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Abstract

The MinHash algorithm has proven effective for rapidly estimating the resemblance of two genomes or
metagenomes. However, this method cannot reliably estimate the containment of a genome within a metagenome.
Here, we describe an online algorithm capable of measuring the containment of genomes and proteomes within
either assembled or unassembled sequencing read sets. We describe several use cases, including contamination
screening and retrospective analysis of metagenomes for novel genome discovery. Using this tool, we provide
containment estimates for every NCBI RefSeq genome within every SRA metagenome and demonstrate the
identification of a novel polyomavirus species from a public metagenome.

Keywords: MinHash, Metagenomics, Sequencing, SRA, Viral Discovery, Polyomavirus

Introduction
As evolving sequencing technology continues to increase
throughput and lower costs, databases of sequenced
genomes (e.g., NCBI RefSeq [1]) continue their expo-
nential growth, making searches against them ever more
complex [2, 3]. Furthermore, the body of raw sequenc-
ing data, NCBI’s Sequence Read Archive (SRA) [4], is
growing even faster, outpacing our ability to assemble
and curate the genomes and metagenomes represented
[5, 6]. These trends have popularized alignment-free ana-
lytical methods, typically operating on k-mers, which are
short (≈ 21 bp), overlapping subsequences of the genome
for some length k. Our prior work in this area intro-
duced Mash [7], which uses the MinHash dimensionality-
reduction technique [8] to compress k-mer sets of whole
genomes to sketches of just several hundred or thousand
values, enabling extremely fast estimations of genomic
or metagenomic distances. Though useful for isolated
genomes or high-level metagenomic correlation, Mash is
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ill-suited for analyzing the constituents of a metagenomic
mixture. This is because typical applications of Min-
Hashing approximate resemblance rather than contain-
ment. In this work, we address the containment problem
and present a new method, Mash Screen, for measuring
how well a genome or proteome is represented within a
metagenome. This has applications ranging from quick
contamination screens to the tracking of specific bacterial
and viral strains across all available metagenomes.
Though originally defined in terms of documents and

words, here we will consider the resemblance and con-
tainment of biological sequences and their constituent
k-mers. For two genomes a and b, their resemblance is
defined as the Jaccard index j between their k-mer sets A
and B, jk(a, b) = |A∩B|

|A∪B| . Thus, resemblance is sensitive to
differential sequence lengths. Consider a single genome
a and a much larger metagenome b. The resemblance
between a and b is expected to be low, even if b wholly
contains a, because b will likely contain many k-mers not
present in a, making the union of A and B larger than the
intersection. Resemblance ranges from 0 to 1, is symmet-
ric, and 1 − j is a metric. In contrast, the containment
index c is asymmetric and measures the extent to which
one genome is contained in another, ck(a, b) = |A∩B|

|A| . If all
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the k-mers ofA are contained inB, regardless of howmany
other k-mers B contains, the containment index will equal
1. Because genome sequences can be very long, we seek to
efficiently approximate jk(a, b) and ck(a, b) by considering
only a small fraction of the total k-mers.
For estimating resemblance, Mash uses a “bottom

sketch” strategy as originally proposed by Broder [8].
More efficient techniques for estimating resemblance
have since emerged [9–12], but bottom sketching is ele-
gant in its simplicity. In short, all k-mers from a genome
A are passed through a single hash function h, but only
the smallest m hash values are stored as the sketch
S(A), where |S(A)| << |A|. Because the probability that

S(A) and S(B) share a minimum value is related to the
Jaccard index of A and B, the resemblance of the full
k-mer sets A and B can be quickly approximated from the
comparatively smaller sketches S(A) and S(B). Mash fur-
ther converts resemblance to the Mash distance, which
is an estimate of mutational distance between the two
sequences.
While the difference in formulation between resem-

blance and containment is small, different strategies are
required to accurately approximate them. In contrast
to resemblance, which can be reliably estimated using
fixed-size sketches, estimating containment requires a
sketch size proportional to the genome size (Fig. 1).

Fig. 1 High-level diagram of set operations with MinHash. The size of the shaded circles represents k-mer set sizes, while the area of their overlap
represents the cardinality of their intersections. Below each pair of circles is a diagram of the MinHash resemblance estimation for a sketch size of 5.
Horizontal lines represent the space of possible hash values, of which there are 2b , where b is the number of bits used for hashing. Here, diamonds
are hashes of the k-mers in sets A and B, and black shading indicates the smallest 5 hashes in each. Vertical lines indicate matching hashes and are
solid only if both hashes are in the bottom sketch of their respective set. In a, genomes of similar sizes are well-suited for resemblance estimation,
since their hashes are similarly distributed across the hash space. Matching hashes are usually both in, or both out, of the bottom 5. However, if the
genomes are of very different sizes, as in b, the larger genome will saturate the space more densely. This causes a higher fraction of matching
hashes to be contained in only the sketch of the smaller set, underestimating the containment of A in B. Thus, all hashes of Bmust be considered to
accurately estimate the containment of A
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To accomplish this, Broder originally proposed using a
modulo function for containment sketching, which pro-
duces proportionally sized sketches. However, themodulo
sketch has the disadvantage of requiring a very large
sketch size in order to achieve acceptable error bounds
when searching for small contained elements, such as
viruses. To bound the size of this data structure, Bloom
filters have been suggested as a replacement for modulus
sketches when estimating containment [13]. In the Bloom
filter scheme, |A∩B| is estimated using a MinHash sketch
of A and a Bloom filter of B. For the specific application of
searching transcriptomes, Bloom trees [14] and Counting
Quotient Filters [15] have been proposed. Additionally,
Bloom filter matrices have been used for searching within
unassembled genome isolates [16].
These prior containment estimation methods have all

sought to compress and/or index a large collection of
sequencing reads, with the goal of enabling rapid sequence
search across them (e.g., given a reference database of
transcripts, isolates, or metagenomes, identify all those
containing some query sequence). This is an important
problem, but in this paper, we consider the converse: given
a reference database of genomes, identify all those con-
tained in some query metagenome. We would also like to
estimate, without assembly, the similarity between the ref-
erence genomes and those contained in the metagenome.
To address this problem, we propose the concept of

a screen, in which we rapidly test a database of many
genomes for their containment within a larger, unassem-
bled metagenome (Fig. 2). For each reference genome,
Mash Screen computes a containment score that mea-
sures the similarity of the reference genome to a sequence

contained within the metagenome. This enables routine
tasks such as quick contamination screening, the selec-
tion of appropriate reference genomes for mapping-based
analyses, and efficient screening of entire metagenomic
databases for tracking individual species and strains
across all samples. For the latter case, we have com-
puted the containment of every NCBI RefSeq genome
within every NCBI SRA metagenome and have made
these results available for download and query. To demon-
strate the potential utility of this dataset, we describe
the identification and assembly of a novel polyomavirus
species from a public SRA metagenome.

Results
Correlation between Mash distance and containment
estimates
For the k-mers of a given reference genome a, a related
genome a′ that is contained within a metagenomic
read set b should, by design, have a Mash contain-
ment score, Mc(a, b) (see “Mathematical foundations”),
that is inversely correlated with the Mash distance
Md(a, b′). Ideally, Mc(a, b) = 1 − Md(a, a′). However,
because the metagenome may contain k-mers matching
a that are not from a′, and the different formulations of
the Mash distance and containment, the correlation is
imperfect.
To test how well the Mash containment score corre-

lates with the Mash distance, we analyzed metagenomic
reads, both real and simulated, from a mock commu-
nity of bacteria and archaea with known constituents
[17], referred to here as the Shakya dataset. For expected
scores, we used all RefSeq genomes close in size to Shakya

Fig. 2Mash Screen algorithmic overview. (A) The minimumm hashes (in this case 3, shown colored) for each reference sequence is determined
during sketching to produce (B) a reference MinHash sketch library. For screening, distinct hashes from all reference sketches are collected and used
as keys to (C) a map of observed counts per hash, which is populated by (D) hashing k-mers from the sequence mixture as it is streamed. (E) Counts
from the map are queried for each sketch to produce (F) a containment estimation for each constituent of the mixture



Ondov et al. Genome Biology          (2019) 20:232 Page 4 of 13

constituents (between 100K and 20M nucleotides, effec-
tively excluding viruses and eukaryotes) and computed
high-accuracy (sketch size 100,000), whole-genome Mash
distances between each of these genomes and their near-
est Shakya constituent. These distances were compared to
Mash containment scores for the same genomes, obtained
by screening raw metagenomic reads against RefSeq.
Screening the 11.1 gigabases of Illumina reads against
RefSeq (compressed from 1.14 Tb to a 1.2 Gb sketch)
for this analysis took 61 CPU minutes, using a peak of
11 Gb of memory (system details in “Correlation between
Mash distance and containment estimates”). Though not
directly comparable to the indexing methods mentioned
above, which have both different approaches and appli-
cations, the database compression of Mash (950× in this
case) is of a similar scale to that reported by Mantis [15]
(250×) or BIGSI [16] (113×). Memory requirements of
these tools tend to closely track the size of these indexes,
and this is true of Mash Screen as well.
Mash containment scores showed good correlation for

Mash distances less than 0.2 (r2 = 0.99), but tended to
overestimate Mash distances greater than 0.2 (r2 = 0.43
for all points with nonzero containment scores, Fig. 3a).
First, like Mash distance estimates, the expected error of
the containment estimates increases for more diverged
sequences. Second, when estimating containment, k-mers
from any genome in the mixture are permitted to match
the reference, whereas the Mash distance is restricted to
matching only k-mers from the genome being compared.
Figure 3 (left) also highlights a number of outliers that

sit well off the diagonal. Points circled in red represent
RefSeq genomes that do not share high similarity to the
expected constituent genomes, yet have high containment
scores when compared to the metagenome. This indicates
suspected contamination in the Shakya mock community.
Escherichia coli and Proteiniclasticum ruminis contami-

nation had been previously detected in this mock commu-
nity by Awad et al. [18], and so we speculated that this was
causing the discrepancy between Mash distance and con-
tainment estimates. Consistent with this explanation, sim-
ulating reads from only the listed constituents improved
overall correlation for nonzero containment scores to r2 =
0.73 (Fig. 3, right). Further investigation of the outlier
points revealed additional Propionibacterium acnes and
Streptococcus parasanguinis contamination that was not
identified by the prior studies. Mapping all metagenomic
reads to these reference genomes confirmed the presence
of the four contaminating species or their near relatives
(Table 1). After filtering points arising from these con-
taminants, correlation of the real dataset was similar to
that of the simulated dataset (r2 = 0.72). Also notable
are points closer to the diagonal, but still in distinct clus-
ters, highlighted in magenta and orange in Fig. 3 (left).
These represent two distinct clades of F. nucleatum, a
gram-negative commensal of the human oral cavity that
has well-delineated subspecies [19]. The expected refer-
ence strain, ATCC 25586, was noted by Awad et al. to be
present in low abundance, which is likely what is caus-
ing the Mash containment to be lower than expected
for this and similar strains (below the diagonal, circled

Fig. 3 Correlation of Mash containment scores with pairwise Mash distances. Points represent RefSeq genomes with sizes between 100K and 20M.
The x-axis is the Mash Distance to the nearest genome in the Shakya synthetic metagenome, which serves as an expected containment score. For
the y-axis, raw reads from this metagenome were run through Mash Screen (sketch size 1000) to obtain an actual containment score for each of the
genomes. Left, real Illumina reads sequenced from the mock community (SRR606249). The area circled in red highlights RefSeq genomes with
higher than expected containment scores caused by contamination of the sequencing run. This contamination was independently confirmed via
read mapping, revealing the presence of at least four additional species. Circled in magenta and orange are two clades of F. nucleatum that are
consistent with low abundance of the reference strain (magenta) and intra-species contamination (orange), both of which have been previously
described for this dataset. Right, simulating reads from only the known constituents corrects the outliers and yields the expected correlation. Not
shown: 1645 points in (0.28 ≤ x ≤ 0.52, y = 0) (left plot) and 356 points in (0.32 ≤ x ≤ 0.52, y = 0) (right plot), representing the limits of sensitivity
of the default sketch size (1000) used for the y-axis, compared the the higher sensitivity used for the x-axis (sketch size of 100,000). No points lie to
the right of the plot areas
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Table 1 Identified contaminants in the Shakya dataset measured
by mapped reads and Mash Screen

Organism Reads Coverage Identity Score p value

Propionibacterium
acnes HL072PA1

36,222 7.29% 96.36% 0.874 3.49e−136

Escherichia coli
strain 2014C-3250

59,744 4.99% 95.16% 0.837 7.32e−47

Proteiniclasticum
ruminis DSM 24773

751,538 76.57% 91.83% 0.930 0

Streptococcus
parasanguinis
strain C1A

74,807 57.50% 95.84% 0.942 0

Organism refers to the closest strain in RefSeq to the suspected contaminant, based
on Mash Screen distance. Reads refers to the number of reads mapped to those
genomes. Coverage refers to the amount of each genome that was covered by
mapped reads. Identity refers to the average identity of the covered portions based
on naive consensus from the pileups. Score and P value are results fromMash Screen

in magenta). The strains above the diagonal (circled in
orange), however, represent Fusobacterium nucleatum
subspecies (polymorphum and vincentii) that Awad et al.
suggested could be intraspecies contaminants. The results
of this experiment are thus widely in concordance with
prior, independent research, lending validation to both the
past findings and to our new method.

What is in my sequencing run?
As illustrated above, Mash Screen can discover unex-
pected organisms in sequence mixtures. This can be
useful for checking any sequencing run for acciden-
tal contamination. While exploring containment results
for a number of SRA datasets, we identified a num-
ber of potential contamination events. As an exam-
ple, SRA run ERR024951 is a 1.1-Gb short-read dataset
labeled as Salmonella enterica subsp. enterica serovar
Typhimurium. However, analysis with Mash Screen also
indicated the presence of Klebsiella pneumoniae, with
strain k1037 (GCF_900086185.1) being the closest hit.
We verified the presence of the contaminant by map-
ping all reads to both Salmonella enterica and Klebsiella
pneumoniae reference genomes. This revealed that the
majority of reads in this sample were in fact from
Klebsiella pneumoniae (Table 2). The metadata on this
particular dataset notes that it is part of a multiplexed
sequencing run, suggestive of a possible contamination
source. Because Mash Screen is extremely fast to run, it
can be used as part of a standard sequencing workflow to
catch such events before data is submitted to the public
archives.
In the above examples, we show how Mash Screen can

identify a “shortlist” of genomes that are likely to be in a
sequencing run. This can be generalized to the problem
of metagenomic classification, where reference databases
are often too large to allow traditional sequence analysis
techniques such as read mapping. While not a classi-
fier in its own right, Mash Screen can help address this

Table 2 Read mapping to confirm contamination of Klebsiella
pneumoniae in a run, ERR024951, labeled as Salmonella enterica

Organism Reads Coverage Identity Score p value

Salmonella
enterica subsp.
enterica serovar
Typhi str. CT18

1,962,751 88.91% 98.64% 1 0

Klebsiella
pneumoniae
strain k1037

10,726,719 98.76% 99.96% 0.999 0

Organism refers to either the labeled genome or the contaminant. Reads refers to
the number of reads mapped to those genomes when both were provided as
references in tandem. Coverage refers to the amount of each genome that was
covered by the mapped reads. Identity refers to the average identity of the covered
portions based on naive consensus from the pileups. Score and P value are results
from Mash Screen

problem by quickly filtering out reference genomes that
are not well contained by the query mixture. This can
drastically reduce the number of reference sequences nec-
essary for good mapping and/or classification results. To
test this application, we compared the known truth of the
Shakya metagenome to the results of screening the reads
for containment of RefSeq genomes. The filtered genomes
amount to a significant size reduction in terms of the frac-
tion of nucleotides represented, but still encompassed the
vast majority of the known constituent genomes (Table 3).
Note that a threshold of 1 (perfect containment) leaves
many genomes out because Mash Screen is sensitive to
both identity and completeness, and it has been observed
that coverage of some genomes in this sample is low [18].
This experiment is thus a good illustration of the trade-
off between database size and classification sensitivity that
may be necessary. However, in this case, pre-screening
to a Mash containment of 0.9 retains all correct refer-
ence genomes while significantly reducing the database
size, and tightening the threshold to 0.99 retains 56/58 of

Table 3 Potential reduction in classification database size by
pre-screening, illustrated using constituents of the Shakya
metagenome

Containment (≥) Positives Positives (%) Database
genomes

Database
gigabases

0 58/58 100 83,327 330

0.9 58/58 100 1585 5.76

0.99 56/58 96 227 0.878

0.999 53/58 91 76 0.237

0.9999 43/58 74 58 0.182

Containment refers to the threshold of the Mash containment score used to filter
the genomes in the database, with 0 meaning no filtering and 0.9 meaning filter all
genomes with a containment of less than 90%. Positives refers to how many of the
known constituents had scores above that threshold, and thus would pass
pre-screening (6 of the 64 constituents were not included because they have since
been removed from RefSeq and thus were not in the reference database). Database
genomes refers to the total number of genomes in the database with scores above
the threshold, and Database gigabases refers to the total number of bases in those
genomes
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the correct genomes while reducing the database size an
additional order of magnitude. Thus, Mash Screen can be
helpful for recruiting a suitable set of reference genomes
for metagenomic read mapping.

Estimating proteome containment with a translated screen
Mash Screen introduces support for an amino acid alpha-
bet, including 6-frame translation of the input reads. This
allows for protein sketching and proteome containment
estimation directly from metagenomic sequencing reads,
which can be helpful when searching for divergent genes
or genomes using short reads. To demonstrate that Mash’s
k-mer-based approach can effectively measure protein
similarity, we compared Mash Screen to the commonly
used translated alignment program DIAMOND [20]. For
a reference set, we began with reported protein fragments
from two samples of the Human Microbiome Project
[21], SRS015937 and SRS020263, and recruited their best
hits to full-length proteins in the NCBI nr database,
resulting in 28,334 protein sequences. Sequence reads
from only one sample, SRS020263, were then mapped
with DIAMOND to this combined set of proteins to
ensure a broad range of alignment scores. Note that
Mash and DIAMOND are designed for different tasks.
Mash estimates global similarity, whereas DIAMOND

computes local alignments. To estimate global similarity
from DIAMOND alignments, a consensus residue was
computed at each aligned reference position by simple
majority, and the total number of matches was divided by
the reference protein length to estimate global similarity,
accounting for both similarity and coverage. By default,
and as run, DIAMOND reports the single best HSP (i.e.,
mapping) for up to 25 reference sequences for each read.
The consensus scores thus describe how well each protein
is represented in the reads, without assigning each read
exclusively to one protein, analogously to Mash Screen.
The consensus scores were compared to the Mash con-
tainment scores computed by screening the sequencing
reads against a sketch library consisting of the same refer-
ence proteins. Overall correlation between the two scores
was r2 = 0.64, and the relationship remained linear even
for proteins with low coverage (Fig. 4). As was seen in
the above comparisons to the Mash distance, the Mash
containment score tended to overestimate the pairwise
DIAMOND scores, especially with lower scores, but in a
fairly consistent way.
Sequence sketching confers its biggest advantage when

reference sequences are long. Thus, in the case of individ-
ual proteins, Mash Screen is only slightly more efficient
than a mapping-based tool such as DIAMOND (41 versus

Fig. 4 Correlation of Mash Screen containment scores with DIAMOND read mapping identity, each using six-frame translations to compare
nucleotide reads to protein reference sequences. Each point represents a gene from the recruited set chosen for the experiment. Position on the
x-axis corresponds to global alignment identity estimated from mapping, while position on the y-axis represents the containment score for the
same protein as reported by Mash Screen. Coloring represents the Mash Screen p value. The points indicated by arrows have legitimate alignments
that were not picked up by DIAMOND with its most sensitive settings; in orange a short (20aa) sequence (AMP55843.1) and in magenta sequences
with low-complexity regions (ESV13988.1, EYQ74458.1, WP_002468660.1) that were not aligned despite disabling the low-complexity filter. Points
along the x-axis represent the limits of Mash Screen’s sensitivity. For these genes, mismatches were common enough, and evenly distributed
enough, to change all k-mers indexed by Mash Screen, which in this case were 9 amino acids long
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Fig. 5Metagenomic SRA runs with hits to human polyomaviruses. Hierarchical clustering was applied to both axes, and, where possible,
descriptions from the organismmetadata field were used to label various categories, depicted in the colored bands on the left. The vast majority of
PyV-positive epithelial samples (cyan) are skin metagenomes from an eczema study (BioProject PRJNA46333). The blue arrow indicates the fecal
sample in which QPyV was initially detected (SRR2565980). As an example environmental sample with strong hits to multiple human
polyomaviruses, the green arrow indicates a money metagenome (SRR5256705)
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121 CPU hours in the above experiment), because the
resulting sketches are nearly as large as the original pro-
teins. Instead, Mash Screen is designed for measuring
the containment of whole genomes and proteomes within
manymetagenomes. Because screening a whole proteome
sketch requires no additional space or runtime com-
pared to screening a single protein, Mash scales extremely
well in this case, whereas using a mapping-based tool
would be infeasible. The below sections illustrate how
this scalability can be used to process the entirety of
the NCBI Sequence Read Archive to make new genomic
discoveries.

Screening all metagenomes in the Sequence Read Archive
Mash Screen was designed to process the enormous
collection of metagenomic data available in the public
sequence archives, and scales linearly with the size of
the input—requiring only slightly more time than would
be required to simply read a FASTQ file. We leveraged
this efficiency to process the entire metagenomic cata-
log of the NCBI Sequence Read Archive, and compute
a containment score for every genome and plasmid in
NCBI RefSeq versus every metagenome in the SRA. At
the time of this analysis, there were 144,909 metage-
nomic sequencing runs (totalling approx. 4 PB of files) and
103,346 RefSeq genomes and plasmids (totalling 1.14 TB)
inNCBI. Note that during analysis, a small number of runs
(between 1 and 2%) could not be accessed due to removal
from the database, access restrictions, or repeated failed
server requests (lists of the queried runs are provided with
online data). The resulting table, although sparse, repre-
sents a total of approx. 15 billion containment estimates.
Total runtime was approx. 500,000 CPU hours (approx.
1,000,000 for six-frame translated), which is feasible to
recompute for each major RefSeq release with paralleliza-
tion. Comparatively, appending additional SRA runs to
the full table is trivial and requires a cost of just 8 CPU
minutes per 1 Gbp of sequence (16 CPU minutes for
six-frame) and using 10–15 GB of memory.
Here, we make available the results of the RefSeq-SRA

containment screen, consisting of all data available as of
August 2018. To limit the size of these tables, we provide
the results filtered in twoways: one table containsmatches
above a 0.95 containment threshold, while another relaxes
this threshold to 0.80 but requires 3× median k-mer mul-
tiplicity (that is, at least half of the k-mers in a given
RefSeq sketch must be observed 3 or more times in the
SRA run; this value is output by Mash Screen). The for-
mer is useful for finding runs that contain a specific target,
while the latter is useful for discovering novel sequences,
as demonstrated in the following section. Screens were
run using both untranslated nucleotide and translated
protein screens, resulting in a total of four tables, available
in online data.

Global distribution of human polyomavirus species in the
SRA
Polyomaviruses are chronically shed from epithelial sur-
faces and are known to be common constituents of
clinical and environmental samples. Although recent
sero-epidemiological studies have confirmed that most
humans are immunologically exposed to human poly-
omaviruses HPyV 1 through 11, seroreactivity against
HPyV12, New Jersey polyomavirus (NJPyV), and Lyon-
IARC polyomavirus (LIPyV) is puzzlingly rare [22, 23].
It is thought that polyomaviruses generally co-speciate
with their hosts and, accordingly, polyomavirus phylogeny
tends to recapitulate the phylogenetic relationships of host
animals [24]. Application of this principle led to the recent
suggestion that HPyV12 may have been a laboratory con-
taminant that ultimately originated from shrew specimens
[25]. Similarly, LIPyV was originally detected by PCR in
human saliva but shows low seroreactivity in the gen-
eral population [22], suggesting an external source for the
original detection (e.g., household pets).
We selected all SRA metagenome runs with a proteome

containment score ≥ 0.8, a median k-mer multiplicity
≥ 3 (as for the table in “Screening all metagenomes in the
Sequence Read Archive”), and a p value ≤ 1 × 10−100 for
at least one human-associated polyomavirus. Fig. 5 shows
containment scores for the 456 (of approx. 143,000 total)
runs meeting these criteria. The results show that most
known human-tropic polyomaviruses were contained in
multiple metagenomes. In contrast, HPyV12, NJPyV and
LIPyV were not detected in any metagenomes. The result
adds complementary support for serological and phyloge-
netic evidence that human infection with HPyV12, NJPyV,
and LIPyV is rare or nonexistent.
NJPyV was initially detected in an immunosuppressed

woman who was exposed to flood waters in the wake of
Hurricane Sandy [26]. The virus was detected by in situ
hybridization in myositic and cutaneous lesions, conclu-
sively demonstrating productive infection of the patient.
In contrast to HPyV12 and LIPyV, NJPyV shows close
(70–80%) nucleotide similarity to polyomaviruses found
in old world primates. A possible explanation for these
observations is that NJPyV is a bona fide human-tropic
virus but its prevalence is extremely low.
To search for additional examples of the hypothetical

NJPyV category, we screened for SRA runs containing
good (but not perfect) hits to known polyomavirus species
(Fig. 5). One identified run was a metagenomic analy-
sis of human fecal samples from an 85-year-old hospital
patient in Montreal, Canada (SRR2565980). The top poly-
omavirus hits for this run were HPyV6 and HPyV7, with
k-mer multiplicities of 2 and 3, and proteome contain-
ment scores of 0.88 and 0.82, respectively. Lack of a
containment score ≥ 0.90 to any known polyomavirus
was interpreted as evidence for a potentially novel virus.
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All reads from this metagenome were assembled with
metaSPAdes, revealing a nearly complete polyomavirus
related to HPyV6 and HPyV7, which was manually fin-
ished to recover the complete genome. This new virus, for
which we suggest the name Quebec polyomavirus (QPyV,
GenBank BK010702), is 80% identical to HPyV7 and 67%
identical to HPyV6 at the nucleotide level. As additional
evidence for the new virus, another run (SRR2565981),
representing an additional time point for the same patient,
also had Mash containment scores passing the thresh-
old (0.82 and 0.84, with median k-mer multiplicity 3 and
6, respectively, for HPyV6 and HPyV7). Investigation of
a third time point from the same patient (SRR2565982)
also revealed 4 reads mapping to the new QPyV assembly,
which was below the Mash detection threshold. Although
the high degree of similarity of QPyV to HPyV6 and
HPyV7 strongly suggests that it is a primate-tropic poly-
omavirus, QPyV was only detected in fecal samples from
a single study of hospital patients. It remains unclear
whether QPyV (or NJPyV) should be thought of as a truly
human-tropic polyomavirus.

Discussion
Limitations
Mash Screen quickly measures the containment of a set
of reference sequences within a metagenomic mixture.
Note, however, that each of the reference sequences is
treated independently, without consideration for redun-
dancy or overlap among others. For example, many dif-
ferent strains of a given species would be expected to
have high containment scores even if only one strain is
present in the mixture. These measurements thus do not,
in themselves, estimate the composition of a metagenome
but rather measure how well each reference genome is
contained within the queried metagenome. As demon-
strated above, these containment scores can be used to
identify sample contamination, recruit a set of reference
genomes for metagenomic analysis, establish the absence
of specific reference genomes in public databases, and
retrospectively discover novel genomes.
As with other k-mer-based analyses, the containment

estimate conflates sequence divergence with genome
coverage. For example, a low-abundance species in a
metagenome will typically receive a lower containment
score than the true identity, simply because much of
a query genome may not be fully represented by the
sequencing reads. Similarly, short, high-identity regions
of a genome, such as horizontally transferred elements,
are not distinguished from weak, overall similarity. The
downstream analyses we have performed in our exper-
iments, such as mapping reads to discovered genomes,
thus remain a crucial part of deploying Mash Screen
in practice. It may be possible to disentangle these fac-
tors statistically using the multiplicity of the k-mers

observed in the metagenome (e.g., as a proxy for sequence
coverage). Conceptually, higher multiplicity for matching
k-mers should indicate that k-mers not observed in the
mixture are more likely to be missing due to sequence
divergence, rather than low sequence coverage. Mash
Screen currently tracks and reports the multiplicity of
every hash in the reference sketches, but further work is
needed to exploit this information fully.
Mash Screen is designed to efficiently estimate the con-

tainment of whole genomes or proteomes and can also be
used to detect the presence of any set of related sequences
(e.g., plasmids, functional pathways). However, the effi-
ciency of MinHash is lost when the reference sequences
are individual genes and proteins. In these cases, the
sketch of a gene can be as large as the gene itself. As a
sketch, by default, uses 8 bytes for each hash, a sequence
would have to be roughly an order of magnitude larger
in length than the sketch size (1000 by default) to accrue
indexing storage benefits. Further, hashing k-mers in the
input stream is a nontrivial component of the computa-
tional cost, and this step, which is important for proba-
bilistic estimation, would not be necessary when simply
counting all k-mers. While Mash will operate normally
under these conditions, searching for short sequences
within metagenomes is thus better left to traditional
sequence search and mapping tools.

Future directions
In addition to searching for contamination, we also
demonstrated the potential of using a containment screen
to pre-filter a metagenome classification database. This
would be especially useful for tools that rely on mapping
or otherwise comparing metagenomic sequence reads to
a large databases of reference genomes [27–29]. However,
more rigorous validation of this use case is needed to
prove its value. It may also be valuable to explore possible
integration with classification pipelines to filter databases
dynamically, given that databasemanagement is a burden-
some step for many classification tools.
By definition of the MinHash process, similar reference

genomes will share manyminimum hashes between them.
This makes the Mash Screen reference database highly
compressible and keeps memory requirements low. In its
current implementation, an off-the-shelf hashmap is used
for tracking reference sketch containment. As reference
databases continue to grow, it may be desirable to improve
the performance of this index. This could be achieved via
a minimum perfect hash function for mapping k-mers to
reference sketches, which would require only a few bits
per k-mer to store the reference sketches [30].

Summary
Our online approach to containment estimation offers
advantages over purely precomputed approaches, namely
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that Mash sketches can now be used for both genome
resemblance and containment operations. We validated
Mash Screen by correlating pairwise resemblance with
containment and demonstrated its utility for contaminant
screening and genome discovery. Further, we leveraged
the efficiency of our method to compute the contain-
ment of all RefSeq genomes and plasmids within all SRA
metagenomes, providing the research community with an
unprecedented resource for retrospective data mining.

Methods
Mathematical foundations
Mash Screen compresses and indexes a database of ref-
erence sequences and measures their containment within
a metagenome (the mixture). When estimating contain-
ment, all k-mers of the mixture are considered, ensuring
adequate sensitivity. Because of this, any method for sam-
pling the reference k-mer sets uniformly at random would
suffice. However, for compatibility and to improve index-
ing efficiency, the reference sequences are sketched using
the same bottom sketch strategy as Mash. Formally, a
bottom sketch is defined as:

S(A) = MINm(π(A)), (1)

where π : � → � is a min-wise independent permutation
[31] (typically approximated with a hash function) and
MINm(W ) is the first m elements of the ordered set W.
Computing bottom sketches for the reference sequences
maintains compatibility between the resemblance and
containment operations of Mash, as well as improving
the efficiency of indexing. Because bottom sketching is a
form of locality sensitive hashing, the sketches of two sim-
ilar sequences will contain many of the same hashes. This
reduces the necessary index size for reference databases
containing many similar sequences (e.g., strains of the
same microbial species).
To estimate the containment index ck of a set of refer-

ence k-mers A within some mixture B, we compare the
sketch of A against all of B:

ck(a, b) ≈ |S(A)∩π(B)|
|S(A)| (2)

Since, for an arbitrary subset A′⊆A, every element of
A′∩Bmust also be an element of A∩B, it follows that if A′
is chosen uniformly at random from A, ck(a, b) will be an
unbiased estimate of the containment with expected error
O(1/

√
m).

Lastly, it is convenient to convert these set indices into
estimates of sequence identity. Both the Jaccard index and
the containment index drop exponentially with decreas-
ing sequence identity. This is due to the fact that a single
character substitution between two sequences affects k k-
mers overlapping that position. In our prior work, k-mer

survival was thus modeled as a Poisson process, yielding
the Mash Distance:

MD(a, b) = −1
k
ln

2j
1 + j

, (3)

where j is the estimated Jaccard index. Similarly, we can
estimate the identity of a genome and its assumed coun-
terpart in a mixture, which we refer to as the Mash
containment score Mc(a, b). In this work, we adopt the
binomial, which behavesmore desirably in edge cases than
its Poisson approximation, for modeling k-mer survival.
Given two sequences of equal length with a sequence
identity of ia,b, and assuming k-mers are unique and inde-
pendent, the probability that any k-mer inAwill be shared
with B is ika,b. Because ck(a, b) represents the fraction of k-
mers in A shared with B, we can estimate this identity as:

Mc(a, b) = ia,b ≈ ck(a, b)
1
k . (4)

Error bounds on this estimate for various values of s
and k can be computed using the bounds subcommand.
Note that, like the Mash Distance, this formula does not
attempt to separate divergence from missing sequence.
In cases where the mixture contains small pieces of a
genome, but at high identity (e.g., potentially with hori-
zontal transfer), we expect the Mash containment score
to be closer to identity than coverage (Additional file 1:
Figure S1).

Amino acid estimation
Mash Screen supports six-frame translation of reads
against reference sketches of protein sequences. This is
performed by including hash values for all six translations
of each amino acid k-mer in the MinHash containment
estimation (see “Streaming”). The out-of-frame elements
are not expected to match S(A) and will not affect the
containment score since ck(a, b) is independent of the size
of B. While very large read sets may cause some erro-
neously translated matches by chance, this is captured by
a p value, described below, that can be used to ensure only
significant hits are reported.

Assessing significance
In MinHash resemblance computations, erroneous k-
mers (i.e., those arising from sequencing error) can crowd
correct k-mers out of sketches, reducing sensitivity. This
is not an issue when screening a read set, since, if present,
the correct k-mers will be observed regardless of any other
k-mers that may contain errors. It is, however, important
to consider the effects of such k-mers on specificity, given
that the hash of an erroneous k-mer could coincidentally
match that of a k-mer in the reference. This is especially
true when performing six-frame translation, given that,
lacking a priori knowledge of the correct reading frame,
five spurious k-mers must be emitted for every true one,
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even in the absence of sequencing error. We address this
by formulating a p value to estimate the significance of a
distance estimate given the background of the observed
k-mer space. Because the containment index does not
depend on the size of the larger set, the expected contain-
ment of one random set,X, within another, Y, is simply the
probability r that a random k-mer, K, appears in Y :

r = P(K∈Y ) = n
|�|k (5)

where n is the number of distinct k-mers in Y, � is the
alphabet, and k is the length of each k-mer. Thus, the
probability that Y matches at least x out of s k-mers in the
sketch of X is given by the binomial distribution:

p(x; s; r) = 1 −
x−1∑

i=0

(
s
i

)
ri(1 − r)s−i. (6)

For six-frame translation, the set size n is based on all
amino acid k-mers emitted, ensuring that the risk of false
positives from saturation of the k-mer space is reflected
in the p value. It should be noted that this value does not
consider multiple testing, but can be scaled by the number
of sketches in the reference set to attain an expectation.

Implementation
Mash Screen is implemented in C++ and is integrated
into the existing Mash codebase as of v2.0. It is invoked
as a subcommand, screen, similarly to dist, which
is used computing the standard Mash distance. Unlike
dist, however, screen must be given a pre-processed
multi-sketch file to screen the reads against. This sketch
file can be created with the sketch command in the same
manner as for dist. For compatibility with existing Mash
sketches, MurmurHash3 [32] is used to hash k-mers, as
in Ondov et al. [7]. If the sketch is created from protein
sequences, the reads given to screen will automatically
be translated into all six frames during screening.

Streaming
As the mixture is intended to be an arbitrarily large set,
such as a sequencing run, it is not desirable to load
the entire set into memory. In contrast, the reference
sketches are small and can easily be indexed in memory.
To compute the containment of each reference sketch, the
mixture is streamed against this index (Fig. 2). First, all
distinct hashes present in the constituent sketches are col-
lected into a reference set. This set is used as the keys to a
map (implemented here as unordered_map in the C++
Standard Template Library), where the associated values
are counts for how many times the hash appears in the
mixture, set initially to zero. Sequences from the mixture
are then streamed, translating to six frames if applicable,
and all their k-mers hashed, incrementing the counters in
the map if a key for that hash is present. This process is

parallelized by using atomic operations to increment to
the counters without locking the map. Finally, a distance
for each constituent is determined by tallying how many
hashes in its sketch have non-zero counts in themap. Note
that the number of entries in this map, and thus mem-
ory used, will depend on the number of distinct hashes
in the complete set of possible constituents. Since many
reference genomes will be highly similar to one another,
storing a MinHash sketch for each reference is more effi-
cient than storing a random selection of k-mers (as noted
above). For example, in the experiments above, the collec-
tion of RefSeq sketches contained only 1.97× 107 distinct
hashes in nucleotide space (k = 21) and 1.36 × 107 in
amino acid space (k = 9), compared to the 1.27 × 108
total (independent of k and alphabet) when the sketch size
is 1000.

P-value
The p value (described in Eq. 6), used to estimate the
significance of a given distance estimate, relies on the
number of distinct k-mers |B| observed in the streamed
reference set. Counting this number exactly would require
an entry for each of these k-mers in memory, negating
the memory efficiency afforded by the streaming estima-
tion algorithm. Instead, this count is estimated from the
maximum hash value of an auxiliary MinHash sketch of
the reference set, constructed as the set is streamed for
this purpose [33]. If the sketch size is s, its maximum hash
value is v, and each hash uses b bits, the number of distinct
k-mers in the genome is estimated as n = 2b s

v .

Experiments
Correlation betweenMash distance and containment
estimates
Simulated reads were generated with ART [34] ver-
sion “Mount Rainier” using the art_illumina com-
mand with parameters -f 50 (50-fold coverage), -l
100 (100-base read length), and -ss HS20 (Illumina
HiSeq 2000 platform profile), and with the combined 64
reference genomes as input. Mash was run with defaults
for both screen and dist, except the use of -p for
multiple threads. RefSeq genomes were binned to Shakya
reference genomes with a custom script. Mash Screen
(v2.1.1) was run with 32 threads (-p 32) on a worksta-
tion with dual, 2.20 GHz, 20-core, hyperthreaded CPUs.
The query was a sketch of RefSeq release 93 built wth the
default k (21), the default sketch size (1000), and a seed of
0 (-S 0).

Correlation of Mash Screen containment scores with
DIAMOND readmapping identity
Blast was run with default parameters (using the blastp
command), a custom script was used to collect identifiers
of best hits, and blastdbcmd was used to extract these
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sequences from nr. The diamond makedb subcommand
was run with defaults. The diamond blastx com-
mand was run with --more-sensitive, --masking
0 (do not mask low-complexity regions), --threads
32, and --outfmt 101 (SAM format). The SamTools
[35] mpileup command was used to create pileups from
the DIAMOND mappings, and a custom script was used
to determine consensus identity and coverage from the
pileups. Mash Screen v2.2 was used for this experiment.
The query was a sketch of the protein set built with
defaults for amino acids (k=9, sketch size 1000).

Screening all metagenomes in the Sequence Read Archive
Jobs were run on nodes of the Biowulf cluster,

using Mash Screen v2.0. configurations SRA accessions
for runs labeled as metagenomic were extracted with
Bioconductor [36]. Reads for each run were streamed to
an instance of mash screen using fastq-dump from
the SRA Toolkit [4] with the -Z flag. Default options were
used for mash screen except -p 2 to specify 2 threads.
Results for each run were filtered and compiled into tables
with custom scripts.

Novel virus assembly
The SRA project SRP064400 [37] was downloaded using
fastq-dump from the SRA Toolkit [4], and assem-
bled using metaSPAdes [38] with default parameters.
Assembled contigs were screened using blastx and a
custom blast database containing a select set of conserved
proteins from DNA viruses [39]. Contigs containing likely
viral protein sequences were further screened against all
known viruses using blastn. Contigs with less than
90% nucleotide identity to any known viral genome were
then manually annotated and analyzed for completeness,
which revealed a nearly complete genome for a new poly-
omavirus related to HPyV6 and HPyV7. The viral genome
was completed using methods previously described by
Pastrana and colleagues [39].
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