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Abstract

Background: DNA methylation can provide a source of heritable information that is sometimes entirely uncoupled
from genetic variation. However, the extent of this uncoupling and the roles of DNA methylation in shaping
diversity of both gene expression and phenotypes are hotly debated. Here, we investigate the genetic basis and
biological functions of DNA methylation at a population scale in maize.

Results: We perform targeted DNA methylation profiling for a diverse panel of 263 maize inbred genotypes. All
genotypes show similar levels of DNA methylation globally, highlighting the importance of DNA methylation in
maize development. Nevertheless, we identify more than 16,000 differentially methylated regions (DMRs) that are
distributed across the 10 maize chromosomes. Genome-wide association analysis with high-density genetic markers
reveals that over 60% of the DMRs are not tagged by SNPs, suggesting the presence of unique information in
DMRs. Strong associations between DMRs and the expression of many genes are identified in both the leaf and
kernel tissues, pointing to the biological significance of methylation variation. Association analysis with 986
metabolic traits suggests that DNA methylation is associated with phenotypic variation of 156 traits. There are some
traits that only show significant associations with DMRs and not with SNPs.

Conclusions: These results suggest that DNA methylation can provide unique information to explain phenotypic
variation in maize.
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Background
DNA methylation is the most studied chromatin modifica-
tion in many plant species. DNA methylation has important
roles in maintaining genome integrity and may also influ-
ence plant development and environmental responses, es-
pecially in species with complex genomes [1–6]. DNA
methylation occurs in three sequence contexts in plants,
CG, CHG, and CHH (H=A, C, or T), each of which is

maintained by different pathways. CG is maintained by
DNA METHYLTRANSFERASE 1 (MET1), CHG by
CHROMOMETHYLASE 3 (CMT3), and CHH by RNA di-
rected DNA Methylation (RdDM) as well as CHROMO-
METHYLASE 2 (CMT2) [2, 7, 8].
DNA methylation often varies across different individ-

uals of the same species [9–13]. This can include spontan-
eous epimutations [9–11] as well as differences among
genetically distinct varieties. Natural variation for DNA
methylation includes examples in which genetic changes
such as transposon insertions or rearrangements cause the
change in methylation (obligatory epialleles) [14, 15].
There can also be more complex examples in which a
genetic change results in a facilitated epiallele [14]. Other
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examples of natural variation for DNA methylation can re-
flect pure epigenetic variation that occurs in the absence of
any causative genetic changes [1, 14]. The association be-
tween DNA methylation and genetic variation has been re-
ported at a genome-wide scale in Arabidopsis [12, 16, 17].
These studies suggest that some examples of variation for
DNA methylation are due to genetic changes while others
are not. In maize, a species with a larger genome and much
higher transposon content, there is also evidence of both
genetic-dependent and genetic-independent DNA methyla-
tion [18, 19]. The previous studies in maize were not able
to detect context-specific DNA methylation patterns, which
may have different functions and stabilities.
DNA methylation can result in phenotypic changes,

most likely through influencing gene expression. DNA
methylation within a gene can affect splicing of pre-
mRNAs [20, 21]. DNA methylation outside gene, espe-
cially those within promoter regions, has been suggested
to influence gene expression levels [22]. Several studies
in plant species suggest that the number of genes whose
expression is affected by DNA methylation is limited, at
an order of hundreds, and the genes whose expression is
affected by DNA methylation usually have specific prop-
erties [13, 23]. These genes generally show qualitative
changes (on versus off) in expression among different
genotypes [13]. However, these studies assayed gene ex-
pression in one tissue. It is possible that more genes for
which expression are associated with DNA methylation
can be identified if more tissues were assayed, as has
been found for genetic variation [24–27].
In this study, we investigated the genetic basis and bio-

logical consequences of natural variation in DNA methy-
lation among diverse inbred lines in maize. We found
evidence for many examples of differentially methylated
regions (DMRs) that contain information that is not fully
captured using SNPs. We showed that variation in DNA
methylation is associated with variation in gene expres-
sion, and this association is dependent upon sequence
contexts as well as the position of DMR relative to gene
transcriptional start site. Furthermore, we showed that
variation in DNA methylation is associated with pheno-
typic variation in maize and can explain a portion of the
heritability of some metabolic traits.

Results
Extensive variation in DNA methylation among maize
inbred lines
To explore natural variation in DNA methylation, we
profiled DNA methylation across a panel of 263 diverse
maize inbred lines using a capture-based method [28].
This method allows single-base resolution of DNA
methylation across a large population at a common set
of loci with high coverage. The capture space includes
over 20,000 regions, covering 15Mb of the maize

genome [29]. These regions were selected based on our
previous work of DNA methylation in maize and include
regions that vary in DNA methylation across three maize
lines or five maize tissues, mCHH islands, and pro-
moters of genes that are potentially silenced by DNA
methylation [13, 30]. The maize inbreds utilized in this
study represent a wide range of diversity, including lines
that are adapted to tropical/semitropical regions or tem-
perate regions. It includes the inbred B73 used to make
the maize reference genome as well as inbreds widely
used in past and present breeding schemes (Add-
itional file 2: Table S1). We obtained a total of ~ 2.3 bil-
lion 2 × 125 paired reads, with an average of ~ 8.7
million paired reads for each sample (Additional file 2:
Table S1). These reads were mapped to the B73 genome
[31] at a mapping rate from 16 to 70%, corresponding to
an average of ~ 3.8 million mapped reads for each sam-
ple. At this mapping rate, we have a total of ~ 7Mb of
regions with ≥ 2-fold coverage in > 60% of the lines,
allowing us to identify regions with variable DNA
methylation at a population scale in maize.
DMRs were identified for each of the three se-

quence contexts. In total, we identified 8864, 9759,
and 5075 DMRs for CG, CHG, and CHH respectively.
To support the reliability of the capture-based assay
of DNA methylation, we compared DMRs that are
identified using this method with the DMRs that are
identified based on whole genome bisulfite sequencing
(WGBS) [13]. We took advantage of B73 and Mo17
for which DNA methylation levels have been assayed using
both methods. As expected, the DMRs that are identified
using the capture-based method are well supported by
WGBS data (Additional file 1: Figure S1). The DMRs were
distributed along the 10 maize chromosomes. Many of the
DMRs were located in regions annotated as genes, corre-
sponding well with the distribution of capture probes
(Fig. 1a, Additional file 1: Figure S2). The size of DMRs is
quite similar for all three sequence contexts, with the ma-
jority between 60 bp and 1000 bp and a median of 200 bp
(Additional file 1: Figure S2a). This suggests that variation
in DNA methylation is usually confined to a region corre-
sponding to one or several nucleosomes. The analysis of
the minor epiallele frequency (MEF) suggests that the lowly
methylated state is often the rare epiallele for CG and CHG
DMRs while CHH DMRs often exhibit higher methylated
levels as the rare epiallele (Additional file 1: Figure S2b).
The distribution of CG and CHG DMRs relative to genes
and TEs is similar to the distribution of all assayed regions.
The CHH DMRs are depleted within genes (Add-
itional file 1: Figure S2c). Prior studies in Arabidopsis have
identified natural variation in DNA methylation compo-
nents such as VIM or CMT2 [17, 32, 33] that influence
genome-wide methylation levels or patterns in some eco-
types, but we did not find any evidence for this in maize.
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Though we identified DMRs separately for each con-
text, there are many loci at which they can co-vary
(Fig. 1b). In fact, there is substantial redundancy for
DMRs for different contexts, especially for CG and CHG
DMRs (Fig. 1c, d). We thus combined CG and CHG
DMRs, and identified a set of regions that show varia-
tions in both contexts or only in CG or CHG context. A
stringent set of criteria were applied (the “Methods” sec-
tion) to identify 708 DMRs that vary only in CG context
(CG_only), 944 DMRs that vary only in CHG context
(CHG_only), and 2223 DMRs that vary in both CG and
CHG contexts (CG_CHG). The relative frequency of
context-specific DMRs within the captured loci is quite
similar to the genome-wide patterns [13]. The size range
of the context-specific DMRs is quite similar, but the
overlap with genomic features is distinct (Additional file 1:
Figure S2d, e).

DMRs can differentiate maize subgroups
We explored whether variation in DNA methylation ac-
curately reflects genetic relationships among different in-
bred lines. Individual relatedness that is computed using
either SNP or DNA methylation levels is highly corre-
lated (Fig. 2a). Interestingly, the correlation is substan-
tially higher for CG methylation at CG DMRs than for
CHG (CHG DMRs) and CHH (CHH DMRs) methyla-
tion (Fig. 2b), suggesting that CG methylation is more

stable. Principle component analysis (PCA) performed
using CG, CHG, or CHH methylation levels from DMRs
can separate inbreds into different subgroups, which
agree well with classifications based on SNPs (Add-
itional file 1: Figure S3a). The ability to differentiate
population subgroups is highest for CG methylation
(Additional file 1: Figure S3a). We then asked whether
variable levels of CG (or CHG) methylation from CG_
only (or CHG_only) DMRs have similar power as that
from CG_CHG DMRs to differentiate populations
(Fig. 2c). Interestingly, the CG_only and CHG_only
DMRs show less correlation with genetic distance than
CG_CHG DMRs. The differentiation of population sub-
groups using DMRs suggests the presence of subgroup-
specific DMRs. Indeed, an analysis of variance analysis
(ANOVA) suggests that there are numerous DMRs that
show high or low methylation in the majority of lines of
a subgroup, though no DMRs that have exclusively low
or high methylation in one subgroup were identified
(Additional file 1: Figure S4).

Genome-wide association analysis to dissect the genetic
basis of DMRs
DNA methylation could be associated with nearby gen-
etic variation either due to the causal action of the gen-
etic variation upon methylation levels or due to linkage
disequilibrium (LD) between highly stable DMRs and

Fig. 1 Natural variation of DNA methylation among maize inbred lines. a The distribution of DMRs throughout maize chromosomes and the
relationship with other genomic features is visualized. From the outer ring to the inner ring (1–6) are TEs, genes, regions with capture probes, CG
DMRs, CHG DMRs, and CHH DMRs. Density of each type was calculated based on 1 Mb windows, and the centromeres are represented by black
blocks. b Examples of context-specific DMRs. Each track represents different inbred lines. c Overlaps between CG, CHG, and CHH DMRs. d Total
number of context-specific DMRs
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nearby genetic changes. To investigate to what extent
DMRs are tagged by SNPs and whether there are differ-
ences among different types of DMRs, we performed
genome-wide association analysis (GWAS) with ~ 1 mil-
lion high-quality SNPs using a mixed linear model that
controls for both population structure and individual re-
latedness. We identified a total of 4336, 4096, and 1426
associations for CG, CHG, and CHH DMRs (Fig. 3a and
Additional file 2: Table S2) respectively at a genome-
wide significance level of 5.15 × 10−8 (Bonferroni-cor-
rected P value of multiple testing). Of the DMRs with
associations, most shows significant association with
only one SNP (Fig. 3b). Similarly, most of the SNPs asso-
ciate with only one DMR (Fig. 3c). A close examination
of the distance between the DMR and the associated
SNPs shows that the distance is usually within 10Mb of
each other (Fig. 3d). Thus, the SNPs were defined as
local if the associated DMR is within 10Mb and were
defined as distal if on a different chromosome. In

agreement with the observation that no maize genotypes
had global changes in DNA methylation in the associ-
ation panel, no strong distal hotspots were identified
(Fig. 3a). This suggests that the major methylation ma-
chinery was not compromised in the panel of inbreds
used for this study.
Of the three sequence contexts, CG is most likely as-

sociated with SNPs either by local or by distal, and rarely
by both (Fig. 3e). CHH DMRs are the least to show asso-
ciations with SNPs. Importantly, > 60% of the DMRs do
not have a significant association with any SNPs for each
of the three sequence contexts (Fig. 3e), suggesting that
these DMRs may represent unique information that is
not captured by SNPs and therefore would not be repre-
sented in typical GWAS analyses. In some cases, the
DMRs could arise from structural variants that may not be
effectively tagged by SNPs. The set of structural variants
identified by Yang et al. [34] were used for an association
analysis with the DMRs (Additional file 1: Figure S5). This

Fig. 2 Comparison of genetic distance calculated using either SNPs or DNA methylation. a The correlation of kinships between any two lines
calculated by SNPs or DNA methylation in CG context. The color reflects the density of points. b The squared Pearson correlation coefficient (R2)
between the two kinships calculated using either SNPs or the indicated DNA methylation. ALL means that the kinship was calculated using all
three contexts. c PCA plots of context-specific DMRs. The color and shape of symbols reflect different subgroups of maize that are determined by
SNPs. SS, stiff stalk; NSS, non-stiff stalk; TST, tropical or semi-tropical
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identified an additional 0.3–1% of the DMRs that do not
have significant associations with SNPs that can be associ-
ated with a structural variant. Overall, these analyses sug-
gest that a substantial portion of DMRs are not effectively
captured by SNPs or structural variants.

Variation in chromatin and genetic control of context-
specific DMRs
There is variation for the frequency of DMRs for differ-
ent sequence contexts that exhibit significant association
with SNPs. The proportion of DMRs with significantly
associated SNPs is lower for CG_only (45%) and CHG_
only (26%) DMRs than that for CG_CHG DMRs (51%)
(Fig. 4a). This suggests that CG_only and CHG_only
DMRs are less stable than CG_CHG DMRs, consistent
with the above observation that CG_CHG DMRs have
better power in differentiating maize subgroups. To in-
vestigate the properties of context-specific DMRs, we

looked at the methylation levels of the other contexts in
CG_only and CHG_only DMRs. For most of the CG_
only DMRs, the CHG levels are uniformly low across all
genotypes (Fig. 4b), suggesting that these regions are not
targets of Zmet2/Zmet5, which maintains CHG methyla-
tion. In contrast, most of the CHG_only DMRs have
high levels of CG methylation in all genotypes (Fig. 4b),
suggesting that these regions are consistent targets of
CG methylation maintaining enzyme, MET1. There is
also variation in the chromatin features of context-
specific DMRs (Fig. 4c, d). CG_only DMRs tend to have
low levels of both H3K9me2 and H3K27me3 marks.
This suggests that CG_only DMRs are less likely to
occur in regions with repressive chromatin environ-
ments, in agreement with the findings that they are
enriched in genic regions and likely represent differential
gene body methylation (Additional file 1: Figure S2).
CHG_only DMRs tend to have higher H3K9me2. The

Fig. 3 The genetic basis of DMRs. a The genomic distribution of DMRs and their associated SNPs is shown. The x-axis indicates the genomic positions
of the significant SNPs, while the y-axis shows the genomic positions of the corresponding DMRs. The color of each point reflects the P value. b
Distribution of the number of significant SNPs per DMR. c Distribution of the number of significantly associated DMRs for each SNP. d The distance
between DMR and the significant SNP. The y-axis represents the P value, and the color reflects the density of associated SNP-DMR pairs. e Summary of
the genetic basis for CG, CHG, and CHH DMRs
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high levels of H3K9me2 were only observed in the sub-
set of CHG_only DMRs that have high DNA methyla-
tion in the B73 where H3K9me2 data was collected, not
in the DMRs where DNA methylation is low in B73.
This agrees with the fact that CHG methylation and
H3K9me2 form a self-reinforcing loop [35]. In contrast
to CG_only and CHG_only DMRs, CG_CHG DMRs
have high levels of both H3K9me2 and H3K27me3.
Interestingly, the high levels of H3K9me2 occur in
DMRs where DNA methylation is high in B73 (the geno-
type where H3K9me2 and H3K27me3 were collected),
while the high levels of H3K27me3 occur in DMRs
where DNA methylation is low in B73 (Fig. 4c, d). This
agrees with the reports that DNA methylation and
H3K27me3 are generally repulsive [36].

DMRs are associated with natural variation in gene
expression
To investigate the association between DNA methylation
and gene expression, we performed GWAS using gene ex-
pression as the dependent variable and DNA methylation
as the independent variable. The expression data was from
kernels 15 days after pollination. At P < 1 × 10−6 (Bonfer-
roni’s correction for multiple test, 0.01/N, N is the number
of DMRs), 1389 significant associations between expres-
sion and methylation levels were detected, with CG, CHG,
and CHH DMRs having 538, 562, and 289 associations,
respectively (Fig. 5a, Additional file 2: Table S3). The ma-
jority of the significantly associated DMRs were located
on the same chromosome as the genes, and the distance
between the DMR and the gene is usually less than 1Mb

Fig. 4 Regulation of context-specific DMRs. a Summary of the genetic basis for context-specific DMRs. b CHG methylation levels in CG_only
DMRs and CG methylation levels in CHG_only DMRs. c H3K9me2 metaprofile around context-specific DMRs. d H3K27me3 metaprofile around
context-specific DMRs
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Fig. 5 Associations between DMRs and gene expression. a The genomic distribution of genes and their associated DMRs. The x-axis indicates the
genomic positions of DMRs, while the y-axis is the genomic positions of corresponding genes. The color reflects the direction of association between
gene expression and DMRs, with blue for positive associations and orange for negative associations. Note there are more orange dots (negative
associations) in the plots of CG and CHG methylation, and more blue dots (positive associations) in the plot of CHH methylation. b The distance
between the DMR and the gene transcription start site (TSS) is evaluated for DMR-gene expression associations. The x-axis is the log10 (downstream) or
− log10 (upstream) value of the distance from DMR to the TSS, while the y-axis is the number of associations. The color indicates the direction of
associations with darker shades representing lower P value. c Summary plot for the proportion of negative associations for DMRs with varying distance
to gene TSS. Note the closer the DMR to gene, the more negative associations for CG and CHG methylation and the more positive associations for
CHH methylation. d Comparison between leaf and kernel expression data using associations within 1 Mb from DMR to TSS. e The expression levels of
genes in leaf (kernel) which only show significant associations in kernel (leaf) tissue. The left plot shows P value of significant gene-DMR associations,
and the right plot shows levels of gene expression. Gray color means that the data are not available because of low/no expression of the gene in that
tissue. f The proportion of DMRs associated with gene expression that also have a significant association with SNPs
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(Additional file 1: Figure S6a). The majority of DMRs are
associated with only one gene, arguing against the pres-
ence of distal hotspots (Fig. 5a).
There are more negative associations for CG and CHG

DMRs (Fig. 5a–c). In contrast, CHH DMRs tend to be
positively associated with gene expression. These trends
become stronger the closer the DMR is to the transcrip-
tion start site (TSS), especially for DMRs within 1 kb of
TSS (Fig. 5b, c). Many of the negative associations for
CG and CHG were located downstream of the TSS
(Fig. 5b), suggesting that high CG and CHG methylation
within the gene body are likely to associate with reduced
expression. It is observed that all three sequence con-
texts, CG, CHG, and CHH, from the same DMR can as-
sociate with expression of the same gene though the
direction of association could be different (Add-
itional file 1: Figure S6b). Interestingly, CG_CHG DMRs
are ~ 3 times more likely to be associated with gene ex-
pression compared with CG_only and CHG_only DMRs
(Additional file 1: Figure S6c). The CHG methylation
from either CG_CHG DMRs or CHG_only DMRs tend
to be negatively associated with gene expression, while
CG methylation shows negative associations when it co-
varies with CHG methylation but shows positive associa-
tions (> 75% cases) when in CG_only DMRs (Add-
itional file 1: Figure S6d). Thus, the association between
gene expression and DNA methylation is dependent
upon sequence context.
To assess how DMRs are associated with gene expres-

sion in different tissues, we explored the association be-
tween DMRs and gene expression in a second
expression dataset derived from leaf tissue, and com-
pared with the associations from the developing kernels.
We identified a total of 1096 associations in the leaf tis-
sue, compared to 1389 in the kernel tissue. There are
689 and 428 DMR-gene associations which are located
within 1Mb of each other in kernel and leaf, respect-
ively, including 168 associations that were identified in
both tissues (Fig. 5d). The shared associations include
74, 79, and 15 for CG, CHG, and CHH DMRs respect-
ively. While some DMRs show common associations,
there are many DMRs that only associate with gene ex-
pression in one of the tissues (Fig. 5d). A close examin-
ation of the data revealed that 3.7–12.5% of tissue-
specific associations are significant in another tissue if
less stringent criteria were applied, and 17~29% were
due to tissue-specific expression patterns of genes
(Fig. 5e). For the remaining gene-DMR associations, ex-
pressions of the genes were detected in both tissues but
significant associations were detected only in one tissue.
This suggests the full set of genes with expression levels
influenced by DNA methylation variation can only be
documented through the analysis of many different tis-
sues or growth conditions.

We assessed whether the DMRs that were significantly
associated with gene expression were enriched for asso-
ciations with SNPs. A subset (42–71%) of the DMRs that
are associated with gene expression also have significant
association with SNPs, with higher proportions for CG
and CHG DMRs than for CHH DMRs (Fig. 5f). The
remaining 29–58% of the DMRs associated with gene
expression are not significantly associated with SNPs.
Similar patterns were found for context-specific DMRs
(Additional file 1: Figure S6e). Together, these results
suggest that DMRs, whether or not tagged by SNPs, can
explain variation in gene expression.

A causal relationship between DMRs and variation in
gene expression
Differential DNA methylation could be a cause or a con-
sequence of differential gene expression. In an attempt
to address this question, we compared two models using
the Mendelian randomization test (Additional file 1: Fig-
ure S7a). The first model assumes a DMR is a cause of
differential gene expression. We selected instrumental
SNPs that show strong association with DMRs but not
with gene expression, so that the effect of the SNP on
gene expression was because of the combined effect of
SNP on DMR and the effect of DMR on gene, which is
called the predicted effect. We then compared this pre-
dicted effect with the observed effect. Interestingly, there
is a strong correlation between the predicted effect and
the observed effect. In contrast, the correlation is much
smaller in a second model where DMR is a consequence
of differential gene expression. The difference in correl-
ation between the two models is observed in both the
kernel and leaf tissues (Additional file 1: Figures S7 and
S8). It is also observed for each of the three sequence
contexts irrespective of the direction of association and
the distance between DMR and gene (Additional file 1:
Figures S7 and S8). These support an idea that DMR is
more likely to be a cause of differential gene expression.
Next, we set to validate the causative role of DNA

methylation on gene expression by using methylome
mutants. We took advantage of the RNA-seq data from
kernel tissue of the ddm1 double mutant which disturbs
DNA methylome dramatically [37]. We assessed whether
the genes detected as exhibiting natural variation for
DNA methylation linked to DMRs in our population
would also show changes in expression in the ddm1 mu-
tant. As the ddm1 mutant has limited changes in CG
and there is no available mutant in maize that disturbs
CG methylation, we focused on CHG and CHH methy-
lation. For CHG DMRs, 67% of DMR-gene associations
could be supported in ddm1 mutant with the direction
of association being the same in the natural population
and in the ddm1 mutant, compared to ~ 50% for ran-
dom control which uses the top 5000 non-significant

Xu et al. Genome Biology          (2019) 20:243 Page 8 of 16



DMR-gene associations (Additional file 1: Figure S7b).
For CHH DMRs, 62% were supported. Interestingly,
both negative and positive associations from natural
variation could be supported by the changes in expres-
sion in the ddm1 mutant. These results provide further
support that DNA methylation can have both a negative
and a positive causal effect on gene expression.

Natural DMRs explain phenotypic diversity
If DMRs are tightly linked to nearby SNPs, then the po-
tential phenotypic impact of this heritable information
would be captured in SNP-based GWAS scans. How-
ever, if DMRs are not tightly linked to SNPs, then the
variation in DNA methylation will reflect novel informa-
tion not included in SNP-based scans. To identify
whether DMRs can affect phenotypic variations both
dependent upon and independent of SNPs, we per-
formed GWAS using DMRs as independent variables
and phenotypic data as dependent variables. We used
the metabolic data that has been generated for this di-
verse panel in a previous study [38]. A total of 986
unique metabolic traits were measured in 3 independent
environments. At a genome-wide significance level of
0.05/N (N is the number of DMRs which is 8864, 9759,
and 5075 for CG, CHG, and CHH DMRs, respectively),
156 traits (15.8%) show significant associations with a
DMR in at least 1 environment (Fig. 6a, Additional file 2:

Table S4). The majority of the traits (76%) show associa-
tions with one DMR (Fig. 6a). There are 12 traits that
are associated with the same DMR in at least 2 environ-
ments, suggesting that the effect of some DMRs is stable
and reproducible. In total, 43 CG, 45 CHG, and 63 CHH
DMRs were found to be significantly associated with
metabolic traits (Fig. 6b). Some DMRs can associate with
more than 1 metabolic trait, leading to a total of 250
DMR-trait associations. Interestingly, many of the sig-
nificantly associated DMRs are not significantly associ-
ated with SNPs, with higher proportions for CHH
DMRs than for CG and CHG DMRs (Fig. 6c). There are
many traits that only show associations with DMRs but
not with SNPs (Additional file 2: Table S4), suggesting
that DMRs may be more predictable for phenotypic vari-
ation than SNPs for some traits.
One example is shown in Fig. 6d, e to demonstrate the

effect of a DMR on phenotype. Chrysoeriol di-C-hexoside
(chr di-C) is one type of flavonoid where chrysoeriol is
linked to two sugar groups by an O-glycosidic bond. The
flavone chrysoeriol is a derivative of chalcone (Fig. 6d). A
total of eight significant associations with DMRs were
identified for chr di-C content (Fig. 6e, Additional file 2:
Table S4). The most significant associations were on
chromosome 1 around 48.4Mb. All three sequence con-
texts were found to be significant in two environments
(Additional file 1: Figure S9a, Additional file 2: Table S4).

Fig. 6 Association between DMRs and metabolic traits. a The distribution of the number of significant DMRs per trait. b The distribution of the
number of associated metabolic traits per DMR. c The proportion of DMRs that are associated with metabolic traits but not with SNPs. d A
simplified pathway for chrysoeriol di-C-hexoside (chr di-C) synthesis. The solid line represents a one-step reaction, and the dashed line represents
a multi-step reaction. e GWAS result of chr di-C using either SNPs (light color) or DMRs (dark color). The horizontal dashed lines are the cutoff for
SNPs (thinner) and DMRs (thicker)
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The DMRs were located within a gene annotated as a
MYB transcription factor which can bind promoters of
flavonoid synthesis-related genes (Fig. 6e, Additional file 1:
Figure S9b). This DMR was also found to associate signifi-
cantly with the expression of five genes. Three of these
five genes were annotated to have a role in flavonoid me-
tabolism, including one glucose/ribitol dehydrogenase,
one chalcone synthase (CHS), and salmon silk 2 (sm2).
CHS is the major enzyme responsible for chalcone
(Fig. 6d), which is the precursor for chrysoeriol. The sm2
gene is also involved in the biosynthesis pathway of chry-
soeriol (Fig. 6d). These five genes are located on different
chromosomes from the DMR. It is possible that the tran-
scription factor where the DMR is located can regulate
the expression of these genes, leading to variations in chr
di-C. This is supported by the fact that the expression of
the five genes was associated with chr di-C content (Add-
itional file 1: Figure S9c). The effect of this DMR may be
related to genetic variation as many SNPs that are signifi-
cantly associated with this DMR have been identified
(Additional file 1: Figure S9d). These SNPs were located
~ 100 kb downstream from the DMR, and many of the
SNPs were also significantly associated with chr di-C
(Additional file 1: Figure S9b). However, the association
for the DMR is the highest in one of the environments
(Fig. 6e). These results suggest an important role of DNA
methylation in contributing to phenotypic diversity.

Discussion
The genetic architecture of DMRs
In this study, we profiled DNA methylation across a di-
verse panel of 263 maize inbred lines. Extensive variation
was found in all three sequence contexts across the ten
maize chromosomes. One interesting discovery is that
there is no obvious natural mutant with compromised
DNA methylation in this panel that includes abundant
genetic diversity. All 263 diverse inbreds have similar
levels of DNA methylation, showing either high or low
methylation at specific loci. The lack of distal hotspots
that are associated with methylation machinery provides
further support of the lack of natural variation for DNA
methylation machinery. This is in contrast to studies in
Arabidopsis. For example, the VIM gene, which controls
for CG methylation, was identified in a natural Arabi-
dopsis accession that shows genome-wide loss of DNA
methylation [33]. The CMT2 gene, which controls CHH
methylation in heterochromatic regions, also has loss-of-
function genetic variations in natural accessions [17, 32].
The lack of natural mutant of DNA methylation in
maize suggests an important role of DNA methylation in
plants with large genomes. This is well supported from
studies in rice and maize, which show that genome-wide
loss of DNA methylation leads to severe phenotypic ef-
fects and seed lethality in many cases [3–6, 39, 40].

Similar to prior results in other plant species [12, 16–18],
a subset of regions with variable methylation can be associ-
ated with SNPs. This is true for all sequence contexts with
variability in the proportion of DMRs for different sequence
contexts that can be linked to SNPs. However, a large
proportion (> 60%) of DMRs are not tagged by SNPs,
suggesting that there is unique information in the DNA
methylome. This was further supported by the observation
that DNA methylation that is not associated with SNPs can
effectively differentiate maize subgroups (Additional file 1:
Figure S3b). These results support the concept that DMR
can carry unique heritable information independent of gen-
etic variation and that this information would not be cap-
tured in current SNP-based GWAS approaches. We should
note, however, lack of association with SNPs does not ne-
cessarily mean that these DMRs are purely epigenetic. Low
frequency SNPs which by design are not considered in
GWAS could be associated with DMRs. Similarly, struc-
tural variants, which show low LD with SNPs, could also
be associated with DMRs (Additional file 1: Figure S5a).
We observed that DMRs with high MEF are more likely
to associate with genetic variations, but we do find DMRs
with high MEF that do not associate with genetic varia-
tions even after we consider the structural variants (Add-
itional file 1: Figure S5b). These non-tagged DMRs with a
relatively high MEF should be good candidates for pure
epigenetic variants.
It is worthwhile to note that the capture-based method

to assay DNA methylation levels in this study will have
some limitations in monitoring genome-wide rates or
variability and detecting the full set of information con-
tained in the methylome. The capture-based approach
focuses on a limited number of regions throughout the
maize genome. These regions were chosen based on our
previous knowledge of DNA methylation in maize gen-
ome [13, 30]. We purposely chose many regions with vari-
ation in DNA methylation that can be uniquely mapped
across a very diverse set of lines. These regions represent
portions of the genome that are more conserved across
different maize lines. Considering the limited portion of
the genome represented by our capture probes (15Mb, or
0.6% of the entire genome), it is very likely that there are
more regions showing variation in DNA methylation, and
pure epigenetic information with important biological sig-
nificance may widely occur in maize.

DNA methylation contributes to differential gene
expression
Both positive and negative associations between DNA
methylation and gene expression have been proposed
[13, 23, 30, 41]. We found that this relationship depends
heavily on sequence contexts and the position of DMRs
relative to gene TSS. DMRs located within 1 kb of the
TSS tend to be enriched for negative associations for CG
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and CHG methylation and positive associations for
CHH methylation. Another interesting question is
whether differential methylation is a cause or conse-
quence of differential gene expression. Previous studies
have shown that loss/gain of DNA methylation in
methylome mutants is usually accompanied by changes
in gene expression [16, 42–44]. This suggests that
changes in DNA methylation can be a cause of differ-
ences in gene expression. A genome-wide assay of nat-
ural variation of DNA methylation on gene expression
in model plant Arabidopsis also suggests that DNA
methylation is more likely the cause rather than the con-
sequence of variation in gene expression [23]. However,
there are also examples where DNA methylation is a
consequence of differential gene expression [45]. Our
genome-wide analysis favors the possibility that some
DMRs are causes of variation in gene expression. The
negative effect of DNA methylation on gene expression
is likely due to a repressive chromatin environment asso-
ciated with DNA methylation, while the positive effect
of DNA methylation is likely attribute to the recruitment
by DNA methylation of specific transcription factors to
enhance gene expression [46].

Epigenetic information contributes to phenotypic
diversity
Many agronomic traits have a complex genetic basis
with numerous minor effect QTLs [47–49]. The fact that
only a portion of the phenotypic variance of these traits
can be explained by SNPs has led to the suggestion that
other types of heritable information may be involved.
The growing use of SNP information for performing
genomic selection in plant breeding has increased our
reliance upon SNPs to explain phenotypic variation. We
were interested in exploring the potential for DNA
methylation to provide information about gene expres-
sion or phenotypic differences that may not be present
in SNP profiles. There are examples for which DNA
methylation, rather than genetic variation, at specific loci
is the cause of a phenotypic change [50]. It was reported
that DNA methylation can lead to phenotypic diversity
independently of genetic variation based on QTL map-
ping using epi-recombinant inbred lines that share same
genetic background but show variations in DNA methy-
lation patterns [51, 52]. Here, we found that many of the
DMRs were not captured by SNPs, some of which also
show significant associations with gene expression and
phenotypic diversity. Our results suggest that DNA
methylation can affect phenotypic diversity under at
least two circumstances. First, DNA methylation is a
bridge between genetic variation and phenotype. In this
scenario, a genetic difference (SNP or structural variant)
is the cause of phenotypic variations and methylation
changes are trigged by the genetic variation. Second,

pure epigenetic information is contained within DMRs
that are independent of genetic variation. There are
many metabolic traits for which significant associations
were only identified for DMRs but not for SNPs. Our
study highlights the potential for DNA methylation vari-
ation that is not identifiable through SNPs and for this
variation to influence gene expression and traits.

Conclusions
In conclusion, DNA methylation was investigated at a
population level in maize. Abundant variation in DNA
methylation was identified, only some of which is effect-
ively captured by SNP associations. Variations in DNA
methylation can separate maize subgroups, associate with
differential gene expression, and contribute to phenotypic
diversity. This study represents the first effort to perform
genome-wide association analysis using epigenetic data
(DNA methylation) in a crop species. The findings that
DMRs not tagged by genetic variation are prevalent and
can cause phenotypic variation suggest that DNA methy-
lation is a candidate to explain a portion of the heritability
that is not effectively captured by SNPs.

Methods
Materials
The maize inbred lines used in this study are from a glo-
bal collection and represent a wide range of diversity
[53]. These lines were grown using standard greenhouse
conditions until V3, and the third leaf was collected and
frozen in liquid nitrogen. Genomic DNA was extracted
using the standard cetyl-trimethyl-ammonium bromide
method. Two approaches were used to verify material
authenticity. First, five polymorphic InDel markers were
used to genotype the entire panel, and the results were
compared with that from previous genotyping. Only
lines with consistent genotyping were kept. Second,
SNPs were de novo called based on the sequencing data
generated in this study using BS-SNPer [54] and were
compared with the SNP data from a previous study [55].
The genotypes with consistency of more than 90% were
kept, resulting in a total of 263 lines.

Library preparation, sequencing, and mapping
The design of probes for the capture regions can be
found in a previous study [29]. Briefly, 15.7Mb of the
maize genome was used for probe design based on B73
reference genome (AGPv2). These regions include all
the regions from our first version of capture probes [28],
as well as additional regions that are selected based on
our study of DNA methylation in maize. These add-
itional regions mainly include DMRs between genotypes
(B73 and Mo17 or Oh43), DMRs among five tissues
(seedling leaf, mature leaf, shoot apical meristem, anther,
and immature ear), DMRs identified during tissue
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culture, promoters of potential hidden genes which are
defined as genes that have high DNA methylation in B73
genome and low/no expression in various B73 tissues,
and mCHH island. Information of the capture regions
can be found on Data Repository for University of Min-
nesota [56].
Bisulfite-converted sequencing libraries were con-

structed using a previously published method for captur-
ing specific regions [28]. The libraries were sequenced
on HiSeq 2500 platform using 125 cycles and paired-end
mode. After trimming adapters by Trim Galore [57],
reads were mapped to the B73 reference genome version
4 [31] using BSMAP allowing up to five total mis-
matches [58]. Reads that are mapped uniquely were
kept. Duplicate reads and reads that are not properly
paired were also removed using Picard Tools [59] and
BamTools [60]. The methylation levels at each individual
cytosine were called using methratio.py in BSMAP.

DMR identification
The DMRs among all the genotypes were identified
using a two-step method. In step 1, DMRs were identi-
fied between two lines. The maize genome was divided
into non-overlapping 20 bp windows, and the methyla-
tion levels of each 20 bp window that have cytosine sites
with at least 2× coverage were calculated for each line.
Sixteen lines with high read coverage and genetic diver-
sity were selected as group I, with all the other lines as
group II. Each line from the first group was then com-
pared with each of the line from the second group. For
each pair-wise comparison, the 20-bp windows with CG
and CHG difference of greater than 60% were kept. For
CHH, the windows that meet the following criteria were
kept: over than 20% difference between the contrasted
genotype, having one genotype of less than 5% methyla-
tion, and the other genotype of greater than 25% methy-
lation. The 20-bp windows that are within 50 bp of each
other and have the same direction were then merged for
each comparison, and the merged regions with at least
three continuous 20-bp windows with data were classi-
fied as DMRs.
In step 2, the DMRs from each pair-wise comparison

were merged using the following pipelines. First, DMRs
within 200 bp of each other were merged using BED-
Tools [61]. Second, the merged DMRs were divided into
20 bp windows and the percentage of contrasting pairs
with significant difference in DNA methylation for each
20 bp window was calculated. This percentage was then
normalized to the window with the highest percentage.
The window with the normalized value of less than 0.4
was dropped, and the DMRs with at least three continu-
ously eligible windows were kept. Third, each remaining
DMR was required to meet the following criteria in >
60% of the lines: ≥ 2× coverage, ≥ 6 cytosine sites, and ≥

2/3 of the cytosines within the region were covered. The
above procedure was done separately for the three se-
quence contexts. Lastly, regions were classified as CG or
CHG DMRs if the difference in methylation was greater
than 60% between the second top highest and lowest
lines for CG or CHG contexts, and was called as CHH
DMR if the second highest line having a CHH level of >
25% and the second lowest line having a CHH level of <
5%. This would eliminate DMRs that are unique to a
single line.
To define context-specific DMRs, the following criteria

were used. For CG DMRs, if CHG methylation differ-
ence was greater than 60% and the squared Pearson cor-
relation coefficient (R2) between CG and CHG levels
were more than 0.8, the CG DMR was called as CG_
CHG DMRs. If CHG methylation difference was less
than 20% and R2 was less than 0.2, the CG DMR was
called as CG_only DMR. Similarly, for CHG DMR, if CG
methylation difference was greater than 60% and the R2

between CG and CHG levels were more than 0.8, the
CHG DMR was called as CG_CHG DMRs. If CG methy-
lation difference was less than 20% and R2 was less than
0.2, the CHG DMR was called as CHG_only DMR.

Comparison of relatedness using SNPs or DNA methylation
Two methods were used to compare the individual re-
latedness generated by SNP and DNA methylation
levels, respectively. First, the R package, pcaMethods,
was used to perform PCA analysis [62]. The algorithm
was ppca, and the number of components was set as 3.
Second, GCTA was used to calculate individual related-
ness based on SNPs and OSCA was used to generate in-
dividual relatedness based on DNA methylation data
[63, 64]. The R2 of the two matrices with the diagonal
value being removed was used to quantify the relation-
ship between SNP and DNA methylation. The data for
the three DNA methylation sequence contexts were cal-
culated either separately or together.

Identification of subgroup-specific DMRs
A one-way ANOVA was conducted to compare DNA
methylation levels among three maize subgroups: SS,
NSS, and TST. The significant DMRs at the P < 0.001
level were selected for post hoc comparisons using the
Tukey HSD test. The DMRs that are significant at the
P < 0.001 level among any two subgroups were defined
as subgroup-specific DMRs.

MEF calculation
For CG and CHG DMRs, if the difference in methylation
was greater than 60% between any two lines, the line
with higher methylation was assigned into “High” group
and the other line was assigned into “Low” group. DMRs
for which > 50% of the lines could be assigned to either
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“High” or “Low” group were kept. The MEF was calcu-
lated by the number of lines in the group with fewer
lines divided by the sum of lines in the two groups. For
CHH DMRs, the methylation difference was that the
higher line having a CHH level of > 25% and the lower
line having a CHH level of < 5%. The rest is similar as
CG and CHG DMRs.

Methylation QTL mapping
An integrated map of 1.25 million SNPs from a previous
study [55] was converted to B73 version 4 coordinates
using alignment of the sequences around the SNPs. The
SNPs were retained if the position of the B73 V4 refer-
ence genome has exactly the same nucleotide as the B73
SNP from the conversion based on alignment. The SNPs
were further filtered to retain those that have a minor al-
lele frequency (MAF) of greater than 0.05 in the lines
with methylation data. For each DMR, the methylation
value was normalized using rank-based inverse normal
transformation. A mixed linear model was used to per-
form GWAS by controlling for population structure and
family relatedness [65]. The kinship was calculated by
EMMAX, and the population structure was estimated by
ADMIXTURE [66]. A Bonferroni-corrected P < 5.15 ×
10−8 (0.05/N, N = 971,267) was used to determine signifi-
cant associations. The association between structural
variants and DMRs was calculated by the same way with
a Bonferroni-corrected P < 1.84 × 10−5 (0.05/N, N =
2711) for structural variants identified based on com-
parison between B73 and SK and P < 2.01 × 10−5 for
structural variants identified based on comparison be-
tween Mo17 and SK (0.05/N, N = 2484). As some as-
sociations may be caused by SNPs in LD, two criteria
were used to filter these associations. First, LD ana-
lysis was performed using Haploview for all signifi-
cant SNPs and only independent SNPs (r2 < 0.1) were
kept [67]. The remaining SNPs should not be in LD
with any other SNPs that are associated with the
same DMR. Second, the median values of methylation
for each haplotype was calculated and only associa-
tions having methylation difference greater than 0.05
were remained. According to the distance between
DMRs and the associated SNPs, SNPs within 10Mb
of DMRs were defined as local SNPs and SNPs that
are on another chromosome were distal SNPs. The
SNPs that are on the same chromosome of DMRs
but > 10Mb away were defined as unclassified SNPs.
DMRs that only had local SNPs were defined as
“Local_only” type. DMRs with only distal associations
were defined as “Distal_only.” DMRs that have both
local and distal SNPs were defined as “Both.” DMRs
that have unclassified SNPs were defined as “Unclassi-
fied.” DMRs that do not have associated SNPs were
defined as “None.”

Chromatin features of context-specific DMRs
The ChIP-seq data of histone modifications, H3K9me2
(SRR1482372) [68] and H3K27me3 (SRR5436222) [69],
were downloaded from NCBI. The sequencing reads were
processed using Trim Galore to remove adapters and nu-
cleotides with bad quality. Reads that passed quality con-
trol were mapped to the reference genome of B73 version
4 using Bowtie2 [70] with default parameters. The meta-
plots showing read coverage around context-specific
DMRs were generated using deepTools [71].

Association between DMRs and quantitative traits
including gene expression and metabolic traits
A single-marker test based on mixed linear model was
used to analyze the association between DMR and gene
expression/metabolic traits. Metabolic traits were from
the study of Wen et al. [38]. There are 192 lines that
have both metabolic data and methylation data. Two
RNA-seq datasets were utilized, one with RNA-seq data
for kernels 15 days after pollination [72] and another
with RNA-seq data for leaf tissue. For kernel tissue,
there are 193 lines that have both expression and methy-
lation data. For leaf tissue, there are 108 lines with ex-
pression and methylation data. The RNA-seq reads were
re-mapped to B73 v4 genome using TopHat2 [73] with
the default parameters. Only the genes that have expres-
sion and methylation data in at least 60% of the lines
were used. A two-step residual model was applied. In the
first step, gene expression or metabolic traits (Y) were nor-
malized using rank-based inverse normal transformation
method. The normalized value was then fit in the follow-
ing model to get a residual expression level (Y′) after con-
trolling for the effect of population structure (Q) and
individual relatedness (K).

Y ¼ Qþ K þ ε1

In step 2, the newly calculated Y′ was then used as the
dependent variable to fit a linear regression model with
DNA methylation (X) as the independent variable.

Y 0 ¼ βX þ ε2

The resulting P value was corrected using the Bonfer-
roni method (P < 0.01/n), and the value was 1.13 × 10−6

for CG, 1.02 × 10−6 for CHG, and 1.97 × 10−6 for CHH.
The direction of association was inferred from β value.

Mendelian randomization
In order to investigate whether DNA methylation is a
cause or a consequence of differential gene expression,
Mendelian randomization (MR) test was performed
using the significant DMR-gene expression associations.
Only the associations where the DMR and the gene are
within 1Mb of each other were used. In the model
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where DMR is a cause, we identify instrumental SNPs
that are significantly associated with DNA methylation,
but not associated with gene expression. All the signifi-
cant SNPs within 1Mb of DMRs were extracted, and the
associations between these SNPs with expression were
calculated using the mixed model adjusting for Q and K.
The SNPs that are significantly associated with gene ex-
pression (P < 0.05/DMR number) were filtered out, and
the one with the most significant association with DNA
methylation from the remaining SNPs was kept. The ob-
served effect of the SNP on expression from the mixed
model was then compared with the predicted effect
which was calculated using the following formula,

βpred ¼ βexpr�DMR � βDMR�SNP

In the consequential analysis, instrumental SNPs were
required to be associated with gene expression but not
with DMR. First, all significant SNPs within 1Mb of
genes were extracted. Then, the SNPs with significant
associations with DMR (P < 0.05/gene number) were fil-
tered out, and then, the most significant SNP with gene
expression was chosen from the remaining SNP list. We
then calculated the effect of gene expression on DMR
using gene expression as independent variable and DNA
methylation as response. The observed effect of SNP on
DMR was from the model DMR~SNP. And the pre-
dicted effect was calculated as follows:

βpred ¼ βexpr�SNP � βDMR�expr

The above analysis was performed separately for each
of the three sequence contexts.
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