8842 ± 0.0343 0.8352 ± 0.0282 0.8349 ± 0.0459

FlowSOM 0.8540 ± 0.0235 0.8760 ± 0.0200 0.8590 ± 0.0097 0.8732 ± 0.0168

DEPECHE 0.6929 ± 0.0142 0.8010 ± 0.0077 0.6687 ± 0.0099 0.6571 ± 0.0118

Levine32dim Accense 0.5514 ± 0.0794 0.6008 ± 0.0627 0.6876 ± 0.0389 0.5289 ± 0.0740

PhenoGraph 0.6369 ± 0.0253 0.7062 ± 0.0213 0.7410 ± 0.0142 0.6437 ± 0.0240

Xshift 0.7543 ± 0.0605 0.7706 ± 0.0469 0.7690 ± 0.0323 0.7593 ± 0.0737

kmeans 0.5753 ± 0.0413 0.6748 ± 0.0231 0.7302 ± 0.0115 0.6405 ± 0.0638

flowMeans 0.9216 ± 0.0318 0.9279 ± 0.0337 0.9115 ± 0.0290 0.9397 ± 0.0342

FlowSOM 0.8787 ± 0.0975 0.8979 ± 0.0664 0.8840 ± 0.0600 0.8803 ± 0.1267

DEPECHE 0.8931 ± 0.0010 0.9231 ± 0.0009 0.8436 ± 0.0008 0.9297 ± 0.0009

Muscle Accense 0.3687 ± 0.0663 0.4072 ± 0.0743 0.3953 ± 0.0391 0.2397 ± 0.0759

PhenoGraph 0.3930 ± 0.0325 0.4336 ± 0.0249 0.3912 ± 0.0083 0.2694 ± 0.0261

Xshift 0.5119 ± 0.0591 0.5133 ± 0.0463 0.3882 ± 0.0190 0.3572 ± 0.0405

kmeans 0.6113 ± 0.0046 0.6207 ± 0.0045 0.4958 ± 0.0030 0.4243 ± 0.0055

flowMeans 0.7880 ± 0.0193 0.7928 ± 0.0089 0.5841 ± 0.0145 0.6364 ± 0.0347

FlowSOM 0.8210 ± 0.0068 0.8286 ± 0.0073 0.6470 ± 0.0072 0.6688 ± 0.0175

DEPECHE 0.8346 ± 0.0018 0.8850 ± 0.0019 0.5792 ± 0.0015 0.7074 ± 0.0035

Samusik01 Accense 0.5868 ± 0.0502 0.6376 ± 0.0400 0.7165 ± 0.0237 0.5574 ± 0.0290

PhenoGraph 0.9260 ± 0.0412 0.9249 ± 0.0344 0.8979 ± 0.0285 0.9250 ± 0.0526

Xshift 0.8909 ± 0.0485 0.9091 ± 0.0324 0.8742 ± 0.0196 0.8781 ± 0.0561

kmeans 0.4837 ± 0.0572 0.5535 ± 0.0401 0.6437 ± 0.0186 0.4655 ± 0.0482

flowMeans 0.9064 ± 0.0163 0.9099 ± 0.0163 0.8818 ± 0.0137 0.9206 ± 0.0045

FlowSOM 0.8386 ± 0.0693 0.8417 ± 0.0668 0.8185 ± 0.0639 0.8561 ± 0.0732

DEPECHE 0.8300 ± 0.0047 0.8677 ± 0.0047 0.7271 ± 0.0050 0.8298 ± 0.0068

Data shown as mean ± standard deviation
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we analyzed the ability of a clustering tool to detect the
inner structure of each dataset for the “coherence” as-
sessment using three internal evaluations [33]—the
Calinski-Harabasz index (CH, larger is better), Davies-
Bouldin index (DB, smaller is better), and Xie-Beni index
(XB, smaller is better)—in contrast to checking for re-
producibility of sets of manual-gated labels by each tool.
The detailed description of these indices is presented in
the “Methods” section. These three internal evaluations
have all been defined based on the assumption that an
ideal cell partition should have both high within-group
similarity and high between-group dissimilarity, which is
exactly the characteristic that the natural clustering
structure of CyTOF data should exhibit.
Table 4 shows that DEPECHE had noticeably high CH

and low DB indices in all datasets and outperformed
nearly all other tools. However, this observation should
be interpreted with caution: CH and DB are indices that
naturally favor kmeans-based algorithms [33], and the
simple kmeans clustering also achieved high perform-
ance based on CH and DB. Aside from DEPECHE and
kmeans, PhenoGraph and FlowSOM also demonstrated
good internal evaluation results over different datasets.
PhenoGraph had the highest CH (larger is better), lowest
DB (smaller is better), and third-lowest XB (smaller is
better) in both the Levine13dim and Samusik01 datasets,
whereas FlowSOM had the highest CH, lowest DB, and
second-lowest XB in both the muscle and Cell Cycle
datasets. In contrast to the above tools with consistent
good results on all three indices, we observed inconsist-
ency in the performance of Accense: it had the lowest

XB in the Levine13dim, muscle, Cell Cycle, and colon
datasets but showed poor performance with respect to
CH and DB. We reasoned that this inconsistency might
be because XB naturally favors density-based algorithms
[33]; hence, there is currently not enough evidence to
state that Accense gives coherent clustering results.
A noteworthy fact is that unlike their strength in ex-

ternal evaluation, semi-supervised tools no longer
ranked top with respect to any of the internal evaluation
indices. This result is consistent with the fact that even
the manual labels themselves did not perform as well as
top unsupervised tools in internal evaluation (Add-
itional file 1: Table S3). Compared to LDA, ACDC
showed better performance in internal evaluation. In
some cases (DB and XB for Samusik01 and Levine32-
dim, DB for Levine13dim, etc.), the performance of
ACDC was comparable with that of top-ranking un-
supervised tools.
Given the above analysis, we recommended FlowSOM,

PhenoGraph, and DEPECHE as preferred tools for the
task of capturing inner structure of CyTOF data.

Stability evaluations suggest that PhenoGraph, DEPECHE,
and LDA exhibited high robustness
We have described the performances of nine tools from
two perspectives: external evaluations (i.e., precision)
and internal evaluations (i.e., coherence). Next, we inves-
tigated the stability performance of different tools. We
firstly tested the robustness on the clustering precision
and coherence of nine tools under two separate condi-
tions: (1) given a fixed sample size, but with different

Fig. 1 Runtime and F-measure of semi-supervised tools (a–c) and unsupervised tools (d–f) on Levine13dim, muscle, and Samusik01 datasets
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Table 4 Summary of internal evaluations for each compared methods

Datasets Methods Internal evaluations

CH DB XB

Cell Cycle Accense 3.2409 ± 0.2069 2.4746 ± 0.2563 0.6473 ± 0.0750

PhenoGraph 3.4250 ± 0.0350 2.5692 ± 0.1503 0.7864 ± 0.0392

Xshift 3.5620 ± 0.0443 1.7337 ± 0.1618 0.9131 ± 0.3066

kmeans 3.9414 ± 0.0011 1.5971 ± 0.0013 0.7705 ± 0.0165

flowMeans 3.5992 ± 0.0283 1.6237 ± 0.0341 0.7294 ± 0.0393

FlowSOM 3.6294 ± 0.0036 1.3578 ± 0.0351 0.6669 ± 0.0269

DEPECHE 3.8372 ± 0.0283 1.7767 ± 0.0322 0.7695 ± 0.0177

ACDC 3.4645 ± 0.0901 2.0773 ± 0.3156 0.9395 ± 0.0428

LDA 3.4581 ± 0.0036 2.5080 ± 0.0191 1.0021 ± 0.0358

Colon Accense 3.2688 ± 0.0622 1.7064 ± 0.0656 1.0427 ± 0.0545

PhenoGraph 3.4231 ± 0.0194 1.9030 ± 0.0245 1.3997 ± 0.1199

Xshift 3.0706 ± 0.0179 2.3218 ± 0.0595 1.3207 ± 0.0511

kmeans 3.5109 ± 0.0079 1.9037 ± 0.0501 1.4570 ± 0.1055

flowMeans 3.4793 ± 0.1068 1.5864 ± 0.0421 1.6706 ± 0.1958

FlowSOM 3.6435 ± 0.0117 1.6583 ± 0.0514 1.5910 ± 0.1568

DEPECHE 3.9819 ± 0.0375 1.7725 ± 0.0250 1.6325 ± 0.0930

ACDC 3.5898 ± 0.0440 2.0607 ± 0.1160 1.4239 ± 0.0754

LDA 3.5100 ± 0.0009 2.1773 ± 0.0065 1.5564 ± 0.0724

Levine13dim Accense 3.4230 ± 0.0932 1.8832 ± 0.1408 1.2321 ± 0.0278

PhenoGraph 4.0739 ± 0.0176 1.4645 ± 0.0346 1.3972 ± 0.1349

Xshift 3.5106 ± 0.0289 2.4284 ± 0.0443 1.7868 ± 0.0476

kmeans 3.8508 ± 0.0150 2.1550 ± 0.0546 1.6213 ± 0.1471

flowMeans 4.0475 ± 0.0194 1.5030 ± 0.0849 1.4234 ± 0.1182

FlowSOM 3.8486 ± 0.0071 1.7564 ± 0.0615 1.5043 ± 0.1531

DEPECHE 4.2783 ± 0.0174 1.1677 ± 0.0342 1.3562 ± 0.0392

ACDC 3.9638 ± 0.0110 1.4916 ± 0.0370 1.3109 ± 0.0948

LDA 3.8288 ± 0.0106 2.0046 ± 0.0493 1.3828 ± 0.1167

Levine32dim Accense 3.4621 ± 0.0901 2.3414 ± 0.0925 0.7891 ± 0.0950

PhenoGraph 3.7401 ± 0.0081 1.8293 ± 0.0810 1.0009 ± 0.0479

Xshift 3.6669 ± 0.0102 2.2576 ± 0.1324 0.8295 ± 0.1382

kmeans 3.8761 ± 0.0166 2.0587 ± 0.0386 0.9972 ± 0.0441

flowMeans 3.8546 ± 0.0393 1.6975 ± 0.2199 0.7985 ± 0.0709

FlowSOM 3.8244 ± 0.0285 1.5974 ± 0.0863 0.8366 ± 0.0792

DEPECHE 4.1480 ± 0.0009 1.4727 ± 0.0023 0.7575 ± 0.0351

ACDC 3.6169 ± 0.0046 1.3974 ± 0.0049 0.7693 ± 0.1310

LDA 3.8297 ± 0.0007 1.7011 ± 0.0099 0.7155 ± 0.0139

Muscle Accense 3.2254 ± 0.1688 2.3190 ± 0.3178 0.8420 ± 0.1211

PhenoGraph 3.6052 ± 0.0132 1.8619 ± 0.0417 1.7228 ± 0.2389

Xshift 3.2898 ± 0.0274 2.2460 ± 0.1524 2.1455 ± 0.1599

kmeans 3.9722 ± 0.0022 1.7729 ± 0.0099 1.4987 ± 0.1212

flowMeans 3.3809 ± 0.0565 1.7685 ± 0.0769 1.3750 ± 0.1428

FlowSOM 3.8262 ± 0.0146 1.4439 ± 0.0462 1.3586 ± 0.1473

DEPECHE 4.2639 ± 0.0044 1.2235 ± 0.0080 1.2892 ± 0.0269
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subsampling datasets, for testing; (2) directly given dif-
ferent subsampling sizes, ranging from 5000 cells to 80,
000 cells, for testing. Then, we explored the robustness
of each tool with respect to the number of identified
clusters with varying sampling sizes.
When considering the performance of a clustering

tool, although its ability to cluster data into different
meaningful populations is of great significance, its stabil-
ity (or robustness) is also important. Therefore, we mea-
sured the robustness against a fixed subsampling size by
using the coefficient of variation (CV, smaller indicates
better stability), and we measured the robustness against
varying sample sizes by using the relative difference (RD,
close to zero indicates better stability) between 20,000
cell tests (Additional file 2) and 40,000 cell tests (Ta-
bles 2, 3, and 4, also see the “Methods” section). As
shown in Fig. 2a and Additional file 1: Figure S4A, both
semi-supervised tools and top-performing unsupervised
tools had a high robustness against random subsamp-
ling: median CVs for external evaluation in all datasets
ranged from 0.001 (LDA) to 0.054 (Xshift), whereas
those for internal evaluation ranged from 0.010 (LDA
and DEPECHE) to 0.049 (flowMeans). A few extreme
CV values for Xshift (ARI in CC data 0.46), DEPECHE
(ARI in CC data 0.36), and flowMeans (ARI in colon
data 0.31) indicate that performance of these tools might
decline in specific cases. Thus, we observed that LDA
had the best stability (largest CV for external evalu-
ation < 0.006; largest CV for internal evaluation = 0.08),
followed by PhenoGraph (largest CV for external evalu-
ation = 0.11; largest CV for internal evaluation < 0.14).
By comparing the impact of varying sampling sizes on

each tool (Fig. 2b and Additional file 1: Figure S4B), we
observed that LDA, ACDC, DEPECHE, and PhenoGraph
did not have large differences when the sample size ex-
panded from 20,000 to 40,000. They all had a relative

difference (RD, see the “Methods” section) close to zero
for all datasets. Xshift and FlowSOM exhibited some in-
stability: the distribution of RD for Xshift was biased to-
ward negative numbers, indicating that the precision of
Xshift declined as sample size grew large. Although RD
of FlowSOM was consistently around zero, there were
some extreme values: RD for ARI in Samusik01 data was
0.38, whereas that in muscle data was 0.27. Similar re-
sults were obtained from RD of internal evaluation met-
rics (Additional file 1: Figure S4B). Since flowMeans
frequently introduced singularity errors with a sample
size of less than or equal to 20,000 (data not shown), we
did not consider testing on flowMeans.
To further investigate the influence of sample size on

Xshift and FlowSOM, we carried out additional sub-
sampling tests (random sampling of 5000, 10,000, 60,
000, and 80,000 cells). In both the Levine32dim and
colon datasets, F-measure of Xshift dropped significantly
as the sample size grew large. Although average F-meas-
ure of FlowSOM was relatively stable across different
sample sizes, the standard deviation of F-measure
reached a minimum when sample size reached a max-
imum (80,000 cells in both datasets), indicating that
FlowSOM was more robust at analyzing large datasets
(Fig. 2c, d).

PhenoGraph and Xshift detect more clusters, especially
with a large sample size
We believed that the robustness of a method should be
evaluated by the stability of not only the performance of
clustering but also the number of identified clusters.
Therefore, we further explored the robustness of
methods with respect to the number of identified
clusters with varying sampling sizes. Since four of the
tested tools (ACDC, LDA, kmeans, and FlowSOM)
take the number of clusters as a required known

Table 4 Summary of internal evaluations for each compared methods (Continued)

Datasets Methods Internal evaluations

CH DB XB

ACDC 3.6900 ± 0.0305 1.7186 ± 0.0515 1.5641 ± 0.15555

LDA 3.8073 ± 0.0031 1.6641 ± 0.0206 1.6003 ± 0.0900

Samusik01 Accense 3.2952 ± 0.0476 2.3424 ± 0.1454 0.6500 ± 0.0266

PhenoGraph 3.7380 ± 0.0033 1.4607 ± 0.0424 0.7669 ± 0.0831

Xshift 3.2660 ± 0.0134 2.7855 ± 0.4644 1.2670 ± 0.1654

kmeans 3.7087 ± 0.0135 2.2072 ± 0.0854 0.9365 ± 0.0792

flowMeans 3.4029 ± 0.0381 1.6069 ± 0.2374 0.6309 ± 0.0475

FlowSOM 3.6941 ± 0.0257 1.8967 ± 0.3799 0.8286 ± 0.0832

DEPECHE 4.1028 ± 0.0021 1.4867 ± 0.0054 0.9141 ± 0.0109

ACDC 3.6827 ± 0.0178 1.3871 ± 0.0132 0.7273 ± 0.0573

LDA 3.6767 ± 0.0080 1.6325 ± 0.0242 1.0414 ± 0.0808

Data shown as mean ± standard deviation. CH Calinski-Harabasz index (log10 transformed), DB Davies-Bouldin index, XB Xie-Beni index (log10 transformed)
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input, we only investigated the robustness of the
other five tools (Accense, PhenoGraph, flowMeans,
Xshift, and DEPECHE).
As shown in Fig. 3a, b, DEPECHE detected a small

number of clusters in all datasets with little deviation. In
all datasets and sample sizes, the number of clusters
identified by DEPECHE ranged between 3 and 8. On the
contrary, Xshift detected more clusters compared to all
other tools. As the sample size grew from 20,000 to 40,
000, the number of clusters identified by Xshift also
grew significantly. PhenoGraph also identified a rela-
tively large number of clusters in the Levine32dim, Cell
Cycle, and colon datasets and was moderately impacted
by sample size in the Samusik01 and colon datasets. The
number of clusters detected by flowMeans was not as
extreme as DEPECHE or Xshift but was more inconsist-
ent compared to DEPECHE, Xshift, and PhenoGraph in
40,000 cells subsampling tests.
Given that PhenoGraph and Xshift identified more

clusters and that flowMeans was more inconsistent than
the above two tools, we carried out further subsampling
tests for PhenoGraph, Xshift, and flowMeans to evaluate
the influence of sample size on robustness. Since Xshift
provides an alternative way to determine the parameter
K in KNN called Elbow Plot Determination, we carried

out further Xshift analysis using the Elbow Plot method
to see whether it could give a stable result. Similarly,
FlowSOM had an alternative option to estimate the
number of clusters within a given range; hence, these
two cases were also included in the comparison with vary-
ing sampling sizes. As shown in Fig. 3 and Additional file 1:
Figure S5, the number of clusters detected by Xshift (de-
fault fixed K) grew greatly as the sample size grew from
5000 to 80,000, and Xshift (with the alternative Elbow Plot
setting) partly decreased this growth. However, the num-
ber of clusters detected still grew faster when using Xshift
with either setting than when using PhenoGraph. Further-
more, for PhenoGraph and Xshift, the increase in the
number of clusters accompanied a decline in precision
(Fig. 3d). On the contrary, as the sample size grew, the
precision for flowMeans declined without a significant
change in the number of detected clusters. An interesting
phenomenon is that when FlowSOM was forced to auto-
matically determine the number of clusters, it stably iden-
tified very few clusters just like DEPECHE did, but its
precision was moderately lower than default setting
(Fig. 3d vs. Fig. 2c). Comparing Fig. 2c to Fig. 3d, the pre-
cision and the stability of FlowSOM consistently reached
their peaks when the sampling size was at its maximum
(80,000).

Fig. 2 Stability of each tool. a Left: schematic diagram showing how coefficients of variation (CVs) were calculated and integrated; right:
distribution of CVs for external evaluations for each tool. The red solid line represents median CV for LDA, which is the smallest median CV. b
Same as a, but shows distribution of relative difference (RD) between 20,000 cell and 40,000 cell subsampling tests. The red solid line marks RD =
0, which means that there is no difference in performance between 20,000 cell and 40,000 cell subsampling tests. c Precision of FlowSOM on
Levine32dim and colon datasets changed as sample size changed. d Same as c, but for Xshift

Liu et al. Genome Biology          (2019) 20:297 Page 9 of 18



Xshift and PhenoGraph identified refined sub-clusters of
major cell types
Based on the above comparison analysis, we discovered
several notable characteristics of Xshift and Pheno-
Graph: (1) they had recognizable clustering structures
(shown by better internal evaluation results), (2) they
tended to overestimate the total number of clusters
compared to the number defined by manual gating strat-
egy, and (3) they exhibited reduced precision on datasets
that had much smaller numbers of labels than numbers
of features (muscle, Cell Cycle, colon). These character-
istics suggested that Xshift and PhenoGraph tend to
identify refined sub-clusters of major cell types. In other

words, if manual gating did not classify these sub-
clusters, the predicted clusters from Xshift and Pheno-
Graph would be very different than the manual labels.
To test this hypothesis, we applied Xshift and Pheno-
Graph on the entire colon dataset and defined a many-
to-one alignment between predicted clusters and manual
labels: if more than 50% of cells from a predicted cluster
belonged to one manual label, we defined that this clus-
ter is a sub-cluster of the corresponding manual label.
We found that each of the 132 clusters discovered by
Xshift could be aligned to a cell type defined by manual
gating (Fig. 4a). This alignment led to an F-measure of
0.85, which was much higher than a one-to-one

Fig. 3 Number of clusters detected by each tool. a, b Number of clusters detected by default settings of Accense, DEPECHE, Xshift, PhenoGraph,
and flowMeans. Translucent points represent results in 20,000 cell subsampling tests. c, d Number of clusters (c) and precision (d) of highlighted
tools and settings were impacted by sample size in the Levine32dim dataset. Dotted lines represent performance of alternative settings of
different tools (Xshift: Elbow Plot Determination; FlowSOM: automatic estimation of number of clusters). Since the precision of the default settings
of Xshift and FlowSOM have been shown in Fig. 2, they are not presented here
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alignment (Table 3). Since colon data involve samples
originated from healthy tissue, polyps, early-stage cancer,
and late-stage cancer, we tested whether Xshift discov-
ered origin-specific patterns of cell clusters. We found
that about three quarters (98 out of 132) of the clusters
discovered by Xshift were origin-specific (more than
50% of cells come from the same sample origin) (Fig. 4a).
These results demonstrate that Xshift was able to classify
specific subtypes of cells. Similar results were also found
for PhenoGraph (Additional file 1: Figure S6A). How-
ever, since PhenoGraph identified much smaller num-
bers of clusters than Xshift (34 vs. 132, respectively), its
capacity to recognize origin-specific clusters is relatively
weaker than that of Xshift.
Next, DEPECHE also has an observable phenomenon

that differentiates it from other tools. DEPECHE tended
to underestimate the number of clusters and had better
precision when the number of manual labels was small.
We hypothesize that unlike Xshift and PhenoGraph,
DEPECHE tends to group cells into major cell types.
Carrying out the same analytical procedure as in Xshift
but reversed, we obtained a one-to-many alignment be-
tween DEPECHE clusters and the manual labels of the
Samusik01 dataset (Fig. 4b). DEPECHE grouped differ-
ent T cells into one cluster and six types of progenitor

cells into another. The difference among subtypes of B
cells was also neglected by DEPECHE. We further found
that in both the Samusik01 and Levine13dim (Add-
itional file 1: Figure S6B) datasets, DEPECHE failed to
recognize the characteristics of some small cell types
such as basophil cells, eosinophil cells, nature killer cells,
and subtypes of dendritic cells (Additional file 1: Figure
S6B). All the above results demonstrate that DEPECHE
is not suitable for analyzing refined subtypes.

Discussion
The aim of this study is to present a benchmark com-
parison for current clustering methods for mass cytome-
try data and to help researchers select the suitable tool
based on the features of their specific data. To this end,
we considered the precision (external comparison), co-
herence (internal comparison), and stability of different
clustering methods. As shown by our results, this com-
parison procedure comprehensively depicts the charac-
teristics of each tool, providing clear guidance for tool
selection (Fig. 5). If researchers wish to determine the
pros and cons of other existing or novel tools in the fu-
ture, this benchmarking framework can be applied to
make a thorough comparison.

Fig. 4 Clustering resolution of Xshift and DEPECHE. a Each row represents one cluster detected by Xshift; each column represents a manual label
(left panel) of tissue origin (right panel). Color of each grid denotes the proportion of cells of that cluster belonging to the corresponding manual
label (left) of tissue (right). Thus, row sums of both panels are 100%. Black grids highlight the specific patterns resolved by Xshift. b Similar to a,
but for the relationship between DEPECHE clusters (column) and manual labels of Samusik01 data (row)
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Semi-supervised tools fit the task of finding known
clusters
As expected, both semi-supervised tools resulted in bet-
ter performance in terms of precision and stability than
unsupervised approaches. This strength was observed in
experiments with varying sample sizes, numbers of fea-
tures, and different indicators (accuracy, F-measure,
NMI, ARI), suggesting that the advantage of semi-
supervised approaches in precision is dominant and ex-
haustive. Thus, the ability to precisely and robustly re-
produce manual labels makes semi-supervised tools
suitable for situations where researchers focus on the
known cell types with reliable prior knowledge.
The two semi-supervised tools compared in our study,

LDA and ACDC, have a fundamental difference in terms
of prior input knowledge: LDA requires a training set
with manual labels as the input, whereas ACDC requires
a “marker × cell type” table that defines the relationship
between features and labels. This difference is vital for
the choice of semi-supervised tools. In our study, LDA
outperformed ACDC in most of the indicators, including
precision, stability, and runtime, which made LDA the
preferred tool in most conditions. However, LDA de-
pends on a reliable, homogenous training set. When
there is no available training set with manual labels, or
the training set and test set are heterogeneous (i.e., sam-
ples come from different tissues or cell lines, but train-
ing set contains only one tissue/cell line), ACDC would
be the better choice (Fig. 5 Q2).
Another interesting result is that the performance of

semi-supervised tools was beaten by unsupervised tools
with respect to coherence (internal evaluation), suggest-
ing that defining cell types based on isolated markers
might not precisely capture the inner structure of the

data. This observation is not surprising, considering that
the number of bi-axal plots required to depict the rela-
tionship among features increases exponentially as the
number of features increases [12]. Using only dozens of
bi-axal plots is thus unlikely to capture the whole pic-
ture. The human-subjective judgment of manual gating
[34] is another factor that hinders semi-supervised tools
from characterizing the objective features of CyTOF
data.

PhenoGraph and FlowSOM are the top-performing
unsupervised tools
The manual gating of mass cytometry data requires heavy
labor and results in issues regarding reproducibility and sub-
jectivity. Efforts to reduce such burdens have given rise to a
wide variety of unsupervised approaches that partition cell
populations according to the natural structure of cell data
[12]. Our results showed that two outstanding approaches,
PhenoGraph and FlowSOM, gave more precise and coherent
clustering results than other approaches. Each of these two
approaches had an impressive ability to produce coherent
clustering results; PhenoGraph showed higher stability, and
FlowSOM had the highest precision. We suggest Pheno-
Graph and FlowSOM as the two top-tier choices when re-
searchers are looking to focus more on the inner structure of
the data instead of relying on external prior knowledge.
An apparent limitation of FlowSOM is that it requires

the number of clusters to be predetermined (Fig. 5 Q5).
Predetermining the number of clusters would be difficult
for exploratory experiments, where even a rough estima-
tion of cell-type diversity is hardly available. Although
FlowSOM provides an alternative option to automatically
estimate the number of clusters within a given range, our
results suggest that performing this automatic estimation

Fig. 5 Upper panel: relative advantages of each tool. Note, precision and coherence are not exclusive; some tools like FlowSOM and PhenoGraph
are both precise and coherent. Position on the graph roughly represents relative relation. Lower panel: summary of characteristics of each tool
and suggested decision pipeline to choose the right tool
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worsens the performance of FlowSOM. Furthermore, even
if a large estimate range (up to twice the number manual
labels) was provided, FlowSOM consistently selected a
small number of clusters. We believe that the default set-
ting (inputting a predetermined number of clusters) is the
optimal setting for FlowSOM, which partially limits the
application of this promising tool.

Sample size has a vital impact
An essential challenge for CyTOF technology is that
sample size can vary significantly among different
CyTOF experiments [2]. Our results demonstrated that
various tools exhibited different performance results
when dealing with varying sample sizes; thus, sample
size must be taken into consideration when choosing the
appropriate tools.
As shown in Fig. 3, the number of clusters found by

PhenoGraph and Xshift positively correlated to sample
size. This trend could be alleviated, but not eliminated,
by the usage of Elbow Plot Determination in Xshift. We
reasoned that the impact of large sample size on the
number of clusters might have arisen from the inner
characteristics of density-based partitioning methods.
Generally speaking, both the Louvain method and other
modularity maximization algorithms aim to find the op-
timal partition of a network that reaches a maximum
“Newman-Girvan modularity,” or Qmax. However, the
maximization of Q suffers from the problem of extreme
degeneracy: there is typically an exponential number of
distinct partitions that are close to the optimum [35]. As
the size of the network grows, the number of local opti-
mal solutions grows geometrically, veiling the desired
optimal partition. Furthermore, the many locally optimal
solutions are often topologically dissimilar [35], which
gives rise to inconsistent outputs. This characteristic in-
troduces the potential risk that PhenoGraph and Xshift
may be overwhelmed by extremely large sample sizes.
The impact of sample size on flowMeans was inconsistent.

In one case, the performance of flowMeans declined when
sample size grew large (Fig. 3); in another case, flowMeans
frequently introduced the error of singularity and array di-
mensions in R when the sample size was smaller than 40,
000. Although experienced users may modify the source R
code to avoid these errors, we believe that this practice is not
advisable for common researchers without extensive pro-
gramming experience in R. Comparatively speaking, Flow-
SOM had better precision and stability with large sample
sizes and is the best alternative choice when dealing with
large amounts of cells.

Clustering resolution varies among different tools
Clustering resolution, the ability to detect small and re-
fined clusters, has seldom been evaluated by previous
publications, partly because many parameter settings can

impact the number of clusters identified by each tool. By
using the default settings for each tool, we found that
each tool, as well as their different settings, had a dis-
tinct tendency to over- or underestimate the number of
clusters. This tendency should not be neglected, given
the fact that an over- or underestimation is biologically
significant (Fig. 4). Furthermore, the resolution of the
manual label is more or less arbitrary and should not be
regarded as “golden standard.” Thus, in most cases, the
cell type resolution of CyTOF research is determined by
the results of the chosen clustering tool.
In the current study, we found that PhenoGraph and

Xshift output relatively larger numbers of clusters and
split the manual clusters into smaller sub-clusters. On
the contrary, DEPECHE grouped similar manual clusters
into larger meta-clusters and ignored the subtle differ-
ences among them. If researchers wish to focus on the
refined subtypes of cells, the appropriate choice would
be PhenoGraph or Xshift. If researchers cannot correctly
estimate the number of refined clusters they are looking
for, even FlowSOM would not be a good choice as Phe-
noGraph or Xshift, as the small number of clusters
found by automatic estimation of FlowSOM is not likely
to be “refined” (Fig. 3). If Xshift and PhenoGraph suffer
from instability with large sample sizes, an alternative
strategy could be a primary application of FlowSOM or
DEPECHE to obtain major cell types, followed by de-
tailed sub-clustering on each major type.

Conclusions
Our study demonstrates that in the field of mass cytom-
etry analysis, LDA best fits the task of precisely reprodu-
cing manual clustering labels. PhenoGraph and
FlowSOM are the top unsupervised tools because of
their high precision, coherence, and stability. Pheno-
Graph and Xshift can detect a refined subset of major
cell types, whereas DEPECHE and FlowSOM tend to
group similar cell types into large meta-clusters. Deci-
sion guidance has been provided (Fig. 5) as a concluding
summary to facilitate the choice of suitable clustering
tools based on users’ specific situations.

Methods
Clustering tools
A total of seven unsupervised clustering methods (Phe-
noGraph, Accense, Xshift, FlowSOM, flowMeans,
DEPECHE, and kmeans) and two semi-supervised
methods (ACDC, LDA) were compared for mass cytom-
etry data in the study (Table 1). Among them, Pheno-
Graph, Xshift, FlowSOM, and flowMeans are the best-
performance tools in a previous comparison of unsuper-
vised tools by Weber and Robinson [25], DEPECHE is a
novel clustering tool [19] for cytometry data that had
not been analyzed by Weber et al. [25], and LDA and
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ACDC are top-performance tools in a previous compari-
son of semi-supervised tools by Abdelaal et al. [11].
kmeans clustering was implemented using a built-in
MATLAB kmeans function. The remaining approaches
were implemented using the original articles’ sugges-
tions. All tools were freely available for use from the ori-
ginal articles.
In general, we performed each algorithm on arcsinh-

transformed data and with default settings. To minimize
the influence of inconsistent transformation and scaling
methods, we invalidated all transformation and scaling
functions for all software (i.e., standardize = FALSE for
flowMeans, transformation = NONE and rescale =
NONE for Xshift). All the compared tools were per-
formed on a single PC (Intel® Core™ i5-8400 CPU @
2.80 GHz, a processor with 8.00 GB memory). By default,
Xshift was run using standalone.bat with a minimum
memory of 1 GB.

Datasets
We tested the performance of these nine tools on six
mass cytometry datasets that served as “benchmarking
datasets” (Additional file 1: Table S1). All of these data-
sets were biologically well characterized with known
cell-type annotations. Among them, Levine13dim, Levi-
ne32dim, and Samusik01 are well-known benchmarking
CyTOF datasets and have already been summarized by
Weber and Robinson in their previous comparison [25].
The other three new datasets were summarized as
follows:

1) Muscle-resident cells from healthy adult mice [28].
Twenty-five proteins were used for clustering. Eight
major cell populations were identified according to
provided gating strategies, including Neg/Neg cells
that lacked any known cell markers.

2) In vitro cells from three cell lines—HEK293T,
MDA-MB-231, and THP-1 [29]. These cell lines
were treated by TNFα to induce a cell cycle trans-
formation. Cells at different time points were col-
lected after treatment. Cells were labeled by four
phases: G0/G1, G2, S, and M. A total of 35 markers
were measured.

3) Our laboratory’s private human colon data [36].
Cells were collected from healthy colon tissue,
polyps of a healthy adult, early-stage colon cancer,
and late-stage colon cancer. Nineteen protein
markers were used for clustering, and 13 manual la-
bels were generated using gating strategies.

Pre-processing of datasets
First of all, each dataset was filtered to remove annota-
tion incompleteness, doublets, debris, and dead cells.
Then, expression levels of all proteins were normalized

by the inverse hyperbolic sine function (denoted by arc-
sinh) with a scale factor of 5:

expnormalized ¼ arcsinh
exp
5

� �

All nine tools were applied on the filtered and normal-
ized datasets.
Then, we realized that Levine13dim, Levine32dim, and

Samusik01 datasets contained unassigned cells or cells
with ambiguous annotations (denoted as “NaN” in each
.fcs file), which did not belong to any manually gated
populations. For this matter, some researchers would
like to discard these unassigned cells since these cells
were usually low quality cells, intermediate cells, or cells
that did not express on some known markers [11, 23].
There were also some researchers who preferred to in-
clude these unassigned cells into the clustering [18, 21].
As the existing researches have done, we did the further
pre-processing for these three datasets in the following
two ways:

1) We discarded unassigned cells or cells with
ambiguous annotations and only clustered cells
with manually gated annotations into different
populations by the compared tools.

2) We executed each compared tools on all cells
including unassigned cells or cells with ambiguous
annotations, but calculated the evaluation measures
using the subset of annotated cells.

By observing the results of both cases (discarding
unassigned cells see Tables 2, 3, and 4, including un-
assigned cells see Additional file 1: Table S4 and S5)
separately, it was not difficult to find that the overall
ranking order of compared methods was almost the
same. However, comparing the results of each method
between these two cases, we found that only unstable
methods (such as Accense and Xshift) presented
obvious changes, and the relatively stable methods ba-
sically remained unchanged under our comparison
framework (such as DEPECHE and ACDC). There-
fore, we mainly discuss the result analysis for datasets
excluding unassigned cells, and the results of includ-
ing unassigned cells are presented in Additional file 1:
Table S4 and S5.
For the other three datasets used, each cell had its

own annotated labels. Therefore, we directly performed
compared tools on all cells. The manually gated annota-
tions were considered to be true cell populations, and
the performances of tested tools were measured by com-
puting several evaluation indices between the obtained
labels and the manual annotations.
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Subsampling tests
Since different datasets contain different numbers of
cells and analysis on large datasets is very time consum-
ing, we randomly subsampled 20,000 and 40,000 cells (5
times each) from each dataset and applied all tools on
them. The largest number of subsampling was set at 40,
000 because the Samusik01 dataset contains only 53,173
cells with manual annotations. Internal evaluations, ex-
ternal evaluations, stability tests, and further down-
stream analysis were conducted on these subsampled
cells. To further analyze the impact of sample size on
the performance of PhenoGraph, Xshift, FlowSOM, and
flowMeans, we carried out additional subsampling tests
with sample sizes of 5000, 10,000, 60,000, and 80,000 on
2 datasets: Levine32dim and colon. This was because
these two datasets have over 100,000 cells and have
moderate numbers of manual labels (14 for Levine32dim
and 13 for colon).
An exception to this analysis was when the sample size

was less than or equal to 20,000, where flowMeans in-
troduced errors of singularity and array dimensions in
more than half of the random sampling tests. We in-
ferred that subsampling data without singularity errors
might result in bias, so we did not carry out any tests on
flowMeans with sample size of less than or equal to 20,
000.

Internal evaluations measure the homogeneity of
clustering results
In the current study, we utilized both internal and exter-
nal evaluations to measure the clustering performance of
different approaches. Internal evaluations are based on
the hypothesis that an ideal clustering result should have
high similarity within each cluster and high heterogen-
eity between clusters. These evaluations do not require
additional “true labels” and analyze the internal charac-
teristics of a clustering result. Such characteristics make
them compatible to give a fair comparison between
semi-supervised and unsupervised methods. Three in-
ternal evaluation methods were adopted in our study:

1. The Xie-Beni index (XB) [32]. We first calculate the
pooled within-group sum of squares (WGSS) which
measure the dispersion within each cluster as:

WGSS ¼
X

k

1
nk

X
i< j∈Ik

M kf g
i −M kf g

j

��� ���2

Where Ik denotes all the samples in cluster k, nk = ∣

Ik∣, and Mfkg
i represents the observation of sample i (for

i ∈ Ik). We then calculate the between-cluster distance as:

δ1 k; k
0� �

¼ min
i∈Ik
j∈Ik 0

d Mi;Mj
� �

where d(a, b) is the Euclidean distance between a and b.
Based on the above two measurements, XB is defined as:

XB ¼ 1
n

WGSS

min
k<k

0
δ1 k; k

0� �2

2. The Calinski-Harabasz index (CH) [32]. CH also
utilizes WGSS to measure the dispersion within
each cluster. But unlike XB, CH uses another meas-
urement, between-group sum of squares (BGSS), to
measure dispersion between clusters:

BGSS ¼
XK
i¼1

nk G kf g−G
�� ��2

where G{k} denotes the barycenter for cluster k, and G is
the barycenter of all samples. Then, CH is defined as
follows:

CH ¼ N−K
K−1

BGSS
WGSS

3. The Davies-Bouldin index (DB) [32]. DB measures
the dispersion within each cluster by average dis-
tance to barycenter:

δk ¼ 1
nk

X
i∈Ik

M kf g
i −G kf g

��� ���

whereas the dispersion between clusters is measured by:

Δkk
0 ¼ G kf g−G k

0� �����
����

Integrating these measures, DB can be written as:

DB ¼ 1
K

XK
k¼1

max
k
0
≠k

δk þ δk 0

Δkk
0

 !

External evaluations measure the precision of clustering
results
On the contrary, external evaluations measure the simi-
larity between a clustering result and the true labels
(specifically, manually gated labels in a CyTOF study).
External evaluations tend to favor semi-supervised
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methods over unsupervised methods since they make
use of the same true labels.
To measure the precision of predicted clustering, the

first step is to obtain a one-to-one mapping between
predicted clusters and true cell population. This was
achieved by the Hungarian assignment algorithm, a
combinatorial optimization algorithm that finds the as-
signment with the lowest F-measure in true cell popula-
tions [21]. Then, four different external evaluations were
adopted:

1. Single cell-level accuracy (AC) [31], which is de-
fined as the ratio of correctly clustered cells in total
cells. Suppose n is the total number of cells, M is
the vector of cluster labels annotated by manual
gating, and T is the vector of cluster labels pre-
dicted by tested approaches. map(Ti) is the one-to-
one mapping between predicted clusters and actual
cell cluster achieved by the Hungarian assignment
algorithm. AC is calculated by:

AC ¼ 1
n

Xn
i¼1

δ Mi;map Tið Þð Þ

where

δ x; yð Þ ¼ 1; if x ¼ y;
0; if x≠y

	

2. Weighted F-measure (harmonic mean of precision
and recall) [37]. For each cluster i, we use

Fi ¼ 2PiRi

Pi þ Ri

to calculate its F-measure, where Pi ¼
true positive

true positiveþfalse positive and Ri ¼ true positive
true positiveþfalse negative repre-

sent precision and recall of cluster i. We summed up the
F-measure of each cluster over all clusters to obtain the
weighted F-measure:

F ¼
X ni

N
Fi

where ni represent the number of cells in cluster i and N
represents the total number of cells.

3. Normalized Mutual Information (NMI) [30].
Suppose m∈M is the clustering assignment from
manual gating, t∈ T is the clustering assignment
from the tested approach, PM(m) and PT(t) are their
probability distributions, and PMT(m, t) is their joint

distribution. Their information entropies are
calculated by:

H Mð Þ ¼ −
X
m

pM mð Þ logPM mð Þ

H Tð Þ ¼ −
X
t

pT tð Þ logPT tð Þ

We defined mutual information (MI) of M and T as:

I M;Tð Þ ¼
X
m;t

PMT m; tð Þ log PMT m; tð Þ
pM mð ÞpT tð Þ

If we treat both M and T as discrete random variables,
their statistical redundancy reflects the clustering accur-
acy (note that a perfect clustering result T and the true
labels M are completely redundant because they contain
the same information). I(M, T) captures this redundancy,
but its normalized form:

NMI ¼ 2I M;Tð Þ
H Mð Þ þ H Tð Þ

is a more commonly used evaluation. The value of NMI
would be large if T is an optimal clustering result. In an
ideal situation, T =M corresponds to NMI = 1.

4. Adjusted Rand Index (ARI) [38]. Given two
different partitions of a same set of samples, Xi (1 ≤
i ≤ r) and Yj (1 ≤ j ≤ s), we denote nij as the number
of samples that are in both Xi and Yj, nij = |Xi∩ Yj|.
Let ai ¼

Ps
j¼1nij and bj ¼

Pr
i¼1nij, we have

∑ai = ∑ bj = ∑ nij = n. We can define ARI as:

ARI ¼
P

ij

nij
2

� �
−
P

i
ai
2

� �P
j

b j

2


 �� 

=

n
2

� �
1
2

X
i

ai
2

� �
þ
X

j

b j

2


 �� 

−
X

i

ai
2

� �X
j

b j

2


 �� 

=

n
2

� �

which measures the similarity between partition X and
Y.

Evaluation of stability
In this study, we analyzed the stability (robustness) of
different tools from two aspects: robustness against ran-
dom subsampling and robustness against varying sample
sizes. The robustness against random subsampling was
evaluated using data from subsampling tests with 40,000
cell samples. For any given tool, dataset, and index, there
were five values from five subsampling tests. After calcu-
lating the standard deviation and mean of these five
values, we defined the coefficient of variation (CV) as:
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CV ¼ Standard Deviation
Mean

For each tool, there were 24 CVs for external evalu-
ation (6 datasets and 4 indices). Their distribution was
calculated as a ridge plot (Fig. 2), and we compared the
robustness among tools by comparing the median and
extreme values of the distribution of CVs.
The evaluation of robustness against varying sample

size was conducted similarly, except that CV was re-
placed by relative difference (RD) between 20,000 and
40,000 cell subsampling tests. For any given tool, dataset,
and index, RD was defined as:

RD ¼ mean40k−mean20kð Þ
mean20k

Evaluation of the number of clusters
Among the nine tools we compared, kmeans, FlowSOM,
LDA, and ACDC required the number of clusters as an
input, flowMeans by default did not require this input,
and the remaining tools automatically estimated the
number of clusters. To test the stability of each tool, we
recorded the number of clusters obtained by flowMeans,
PhenoGraph, Accense, Xshift, and DEPECHE in each
subsampling test. The standard deviation for each tool
was calculated to represent the stability of the tool.
For FlowSOM and Xshift, there are widely applied al-

ternative settings that impacted the number of detected
clusters: Elbow Plot Determination to estimate K for
KNN (Xshift) and automatic estimation of the number
of clusters (FlowSOM). We evaluated the perfor-
mances using these settings, together with Pheno-
Graph and flowMeans, on the Levine32dim and colon
datasets. For FlowSOM, the cluster number estima-
tion range was set at 1 to 2 times the number of
manual labels. This range proved to be wide enough
given the fact that FlowSOM consistently estimated a
relatively low number of clusters.

Evaluation of clustering resolution
To evaluate the ability of Xshift and PhenoGraph to find
refined sub-clusters of manual labels, we defined a
many-to-one alignment between predicted clusters and
manual labels: if more than half of cells from a predicted
cluster belonged to one manual label, we considered this
predicted cluster to be a sub-cluster of the correspond-
ing manual label. Under this alignment, we recalculated
the F-measure, NMI, and ARI. To verify whether Xshift
and PhenoGraph can resolve heterogeneity in sample
origin in colon data, we defined that one predicted clus-
ter is origin-specific if more than half of its cells come
from one sample origin (normal tissue, polyps, early-
stage cancer, or late-stage cancer). The fact that most of

the predicted clusters can be aligned to one manual label
and that this alignment significantly improved precision
demonstrates that Xshift and PhenoGraph indeed found
the sub-clusters of manual labels. The fact that the
majority of Xshift clusters were origin-specific demon-
strates that Xshift is capable of resolving heterogeneity
of sample origin.
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