
METHOD Open Access

MetaCarvel: linking assembly graph motifs
to biological variants
Jay Ghurye1,2, Todd Treangen3, Marcus Fedarko1,2, W. Judson Hervey IV4 and Mihai Pop1,2*

Abstract

Reconstructing genomic segments from metagenomics data is a highly complex task. In addition to general
challenges, such as repeats and sequencing errors, metagenomic assembly needs to tolerate the uneven
depth of coverage among organisms in a community and differences between nearly identical strains.
Previous methods have addressed these issues by smoothing genomic variants. We present a variant-aware
metagenomic scaffolder called MetaCarvel, which combines new strategies for repeat detection with graph
analytics for the discovery of variants. We show that MetaCarvel can accurately reconstruct genomic segments
from complex microbial mixtures and correctly identify and characterize several classes of common genomic
variants.

Keywords: Metagenomics, Variant detection, Scaffolding, Assembly

Background
Sequencing of DNA directly extracted from microbial
communities (metagenomics) has emerged as a key
tool in the exploration of the role microbes play in
human and environmental health. Large-scale studies
enabled by metagenomic methods, such as MetaHIT
[1] and the Human Microbiome Project (HMP) [2],
have cataloged the complex microbial communities
associated with the human body and have demon-
strated their importance to human health. By elimin-
ating the need for culturing, metagenomic sequencing
has made it possible to explore a broader range of
the microbes inhabiting our world and has led to the
discovery of novel organisms and genes from complex
samples [3–6].
Despite promising initial results, the reconstruction

of the entire or even partial organisms from complex
microbial mixtures remains a tremendous challenge.
The assembly of metagenomic sequences is con-
founded by several factors: (i) uneven abundance of
the different organisms found in a sample, (ii) gen-
omic variation between closely related organisms, (iii)

conserved genomic regions shared by distantly related
genomes (inter-genomic repeats), and (iv) repetitive
DNA within a single genome (intra-genomic repeats).
All but the latter challenges are unique to metage-
nomic data and have not been the target of research
until very recently.
Several genome assembly tools designed explicitly for

metagenomic data have been developed in recent years.
Among the most widely used are metaSPAdes [7] and
MEGAHIT [8]; however, many other tools have been
developed including MetaVelvet [9], IDBA-UD [10], Ray
Meta [11], and Omega [12]. These tools effectively
address the uneven coverage of metagenomic datasets,
but virtually all of them “smooth out” small differences
between co-occurring strains of organisms in order to
enable the reconstruction of longer genomic segments
from the mixture. Furthermore, the output of the assem-
blers is simply a collection of linear segments (contigs)
that lacks the connection between the segments origin-
ating from the same organism. As a result, additional
analyses are necessary to discover information about the
adjacency of genomic segments (e.g., operon structure in
bacteria), or large-scale genomic variants between co-
occurring microbial strains. The latter information is of
particular research interest in microbial ecology, for ex-
ample, in the context of the lateral gene transfer [13] or

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: mpop@umd.edu
1Department of Computer Science, University of Maryland, College Park, MD,
USA
2Center for Bioinformatics and Computational Biology, University of
Maryland, College Park, MD, USA
Full list of author information is available at the end of the article

Ghurye et al. Genome Biology (2019) 20:174
https://doi.org/10.1186/s13059-019-1791-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1791-3&domain=pdf
http://orcid.org/0000-0003-3285-6754
http://orcid.org/0000-0001-9617-5304
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:mpop@umd.edu

understanding how genomic heterogeneity contributes
to the stability of microbial communities [14].
The study of genomic variants in microbial communities

is of considerable interest, and a number of computational
tools have been developed to discover this information.
The approaches are primarily based on read alignments to
either complete genomes, as performed for example by
metaSNV [15] and MIDAS [16], or against conserved
genes, as performed by ConStrains [17] and StrainPhlan
[18]. Strain variants can also be discovered directly from
the output of the assembler, as done, for example, for
diploid genomes through a colored de Bruijn graph ap-
proach [19], or in metagenomic data through the use of the
SPQR tree data structure [20].
The discovery of genomic variants from assembly re-

lies on the information contained in an assembly
graph—a representation of the ambiguity in the recon-
struction of the genome or metagenome. While many
assemblers can output this information, an assembly
graph can also be constructed post-assembly by linking
together genomic contigs through the information pro-
vided by paired reads or other sources of information,
using a computational process called scaffolding. While
most existing genome and metagenome assemblers [7, 8,
10, 21] contain dedicated scaffolding modules [22], the
output of these tools comprises linear paths that ignore
the presence of genomic variants. An exception is stand-
alone scaffolders such as Bambus 2 [23] or Marygold
[20] that explicitly retain ambiguity in the assembly
graph and use graph analyses to characterize specific
genome variants.
Here we describe a new metagenomic scaffolding

package called MetaCarvel, a tool that substantially im-
proves upon the algorithms implemented in Bambus 2
and MaryGold. We show that MetaCarvel generates
more contiguous and accurate scaffolds than one of the
best performing stand-alone scaffolders, OPERA-LG
[24], as shown by a recent study [25]. We also demon-
strate that MetaCarvel is able to accurately detect a
number of genomic variants, including regions with di-
vergent sequence, insertion/deletion events, and inter-
spersed repeats. MetaCarvel is released under the MIT
open source license and is available at https://github.
com/marbl/MetaCarvel.

Results
Below we demonstrate and evaluate the performance
of MetaCarvel by relying on a mixture of synthetic
and real metagenomic datasets. We rely on mixtures
of Acinetobacter baumanii strains sequenced as part
of surveillance of a healthcare institution [26] to
reveal the impact of heterogeneity on the quality of gen-
ome assemblies and to demonstrate that MetaCarvel can
detect regions of high sequence divergence. The ability of

MetaCarvel to detect insertion/deletion events is deter-
mined within a mixture of sequencing data derived from
two Escherichia coli strains—organism characterized by
the extensive horizontal transfer of genes, while Yersinia
pestis, due to its well-characterized repertoire of genomic
repeats, provides a good test case for MetaCarvel’s ability
to detect repeats. Two synthetic datasets are used to
evaluate the performance of MetaCarvel on more complex
communities where the sequence of all the organisms in
the mixture are known—the MBARC-26 dataset repre-
senting real sequencing data of a synthetic mixture of cells
[27] and the simulated dataset created by the CAMI
project [28]. Finally, we present the results obtained by
analyzing real metagenomics datasets from the Human
Microbiome Project [2].

Effect of microbial mixtures on scaffolding
We compared the performance of MetaCarvel to that of
OPERA-LG [24], using both single genomes and an in-
creasingly complex mixture of genomes. We used reads
from five different strains of Acinetobacter baumanii (NCBI
Short Read Archive accessions SRR1008889, SRR1030406,
SRR1019232, SRR1030403, and SRR1030473) and assem-
bled them using both MEGAHIT [8] and metaSPAdes [7].
We chose Acinetobacter baumanii due to the avail-
ability of a high-quality reference and high-quality
assemblies of multiple strains in public databases.
These specific strains were selected because their as-
semblies were of high and similar quality and because
they diverged sufficiently from each other to reveal
the impact of strain variants on the quality of assem-
bly and scaffolding.
To simulate the impact on scaffolding performance of

increasing levels of genome heterogeneity among
closely related organisms, we created increasingly com-
plex mixtures comprising from one to five genomes.
We aligned the paired reads to the resulting assemblies
and used MetaCarvel and OPERA-LG to perform scaf-
folding. As expected, as more genomes are added to the
mixture, the quality of the assembly degrades and so
does the quality of the resulting scaffolds (Fig. 1a, b).
Even in the case of the assembly of a single genome,
scaffolding with MetaCarvel improves contiguity, albeit
by only a small amount (13.31 kbp contig NG50
vs.18.51 kbp scaffold NG50 using MEGAHIT and 16.96
kbp contig NG50 vs. 18.99 kbp scaffold NG50 using
metaSPAdes). The contiguity of the scaffolds generated
by MetaCarvel substantially improves over the original
assembly for the more complex samples. When com-
pared to metaSPAdes scaffolds (generated using the
scaffolding module built within this assembler), MetaCar-
vel’s scaffold contiguity was at least as good as metaS-
PAdes scaffolds for all mixtures (Fig. 1b). The contiguity
of the scaffolds degrades slower than that of the scaffolds

Ghurye et al. Genome Biology (2019) 20:174 Page 2 of 14

https://github.com/marbl/MetaCarvel
https://github.com/marbl/MetaCarvel

generated by OPERA-LG even as the contiguity of the
underlying contigs created by MEGAHIT and metaS-
PAdes degrades rapidly with the increase in complexity of
the mixture.
To measure the correctness of the assemblies, we

computed the number of mate pairs mapped concor-
dantly, that is, the mate pairs whose two ends are
properly oriented with respect to each other and the
distance between the paired reads is within the insert
size limit implied by the library. This measure is cor-
related with assembly quality as misassemblies, or
fragmented contigs and scaffolds, result in unmapped
reads and discordant mate pairs. For all the mixtures
and both assemblers, MetaCarvel scaffolds had the
highest number of concordant mate pairs (Fig. 1c, d).

As the number of genomes in a mixture increased
so did the number of genomic variants detected by
MetaCarvel (Fig. 1e). The number of variants detected
by MetaCarvel increased when adding more genomes to
the mixture (Fig. 1f) across all the categories of features
identified by the software: repeats, three-node bubbles
(insertions/deletions), four-node bubbles (strain varia-
tions), and complex rearrangements (five or more
node bubbles). A sample pattern of variation is shown
in Fig. 2. In this example, the parallel contigs differed by
about 3% nucleotide identity, a value larger than the
amount of error tolerated by the assemblers. We observed
that the number of variants detected by MetaCarvel was
much higher when using MEGAHIT assemblies compared
to metaSPAdes. However, the contiguity of scaffolds

(A)

(C)

(F)

(D) (E)

(B)

Fig. 1 Scaffold statistics for Acinetobacter baumannii strain mixtures. a NG50 statistics when MEGAHIT contig assembly was used as an
input for scaffolding methods. b NG50 statistics when metaSPAdes contig assembly was used as in input for scaffolding methods.
metaSPAdes(S) denotes the scaffolds generated by inbuilt scaffolding module of metaSPAdes. The percentage of reads aligned
concordantly when c MEGAHIT assembly was used as an input and when d metaSPAdes assembly was used as an input. e Number of
bubbles detected by MetaCarvel for different input assemblies. f The count of different types of variants in Acinetobacter strain mixtures.
Complex bubbles denote all the bubbles containing five or more nodes

Ghurye et al. Genome Biology (2019) 20:174 Page 3 of 14

generated with metaSPAdes was higher than that of scaf-
folds relying on MEGAHIT.

Detection of regions with high sequence variation
To evaluate the accuracy of sequence variants (four-node
bubbles, Fig. 3a) detected by MetaCarvel, we used reads
from two strains of Acinetobacter baumannii genome that
are distantly related (SRR1171982 and SRR1200567) [26].
We co-assembled the reads with MEGAHIT and ran Meta-
Carvel’s variant detection on the resulting assembly. We
aligned the contigs to the Acinetobacter baumannii 1656-2
reference genome sequence (NCBI ID: NC_017162). The
contigs which aligned at a same position in the reference
genome were inferred to have originated from the true vari-
ants. MetaCarvel detected 191 variants in this graph,
among which 184 overlapped with variants identified by
alignment to the reference genome. In the remaining 7 var-
iants which could not be validated using the strain 1656-2,
the contigs from these variants were perfectly aligned to
Acinetobacter baumannii strain AR_0078, Acinetobacter
baumannii strain XH731, and Acinetobacter baumannii
strain 15A34. For the remaining bubbles, the contigs in
those bubbles did not align to any known strain of Acineto-
bacter baumannii with high identity, suggesting possible
misassemblies. We also performed a similar analysis on a
mixture of Escherichia coli K12 and Escherichia coli O83:
H1 genomes. In this case, to flag a true variation, we check
if contigs in a bubble are aligned to both the strains with

high identity over at least 95% of their length. With this def-
inition, 28 of 31 bubbles found by MetaCarvel matched ac-
tual variants, implying 90.3% precision.

Accuracy of detecting insertions and deletions
To verify the accuracy of detecting insertion and dele-
tions, we used MEGAHIT to co-assemble reads from
two strains of Escherichia coli for which fully complete
reference sequences are available: Escherichia coli K12
(NCBI sequence read archive accession: ERR022075)
and Escherichia coli O83:H1 (NCBI sequence read arch-
ive accession: SRR6512538). We scaffolded the resulting
assembly using MetaCarvel and flagged as predicted
insertion/deletion events the three-node bubbles (see
Fig. 3b) found within the resulting scaffolds. To
characterize the true insertion and deletion events be-
tween these two Escherichia coli genomes, we aligned
them to each other using NUCmer and extracted the re-
gions flagged as “GAP” by the dnadiff utility from the
MUMmer package [29]. We determined that a three-
node bubble represented a true insertion/deletion event
if the middle contig of the variant aligned within one of
these regions. Of 126 three-node bubbles detected by
MetaCarvel, 81 were found concordant with the inser-
tion/deletion events identified by MUMmer (64.2% pre-
cision). A total of 194 contigs aligned to gap regions
within the E. coli genomes, implying a specificity of
73.1%. Some of the false negatives (32) were due to the

Fig. 2 Variants detected in one of the components of Acinetobacter baumanii scaffold graph. In this component, we find all the non-terminal nodes in
a bubble are more than 97% identical to each other and originate from two different strains of Acinetobacter baumannii genome

Fig. 3 Different types of motifs detected by MetaCarvel. a Four-node bubbles denote the variation between very similar sequences. They can
result in the graph due to the species with very high sequence similarity. b Three-node bubbles potentially represent gene gain/loss events and
horizontal gene transfers. They are formed due to the insertion or deletion of chunks between two otherwise similar genomes. c Interspersed
repeats in the graph are denoted by the nodes with high centrality and usually tangle the graph

Ghurye et al. Genome Biology (2019) 20:174 Page 4 of 14

parameters used in MetaCarvel to eliminate low-quality
edges in the graph, while the remaining false negatives
were due to the fact that the insertion/deletion event co-
incided with other genomic phenomena, leading to a
graph motif that was inconsistent with our definition of
a three-node bubble.

Effectiveness in detecting repeats
To determine the accuracy of interspersed repeat detec-
tion (Fig. 3c), we used reads from Yersinia pestis CO92
genome (Genebank ID: AL590842.1) as this genome has
well characterized interspersed repeats [30]. We assem-
bled the reads (SRA ID: SRR069183) using MEGAHIT
and then scaffolded the assembly with MetaCarvel. To
define a ground truth, we aligned the contigs to the Yer-
sinia pestis genome using NUCmer [29] (with --max-
match option) and flagged as repeats all contigs aligned
at more than one location with at least 95% identity and
95% alignment length. The precision and recall of Meta-
Carvel’s repeat detection algorithm were 14.86% and
71.73% respectively. We compared this result to the al-
gorithm used in OPERA-LG which detects repeats using
sequence coverage alone (contigs with 1.5 times the
average coverage of the genome are flagged as repeats).
Within the same assembly of Yersinia pestis, OPERA-
LG’s repeat finding approach has precision and recall of
9.06% and 67.39%, respectively (Table 1).
Further, we assessed MetaCarvel’s repeat detection ac-

curacy on a synthetic metagenomic dataset (MBARC-26)
described in Singer et al. [27]. This dataset (MBARC-26)
consists of a mixture of 23 bacterial and three archaeal
stains, across 10 different phyla and 14 classes, as well as
a wide range of GC and repeat content. We assembled
the reads using MEGAHIT, and the resulting contigs
were aligned to the reference genomes using NUCmer
(with --maxmatch option). In this case, the precision
and recall of MetaCarvel’s repeat detection were 96.47%
and 85.33%, respectively, compared to 47.34% and
66.91% for OPERA-LG (Table 1). The repeats missed by
MetaCarvel had inconsistent read alignments and hence

were not part of the scaffold graph. Of the 16 false posi-
tives obtained from MetaCarvel, 8 of them were marked
with “high coverage node” as one of the features and 3
of them were marked based on high betweenness cen-
trality (see the “Methods” section for details).

Evaluation of scaffold quality using synthetic datasets
We evaluated MetaCarvel’s scaffold quality on the
MBARC-26 dataset [27]. Due to the high depth of se-
quencing coverage and relatively low complexity of the
mixture, the assembly of the full dataset resulted in large
contigs and few opportunities for scaffolding algorithms
to improve contiguity. Only 0.051% of mate pairs
spanned the gap between contigs, thereby not providing
linking information for scaffolding. To provide a more
challenging situation, we downsampled the total number
of reads 1000-fold. We assembled the downsampled data
using MEGAHIT with default parameters. To derive
linkages between contigs based on mate pair informa-
tion, we aligned the reads to the assembled contigs using
bowtie2 (with parameters -end-to-end -p 12) [31]. We
then used MetaCarvel and OPERA-LG to scaffold these
assemblies. Since we know the reference genome se-
quences for this dataset, we could use metaQUAST [32]
to assess the accuracy of the resulting scaffolds. As seen
in Table 1, MetaCarvel had fewer misassemblies and
better contiguity than OPERA-LG, even in this relatively
simple community.
We also assembled the data using metaSPAdes (with

default parameters), an assembler specifically developed
for metagenomic data that also includes a scaffolding
module. We scaffolded metaSPAdes contigs with Meta-
Carvel and OPERA-LG and used metaQUAST to evalu-
ate scaffold accuracy. As seen in Table 2, the number of
misassemblies in MetaCarvel scaffolds was lower than
that in OPERA-LG but higher than that in metaSPAdes
scaffolds. MetaSPAdes scaffolds had fewer misassemblies
because their scaffolding module is tightly coupled with
the assembly module, hence uses more information ob-
tained from the assembly graph to generate scaffolds.

Table 1 Comparison of the accuracy of repeat detection in MetaCarvel and OPERA-LG on different datasets

Dataset Method True repeats Predicted repeats True positives False positives True
negatives

False
negatives

Precision (%) Recall (%)

Yersinia pestis OPERA-LG 46 353 31 322 904 15 9.06 67.39

MetaCarvel 46 222 33 189 1037 13 14.86 71.73

MBARC-26 OPERA-LG 532 771 356 415 21,215 176 47.34 66.91

MetaCarvel 532 454 438 16 21,614 94 96.47 85.33

CAMI (M) OPERA-LG 3809 4568 2989 1579 154,936 820 65.43 78.74

MetaCarvel 3809 4301 3317 984 155,531 492 77.12 87.08

CAMI (H) OPERA-LG 12,666 27,625 7078 20,547 1,157,503 5558 25.62 56.01

MetaCarvel 12,666 9219 7266 1953 1,176,067 5400 78.81 57.36

Ghurye et al. Genome Biology (2019) 20:174 Page 5 of 14

Ta
b
le

2
C
om

pa
ris
on

of
M
et
aC

ar
ve
lw

ith
O
PE
RA

-L
G
on

a
sy
nt
he

tic
m
et
ag
en

om
ic
s
da
ta
se
ts

D
at
as
et

M
et
ho

d
N
um

be
r
of

sc
af
fo
ld
s

A
ss
em

bl
y
si
ze

(M
bp

)
M
is
as
se
m
bl
ie
s

La
rg
es
t
sc
af
fo
ld

(k
bp

)
Sc
af
fo
ld
s
>
50

kb
p

Le
ng

th
at

1
M
bp

(k
bp

)
Le
ng

th
at

10
M
bp

(k
bp

)
Le
ng

th
at

50
M
bp

(k
bp

)

M
BA

RC
-2
6

M
EG

A
H
IT
+
O
PE
RA

-L
G

22
,5
97

87
.5

20
7

47
3.
2

18
0

31
9.
2

97
.0

2.
3

M
EG

A
H
IT
+
M
et
aC

ar
ve
l

19
,8
79

88
.0

99
28
7.
3

17
7

28
7.
3

15
4.
3

9.
1

m
et
aS
PA

de
s
+
O
PE
RA

-L
G

49
31

98
.7

14
8

23
31
.2

41
2

20
55
.2

94
4.
0

17
7.
1

m
et
aS
PA

de
s
+
M
et
aC

ar
ve
l

51
37

99
.8

68
19
9.
1

29
8

18
10
.2

11
25
.0

19
9.
4

m
et
aS
PA

de
s
sc
af
fo
ld
s

53
33

98
.3

55
19
9.
1

41
0

18
10
.2

92
5.
6

15
8.
3

C
A
M
Im

ed
iu
m

M
EG

A
H
IT
+
O
PE
RA

-L
G

15
7,
38
9

27
1.
7

16
69

85
4.
1

52
7

82
5.
4

40
4.
6

73
.1

M
EG

A
H
IT
+
M
et
aC

ar
ve
l

15
8,
34
0

27
1.
5

17
93

85
4.
1

52
0

82
5.
4

41
8.
2

74
.5

C
A
M
Ih

ig
h

M
EG

A
H
IT
+
O
PE
RA

-L
G

1,
18
8,
75
7

11
21
.8

23
,2
24

61
3.
6

82
4

58
1.
5

29
9.
8

96
.6

M
EG

A
H
IT
+
M
et
aC

ar
ve
l

1,
18
5,
06
5

11
21
.2

22
,4
01

10
89
.6

84
7

61
3.
6

30
4.
5

10
1.
8

Ghurye et al. Genome Biology (2019) 20:174 Page 6 of 14

Ta
b
le

3
C
om

pa
ris
on

of
re
fe
re
nc
e-
fre

e
as
se
m
bl
y
st
at
is
tic
s
fo
r
re
al
m
et
ag
en

om
ic
da
ta
se
ts
ge

ne
ra
te
d
in

th
e
H
M
P
pr
oj
ec
t

D
at
as
et

M
et
ho

d
#S
ca
ffo

ld
s

A
ss
em

bl
y
si
ze

(M
bp

)
#S
ca
ffo

ld
s
>
50

kb
p

La
rg
es
t
sc
af
fo
ld

(k
bp

)
#C

on
co
rd
an
t
m
at
e
pa
irs

Le
ng

th
at

1
M
bp

(k
bp

)
Le
ng

th
at

10
M
bp

(k
bp

)
Le
ng

th
at

50
M
bp

(k
bp

)

SR
S0
49
95
9

O
PE
RA

-L
G

19
8,
20
6

27
3.
2

47
3

53
0.
1

97
,4
28
,2
96

(8
2.
1%

)
25
8.
6

12
6.
3

38
.9

M
et
aC

ar
ve
l

10
8,
43
7

27
7.
0

48
7

51
8.
2

98
,1
07
,9
50

(8
5.
5%

)
35
6.
7

15
4.
1

39
.5

m
et
aS
PA

de
s

98
,3
18

26
8.
3

48
9

47
6.
5

91
,8
70
,8
16

(8
0.
0%

)
42
2.
8

16
4.
1

44
.8

O
PE
RA

-L
G
(M

)
97
,4
86

26
7.
7

51
8

47
6.
5

91
,9
48
,0
44

(8
0.
1%

)
40
5.
1

16
2.
2

47
.0

M
et
aC

ar
ve
l(
M
)

98
,0
73

26
8.
1

49
2

86
8.
8

92
,1
83
,4
96

(8
0.
3%

)
74
9.
8

21
1.
0

49
.2

SR
S0
20
23
3

O
PE
RA

-L
G

12
8,
25
0

27
9.
8

39
3

38
1.
6

91
,4
64
,7
78

(8
4.
9%

)
28
6.
5

13
9.
7

35
.4

M
et
aC

ar
ve
l

14
1,
43
8

28
2.
5

42
1

43
0.
2

92
,0
77
,6
70

(8
6.
9%

)
36
8.
6

15
4.
3

37
.8

m
et
aS
PA

de
s

12
2,
61
3

27
9.
6

43
7

57
3.
8

91
,5
77
,0
14

(8
5.
9%

)
35
1.
9

16
3.
9

40
.9

O
PE
RA

-L
G
(M

)
12
2,
14
3

27
9.
9

45
9

57
3.
8

91
,6
22
,7
40

(8
5.
3%

)
37
2.
1

15
8.
3

42
.4

M
et
aC

ar
ve
l(
M
)

12
2,
77
6

28
0.
8

47
1

58
7.
2

91
,8
40
,8
00

(8
5.
3%

)
58
4.
7

18
7.
1

44
.7

SR
R2
24
15
11

O
PE
RA

-L
G

63
1

28
4.
4

5
96
2.
9

12
,6
18
,9
90

(8
3.
9%

)
19
.3

N
A

N
A

M
et
aC

ar
ve
l

53
3

28
5.
9

6
12
6.
1

12
,6
65
,7
52

(8
4.
2%

)
27
.7

N
A

N
A

m
et
aS
PA

de
s

77
4

33
4.
5

4
57
0.
3

13
,8
38
,6
86

(9
1.
0%

)
20
.6

N
A

N
A

O
PE
RA

-L
G
(M

)
73
3

33
4.
3

6
12
4.
9

12
,8
75
,1
36

(8
5.
6%

)
20
.9

N
A

N
A

M
et
aC

ar
ve
l(
M
)

65
2

33
5.
4

11
12
6.
3

12
,9
10
,2
16

(8
5.
9%

)
37
.7
4

N
A

N
A

SR
R2
24
15
98

O
PE
RA

-L
G

60
,6
01

11
7.
6

75
21
7.
4

19
,4
23
,2
28

(5
1.
6%

)
14
8.
3

35
.1

4.
1

M
et
aC

ar
ve
l

56
,5
03

11
9.
1

10
0

31
9.
2

20
,0
47
,7
08

(5
4.
0%

)
18
4.
2

46
.6

5.
7

m
et
aS
PA

de
s

48
,4
03

11
3.
6

10
2

41
7.
4

16
,7
71
,9
28

(4
5.
2%

)
20
6.
9

46
.5

6.
2

O
PE
RA

-L
G
(M

)
43
,9
08

10
9.
4

10
5

28
2.
9

16
,7
49
,6
00

(4
5.
1%

)
20
6.
9

47
.9

6.
6

M
et
aC

ar
ve
l(
M
)

42
,9
27

11
0.
2

19
0

41
7.
4

16
,8
93
,8
82

(4
5.
5%

)
33
6.
43

97
.5

8.
7

Fo
r
th
e
co
nc
or
da

nt
m
at
e
pa

irs
,t
he

nu
m
be

r
in

th
e
pa

re
nt
he

si
s
de

no
te
s
th
e
pe

rc
en

ta
ge

of
to
ta
lr
ea
d
pa

irs
m
ap

pe
d
co
nc
or
da

nt
ly

to
sc
af
fo
ld
s.
In

m
et
ho

ds
,(
M
)
de

no
te
s
sc
af
fo
ld
s
ge

ne
ra
te
d
us
in
g
m
et
aS
PA

de
s
co
nt
ig
s
as

in
pu

t
to

M
et
aC

ar
ve
la

nd
O
PE

RA
-L
G

Ghurye et al. Genome Biology (2019) 20:174 Page 7 of 14

The contiguity of MetaCarvel scaffolds was better than
that of both metaSPAdes and OPERA-LG scaffolds.

Evaluation using CAMI-simulated metagenome datasets
To further test the accuracy of MetaCarvel on com-
plex simulated communities, we used the data for
medium and high complexity metagenome communi-
ties released in CAMI challenge [28]. We assembled
the reads in these datasets using MEGAHIT and used
MetaCarvel and OPERA-LG for scaffolding. We were
not able to run metaSPAdes on either of these data-
sets as the memory requirement exceeded 150 Gb.
We used the reference genomes provided by the
CAMI consortium to evaluate scaffold accuracy. On
both medium and high complexity datasets, we ob-
served that MetaCarvel’s repeat classification accuracy
was better than OPERA-LG, although the recall was
low for detecting repeats in the high complexity data-
set (Table 1). In the medium complexity dataset, the
contiguity was similar for OPERA-LG and MetaCarvel
with the number of misassemblies lower for OPERA-
LG (Table 2). In the high complexity dataset, Meta-
Carvel scaffolds were more contiguous with fewer
misassemblies than OPERA-LG. This evaluation
shows that MetaCarvel’s repeat detection and scaf-
folding works better on complex metagenomic com-
munities than OPERA-LG.

Evaluation using real metagenomics data
We tested the effectiveness of MetaCarvel on four sam-
ples from the Human Microbiome Project (HMP) [2].
We chose two stool samples (SRS020233, SRS049959),
one supragingival plaque sample (SRR2241598), and a
posterior fornix sample (SRS024310). The stool samples
represent complex communities and have high depths of
sequencing coverage and the plaque sample has lower
complexity but relatively high coverage, while the pos-
terior fornix has a lower depth of coverage due to the
high level of host contamination (more than 80% human
DNA) [2]. Table 3 shows the comparison of different

scaffolding approaches on these samples. Since the com-
position of these samples is unknown, we could not use
reference-based methods to evaluate scaffold accuracy.
Instead we computed the number of mate pairs that
map concordantly to the resulting scaffold. For all the
samples, MetaCarvel had a higher number of concordant
mate pairs compared to OPERA-LG when the MEGA-
HIT assembly was used. Even when scaffolding metaS-
PAdes assemblies, MetaCarvel had the highest number
of concordant mate pairs. Also, the total number of con-
cordant mate pairs was higher for both OPERA-LG and
MetaCarvel scaffolds when using the MEGAHIT assem-
bly compared to the metaSPAdes assembly as an input.
Since a metagenomic assembly does not have a known
total genome size, the use of measures such as N50 and
NG50 (commonly used for comparing the contiguity of
isolate genome assemblies) is not appropriate. To assess
the contiguity of scaffolds in a way that can be compared
across assemblies of a dataset, we first sort the scaffolds
in decreasing order of their lengths. Then, we start add-
ing the lengths of scaffolds until a particular target
length is reached (1Mbp, 10Mbp, and 50Mbp in our
case). The length of the scaffold at which the total sum
of the length-sorted scaffolds exceeded the target length
becomes the statistic to assess contiguity of the scaffolds.
In other words, “size at 10Mbp” represents the longest
length L such that the sum of all scaffold lengths longer
than L adds up to 10Mbp or above. In most cases,
MetaCarvel scaffolds had the highest contiguity. Particu-
larly, the best results were obtained by scaffolding with
MetaCarvel the contigs that were generated by metaS-
PAdes. The high contiguity and the high number of con-
cordant mate pairs in MetaCarvel scaffolds can be
attributed to its ability to resolve the bubbles in the con-
nected components and generate the scaffolds which
pass through the bubbles, whereas OPERA-LG broke the
scaffolds where there was a boundary between a variant
and a linear path (Fig. 4). As a result, the mate pairs
spanning these junctions were not explained by OPERA-
LG scaffolds.

Fig. 4 A component in the scaffold graph for the HMP stool sample. The highlighted nodes in the graph denote the path taken by MetaCarvel
to generate the scaffold in this component, and the red lines denote the scaffolds generated by OPERA-LG. It can be observed that at the
boundaries of the regions of variation, OPERA-LG breaks scaffolds thereby not using the information provided by the paired-end reads to
generate contiguous and accurate scaffolds

Ghurye et al. Genome Biology (2019) 20:174 Page 8 of 14

Effect of sequencing coverage on metagenome
scaffolding
To assess the impact of sequencing depth on the scaf-
folding algorithm, we downsampled the synthetic mock
community dataset MBARC-26 [27] to a range of total
number of reads between 2 million and 14 million and
used the resulting assemblies as input for OPERA-LG,
MetaCarvel, and metaSPAdes. Note that the input as-
sembly for OPERA-LG and MetaCarvel was generated
using MEGAHIT, while metaSPAdes scaffolds were gen-
erated using the built-in scaffolding module. As ex-
pected, at low depths of coverage, the contig and
scaffold contiguity was poor but improved as more reads
were added (Table 4).

Computational requirements of MetaCarvel
The computational requirements of MetaCarvel mainly
depend on the size of the assembly graph, specifically
the number of contigs in the assembly and the number
of links between these contigs. The input assembly for
the MBARC-26 dataset (~ 20 million reads) had 19,326
contigs, and its scaffolding required peak memory of 8.2
GB with the CPU runtime of 18 min. For the scaffolding
of stool sample (SRS049959, ~ 54 million reads), the
number of contigs in the input assembly was 214,985
and its scaffolding required peak memory of 38.7 GB
and CPU runtime of 88 min. Table 4 lists the runtime
and memory requirements for scaffolding with different
number of reads. The runtime and memory require-
ments increase as a greater number of reads are used.

The growth is supra-linear because the runtime of scaf-
folding algorithm mainly depends on the number of
edges in the scaffold graph, which can grow quadrati-
cally in the worst case. The runtime and memory
requirements for OPERA-LG and MetaCarvel were com-
parable for all the sequencing coverages.

Discussion
We described a stand-alone metagenomics variant de-
tection and scaffolding method MetaCarvel and
showed its effectiveness on synthetic and real metage-
nomics datasets of varying complexity. Unlike most of
the existing scaffolders which only output linearized
sequences of scaffolds, MetaCarvel outputs a list of
variants along with the graph used to call variants.
This information can help biologists to explore inter-
esting graph patterns within the assembly and investi-
gate the biological implications of the corresponding
genomic variants.
To allow a quantitative evaluation of variant detection,

we focused our validation on simple types of genomic
variants that involve three or four contigs. MetaCarvel
does detect more complex variants, which are, however,
difficult to validate in an automated fashion. This func-
tionality sets MetaCarvel apart from other tools available
for identifying strain variants in microbial communities,
tools which primarily rely on reference genomes or
conserved genes to characterize microbial strains. The
approach taken by MetaCarvel is complementary to ap-
proaches based on marker genes, such as StrainPhlAn

Table 4 Performance comparison of different scaffolders based on varying the sequencing depth on the MBARC-26 dataset.

Input size (millions
of reads)

Metric No. of scaffolds Length at 1 Mbp (bp) Length at 10 Mbp (bp) Length at
50 Mbp (bp)

CPU time Peak memory (GB)

2 OPERA-LG 29,831 988,539 90,227 719 44 s 2.2

metaSPAdes 61,592 594,287 92,217 783 NA 8.2

MetaCarvel 29,883 699,981 90,014 718 58 s 2.1

4 OPERA-LG 22,952 1,257,853 168,019 4393 2 min 16 s 2.8

metaSPAdes 49,199 1,635,634 190,132 3823 NA 10.1

MetaCarvel 23,003 1,257,853 168,390 4374 2 min 48 s 3

8 OPERA-LG 21,866 1,257,855 393,755 34,351 3 min 13 s 4

metaSPAdes 39,460 1,635,634 190,132 31,823 NA 14.3

MetaCarvel 23,003 1,223,449 423,739 32,331 3 min 47 s 3.8

10 OPERA-LG 21,413 1,257,855 402,996 50,874 8 min 01 s 5

metaSPAdes 35,754 1,635,634 478,925 52,165 NA 22.5

MetaCarvel 21,033 1,332,109 418,821 49,839 10 min 41 s 5.2

14 OPERA-LG 18,370 1,461,964 676,339 72,581 14 min 08 s 8.1

metaSPAdes 29,298 1,635,789 668,856 78,337 NA 28.1

MetaCarvel 18,281 1,463,318 686,311 73,522 13 min 14 s 7.4

The runtime for metaSPAdes is not mentioned (marked NA) since we cannot separate the assembly from the scaffolding steps. Maximum contig size is the same
for OPERA-LG and MetaCarvel because the same input assembly was used as input to them

Ghurye et al. Genome Biology (2019) 20:174 Page 9 of 14

[18]. The combination of the two approaches represents
a promising direction for future research, leading to ef-
fective approaches for characterizing novel genomic
fragments while placing them within the context of the
fine grained taxonomic information derived from marker
genes.
The effectiveness of the approach implemented in

MetaCarvel critically depends on the data available to
the scaffolding module. Note that the lack of contigu-
ity manifests due to two reasons: (i) lack of contiguity
in the assembly used as an input to the scaffolding al-
gorithm and (ii) lack of linking information available
for scaffolding algorithms to join contigs into scaf-
folds. MetaCarvel can only detect variants if the cor-
responding contigs are covered at high enough depth
and if mate pairs or other information provide links
between adjacent contigs. The analysis is also greatly
improved if the underlying assembly is conservative—
assemblers that aggressively attempt to “smooth out”
genomic variants in order to obtain long genomic
contigs end up removing exactly the information that
MetaCarvel is designed to detect. We, thus, suggest
that scientists interested in strain variation explore
multiple assemblies of datasets, using different meta-
genomic assemblers run with different parameter
choices, rather than relying on published assemblies
or using the most popular assembler run with default
parameters.
>Beyond the choice of parameters for the assembler

used to generate the input to MetaCarvel, users can also
control the number of links required to construct an edge
between adjacent contigs. If this threshold is low, the
graph can have many spurious edges, leading to longer
runtime, reducing the accuracy of repeat detection, and
complicating variant discovery. If this threshold is high,
the graph becomes disconnected leading to a degraded
ability to discover variants, and low scaffold contiguity. Al-
though the repeat detection procedure used in MetaCarvel
does not expose any parameters to the end user, its accur-
acy depends on the number of features that provide evi-
dence of contig’s repetitiveness—features that are also
related to the density of links in the scaffold graphs.
In closing, we would like to stress that the study of

strain variation within microbial communities is in its
infancy, in no small part due to the relative dearth of ap-
propriate datasets and analytic tools. Tools such as
MetaCarvel, StrainPhlAn, and others are just a first step
towards the development of an effective toolkit for the
discovery and characterization of genomic variants. Of
particular interest will be the development of approaches
able to infer the functional implications of strain vari-
ants, ultimately leading to a better understanding of the
principles underlying microbial adaptation and commu-
nity structure.

Methods
MetaCarvel operates as a series of discrete steps that
construct and progressively refine a graph linking to-
gether assembled contigs with the information provided
by mate pair or paired-end reads (Fig. 5). Currently, we
determine the links between contigs by remapping the
paired reads to an assembly constructed by a metage-
nomic assembler. This step is necessary as current
assemblers do not provide information about the place-
ment of individual reads within the assembled contigs.
When such information is available, MetaCarvel can dir-
ectly use it, currently accepting the information in SAM/
BAM formats.

Contig graph construction
MetaCarvel begins by aligning paired-end reads to as-
sembled contigs using a standard short read aligner such
as BWA [33] or bowtie2 [31]. The reads are aligned in a
single end mode to avoid biasing alignments based on
the pre-specified library insert size. Rather, the library
size is recomputed by MetaCarvel and errors in read
pairing are identified during the scaffolding process.
Using the alignments of reads to contigs, a contig graph
is created where the nodes are contigs and edges be-
tween adjacent contigs indicated that one or more
paired-end reads span the gap between the correspond-
ing contigs. We first re-estimate the library size (mean
and standard deviation) by considering pairs where both
reads in the pair are aligned to the same contig. To ac-
count for divergent estimates of the distance between
adjacent contigs, we compute the maximal set of links
that are consistent with each other and that imply a
similar distance. Finding such a set of consistent links is
equivalent to finding a maximal clique in an interval
graph as described in [34]. Once the set of mutually con-
sistent links is identified, they are “bundled” into a single
representative link. The mean and standard deviation for
this link is computed using a method described in
Huson et al. [35]. The weight of this link is given by the
number of read pairs which were bundled while con-
structing the link. Bundling of links gives a single value
for mean and standard deviation for the implied distance
between a pair of contigs.

Repeat identification
To avoid the ambiguities caused by genomic repeats
during scaffolding, we first identify repetitive contigs
and remove them from the contig graph along with
all the edges incident on them. We use several prop-
erties of the graph and contigs to determine the con-
tigs that could confound the scaffolding process [36].
First, we calculate the sequencing coverage and de-
gree for all the contigs in the graph. Then, we assign

Ghurye et al. Genome Biology (2019) 20:174 Page 10 of 14

a unique orientation to each contig in the graph
using an algorithm described in more detail in the
next section. This algorithm removes edges from the
graph that prevents the assignment of a consistent
orientation to contigs. For example, if a contig is
assigned the forward orientation, then all the links
implying the reverse orientation are removed. For
each contig, we count the number of invalidated
edges. We also flag links in the contig graph that
connect contigs with significantly different depths of
coverage. We track how many such “skewed” links
are incident on each contig. A more detailed descrip-
tion of how these features are computed can be
found here [36].
For each of the features described above (depth of

coverage, node degree, incident edges invalidated dur-
ing the orientation phase, skewed edges), we flag the
contigs that occur within the upper quartile among
all contigs. Any contig that is flagged according to at
least three of the criteria listed above is marked as a
repeat and removed. After removing these contigs, we
also remove contigs with a high betweenness central-
ity measure (the number of shortest paths passing
through a node in a graph) [37]—specifically the con-
tigs that have a betweenness centrality higher by
more than 3 standard deviations from the mean be-
tweenness centrality for the assembly graph. Since the

computation of betweenness centrality is computa-
tionally expensive (O(N3) for N contigs), we use an
approximation algorithm [38] which runs in linear
time, thereby scaling to large graphs obtained from
the complex metagenomic samples. The impact of the
node removal on the structure of the scaffolding
graph is shown in Fig. 6.

Orientation
The contig graph is bidirected because each contig in
the graph can originate from either forward or reverse
DNA strand. To make this graph directed, we need to
assign a unique orientation to each contig. The edges in
the graph are of two types: “same” when adjacent contigs
have the same orientation and “different”, otherwise. If
the graph has a cycle that contains an odd number of
“different” edges, then it is impossible to assign a con-
sistent orientation to contigs in that cycle without dis-
carding at least one edge from the cycle. Our objective is
to minimize the number of edges to be removed from
the graph in order to allow a consistent orientation for
all contigs. Finding such a minimum set is equivalent to
finding a maximal bipartite subgraph—an NP-Hard
problem [39]. We use the greedy algorithm described in
Kelecioglu et al. [40] that achieves a two-factor approxi-
mation and runs in O(V + E) time (V—the number of
contigs, E—the number of edges connecting these

Fig. 5 Overview of the MetaCarvel pipeline: First, reads are aligned to assembled contigs. Using these alignments, a scaffold graph is constructed
by bundling the link implying same contig orientation. In this graph, repeats are identified and removed. In the repeat removed scaffold graph,
first variants are detected, and variant-aware contig layout is performed to generate final scaffolds. The output of the MetaCarvel pipeline is the
sequences for scaffolds and the list of variants found in the scaffold graph

Ghurye et al. Genome Biology (2019) 20:174 Page 11 of 14

contigs). Briefly, we assign an arbitrary orientation (for-
ward or reverse) to a starting contig, then proceed to
orient all contigs adjacent to it. While assigning an
orientation to a contig, we pick an orientation in such a
way that it agrees with the majority of its already ori-
ented neighbors (in terms of edge weights supporting
that orientation). Once we assign an orientation to a
contig, we invalidate any links that disagree with the
chosen orientation. We continue in a breadth-first man-
ner and assign an orientation to all the contigs.

Graph simplification and variant detection
A typical metagenomic sample contains closely related
genomes or closely related strains of the same organism
which result in a complex bubble-like pattern in the
graph. Identifying complex variants in the graph takes
exponential time in the number of nodes, thereby mak-
ing variant identification extremely slow on large and
complex metagenomics samples. To identify variants in
the graph efficiently, we first decompose the oriented
contig graph into its biconnected components using the
Hopcroft-Tarjan algorithm [41]. This algorithm takes
O(V+ E) time. We further decompose each biconnected
component into triconnected components by computing
SPQR tree data structures [42, 43]. The SPQR tree for a
graph denotes a hierarchical decomposition of bicon-
nected components of a graph into its triconnected
components. We use the implementation of SPQR trees
provided in the Open Graph Drawing Framework

(OGDF) [44] which runs in linear time O(V + E). Since
the SPQR tree data structure is only defined for undir-
ected graphs, we need to check whether the components
identified within the tree are consistent with the orienta-
tion of the edges of the assembly graph. We rely on the
algorithm used in Marygold [20]: for each graph compo-
nent identified between a pair of separation nodes within
the SPQR tree, we check that all paths starting at the
source node can reach the sink node of the component
using a directed path. Components that fail this check
are eliminated from further consideration. Once valid
source-sink pairs and variants are identified, each com-
ponent (complex graph “bubble”) is collapsed into a
supernode. The incoming and outgoing edges from the
source and sink respectively for the variants are assigned
to its supernode. This simplifies the graph structure by a
large extent thereby masking the complexities caused by
the variants in the sample.
The graph components we identify are also reported

by MetaCarvel as putative strain variants, allowing fur-
ther analysis. From among the patterns identified, we
have focused the analysis in this paper on three simple
patterns (refer to Fig. 3).

Three-node bubbles
Three-node bubbles in the graph correspond to putative
gene gain/loss events in the genome, hence, are import-
ant from the biological point of view. These bubbles can
be easily found from the validated bubbles of size 3.

Fig. 6 The impact of repeat detection and variant discovery on the scaffolding graph. a A scaffolding graph containing a four-node bubble
(highlighted by a box) and a repeat (node shaded black). b After the removal of the repeat, the graph becomes disconnected, simplifying the
discovery of variants (the collapsed four-node bubble is shown as an elongated hexagon) and simple chains of contigs (the remaining two edges
in the graph)

Ghurye et al. Genome Biology (2019) 20:174 Page 12 of 14

Four-node bubbles
Four-node bubbles correspond to putative variation be-
tween the genomes of related strains within a sample.
Like three-node bubbles, they can also be easily charac-
terized within the validated bubbles obtained during the
bubble collapsing step.

Interspersed repeats
Interspersed repeats are natively detected and flagged by
the repeat detection procedure described above.

Generation of linear scaffolds
Once we simplify the graph by collapsing bubbles into
supernodes, we generate the scaffold sequences through
a linear traversal of the graph. We first create an auxil-
iary graph G’(V’,E’) from the original graph G(V,E), as
follows. We create two nodes for each contig, one for
the 5′ end and one for the 3′ end, connected by an edge
that matches the orientation of the corresponding con-
tig. The edge weights for E’ is the bundle sizes (number
of mate pairs supporting that edge). The edges between
the 5′ and 3′ ends of same contigs are not added at this
stage. We then compute a weighted maximal matching
[45] in G’. After we compute a weighted maximal
matching, we remove nodes and edges present in that
matching and repeat the matching process on the
remaining nodes and edges until all nodes in G’ are
matched. In each maximal matching, we add edges be-
tween the 5′ and 3′ ends of each contig present in that
matching. This defines a unique linear path in G’ and
spells out a scaffold. We note that supernodes (collapsed
regions of strain variation) can be part of the linear path
constructed from the scaffold graph. Since each variant
is a directed acyclic graph (DAG), we compute the high-
est weighted path from source to sink within each super-
node using a dynamic programming algorithm. This
path is then merged within the global linear path to de-
fine the linearized scaffold. For each supernode, we also
output additional source to sink paths as alternate vari-
ants by iteratively removing edges that were previously
reported.

Additional file

Additional file 1: Review history. (DOCX 22 kb)

Review history
The review history is available as Additional file 1.

Authors’ contributions
MP, TT, and JG designed the study. JG developed the code and ran the
experiments. All authors analyzed the results and wrote the manuscript. All
authors read and approved the final manuscript.

Funding
The research was supported by the Department of Defense’s High
Performance Computing Modernization Program Application Software
Initiative (HASI) by the Department of the Army. Research was conducted
through a cooperative agreement between the Naval Research Laboratory
(NRL) and the University of Maryland via a HASI award to WJH. The opinions
and assertions contained herein are those of the authors and are not to be
construed as those of the U.S. Navy, military service at large or U.S.
Government.
JC, TT, MF, and MP were supported in part by the US NIH award R01-AI-
100947.

Availability of data and materials
All the data used for validation is publicly available and downloaded from
NCBI databases [2, 26–28]. The source code describing our methods is freely
available under the MIT license at Github [46] and Zenodo [47].

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science, University of Maryland, College Park, MD,
USA. 2Center for Bioinformatics and Computational Biology, University of
Maryland, College Park, MD, USA. 3Department of Computer Science, Rice
University, Houston, TX, USA. 4Center for Bio/Molecular Science &
Engineering, United States Naval Research Laboratory, Washington, DC, USA.

Received: 5 January 2019 Accepted: 13 August 2019

References
1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons

N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue
established by metagenomic sequencing. Nature. 2010;464:59–65.

2. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT,
Creasy HH, Earl AM, FitzGerald MG, Fulton RS, et al. Structure, function and
diversity of the healthy human microbiome. Nature. 2012;486:207–14.

3. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark
DS, Chen F, Zhang T, et al. Metagenomic discovery of biomass-degrading
genes and genomes from cow rumen. Science. 2011;331:463–7.

4. Nealson KH, Venter JC. Metagenomics and the global ocean survey: what’s
in it for us, and why should we care? ISME J. 2007;1:185–7.

5. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL,
Blazewicz SJ, Rubin EM, Jansson JK. Metagenomic analysis of a
permafrost microbial community reveals a rapid response to thaw.
Nature. 2011;480:368–71.

6. Daniel R. The metagenomics of soil. Nat Rev Microbiol. 2005;3:470–8.
7. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new

versatile metagenomic assembler. Genome Res. 2017;27:824–34.
8. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-

node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics. 2015;31:1674–6.

9. Afiahayati, Sato K, Sakakibara Y. MetaVelvet-SL: an extension of the Velvet
assembler to a de novo metagenomic assembler utilizing supervised
learning. DNA Res. 2015;22:69–77.

10. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth.
Bioinformatics. 2012;28:1420–8.

11. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. Ray Meta:
scalable de novo metagenome assembly and profiling. Genome Biol. 2012;
13:R122.

12. Haider B, Ahn TH, Bushnell B, Chai J, Copeland A, Pan C. Omega: an
overlap-graph de novo assembler for metagenomics. Bioinformatics. 2014;
30:2717–22.

Ghurye et al. Genome Biology (2019) 20:174 Page 13 of 14

https://doi.org/10.1186/s13059-019-1791-3

13. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature
of bacterial innovation. Nature. 2000;405:299–304.

14. Gomez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, McElroy K,
Buckling A. Local adaptation of a bacterium is as important as its presence
in structuring a natural microbial community. Nat Commun. 2016;7:12453.

15. Costea PI, Munch R, Coelho LP, Paoli L, Sunagawa S, Bork P. metaSNV: a tool
for metagenomic strain level analysis. PLoS One. 2017;12:e0182392.

16. Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated
metagenomics pipeline for strain profiling reveals novel patterns of
bacterial transmission and biogeography. Genome Res. 2016;26:1612–25.

17. Luo C, Knight R, Siljander H, Knip M, Xavier RJ, Gevers D. ConStrains
identifies microbial strains in metagenomic datasets. Nat Biotechnol. 2015;
33:1045.

18. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level
population structure and genetic diversity from metagenomes. Genome
Res. 2017;27:626–38.

19. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat Genet. 2012;44:226–32.

20. Nijkamp JF, Pop M, Reinders MJ, de Ridder D. Exploring variation-aware
contig graphs for (comparative) metagenomics using MaryGold.
Bioinformatics. 2013;29(22):2826–34.

21. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al.
SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. Gigascience. 2012;1:18.

22. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation
sequencing data. Genomics. 2010;95(6):315–27.

23. Koren S, Treangen TJ, Pop M. Bambus 2: scaffolding metagenomes.
Bioinformatics. 2011;27:2964–71.

24. Gao S, Bertrand D, Chia BK, Nagarajan N. OPERA-LG: efficient and exact
scaffolding of large, repeat-rich eukaryotic genomes with performance
guarantees. Genome Biol. 2016;17:102.

25. Mandric I, Knyazev S, Zelikovsky A. Repeat-aware evaluation of scaffolding
tools. Bioinformatics. 2018;34:2530–7.

26. Wallace L, Daugherty SC, Nagaraj S, Johnson JK, Harris AD, Rasko DA. Use of
comparative genomics to characterize the diversity of Acinetobacter
baumannii surveillance isolates in a health care institution. Antimicrob
Agents Chemother. 2016;60:5933–41.

27. Singer E, Andreopoulos B, Bowers RM, Lee J, Deshpande S, Chiniquy J,
Ciobanu D, Klenk HP, Zane M, Daum C, et al. Next generation sequencing
data of a defined microbial mock community. Sci Data. 2016;3:160081.

28. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, Gregor I,
Majda S, Fiedler J, Dahms E, et al. Critical assessment of metagenome
interpretation-a benchmark of metagenomics software. Nat Methods. 2017;
14(11):1063–71.

29. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. Versatile and open software for comparing large genomes.
Genome Biol. 2004;5:R12.

30. De Gregorio E, Silvestro G, Petrillo M, Carlomagno MS, Di Nocera PP.
Enterobacterial repetitive intergenic consensus sequence repeats in
yersiniae: genomic organization and functional properties. J Bacteriol. 2005;
187:7945–54.

31. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat
Methods. 2012;9:357–9.

32. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of
metagenome assemblies. Bioinformatics. 2016;32:1088–90.

33. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25:1754–60.

34. Pop M, Kosack DS, Salzberg SL. Hierarchical scaffolding with Bambus.
Genome Res. 2004;14:149–59.

35. Huson DH, Reinert K, Myers E. The greedy path-merging algorithm for
sequence assembly. In: Proceedings of the Fifth Annual International
Conference on Computational Biology (RECOMB); 2001. p. 157–63.

36. Ghurye J, Pop M. Better identification of repeats in metagenomic
scaffolding. In: Frith M, Storm Pedersen NC, editors. Algorithms in
bioinformatics: 16th International Workshop, WABI 2016, Aarhus, Denmark,
August 22–24, 2016 Proceedings. Cham: Springer International Publishing;
2016. p. 174–84. https://link.springer.com/chapter/10.1007/978-3-319-436
81-4_14#citeas.

37. Brandes U. A faster algorithm for betweenness centrality. J Math Sociol.
2001;25:163–77.

38. Riondato M, Kornaropoulos EM. Fast approximation of betweenness
centrality through sampling. Data Min Knowl Disc. 2016;30:438–75.

39. Garey MR, Johnson DS. Computers and intractability. New York: W. H.
Freeman and Company; 1979.

40. Kececioglu JD, Myers EW. Combinatorial algorithms for DNA sequence
assembly. Algorithmica. 1995;13:7–51.

41. Hopcroft J, Tarjan R. Algorithm 447: efficient algorithms for graph
manipulation. Commun ACM. 1973;16:372–8.

42. Di Battista G, Tamassia R. On-line maintenance of triconnected components
with SPQR-trees. Algorithmica. 1996;15:302–18.

43. Gutwenger C, Mutzel P. A linear time implementation of SPQR-Trees. In:
Marks J, editor. Graph drawing. Volume 1984. Berlin/Heidelberg: Springer;
2001. p. 77–90. Lecture Notes in Computer Science. https://link.springer.
com/chapter/10.1007/3-540-44541-2_8#citeas.

44. Chimani M, Gutwenger C, Juenger M, Klau G, Klein C, Mutzel P. Open graph
drawing framework (OGDF). In: Handbook of Graph Drawing and
Visualization. CRC Press; 2013. p. 543-69.

45. Galil Z, Micali S, Gabow H. An O(EV\logV) algorithm for finding a maximal
weighted matching in general graphs. SIAM J Comput. 1986;15:120–30.

46. Ghurye J, Treangen T, Fedarko M, Hervey WJ IV, Pop M. MetaCarvel: linking
assembly graph motifs to biological variants. Github. 2019. https://github.
com/marbl/MetaCarvel.

47. Ghurye J, Treangen T, Fedarko M, Hervey WJ IV, Pop M. MetaCarvel: linking
assembly graph motifs to biological variants. Zenodo. 2019. https://doi.org/1
0.5281/zenodo.3360985.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ghurye et al. Genome Biology (2019) 20:174 Page 14 of 14

https://link.springer.com/chapter/10.1007/978-3-319-43681-4_14#citeas
https://link.springer.com/chapter/10.1007/978-3-319-43681-4_14#citeas
https://link.springer.com/chapter/10.1007/3-540-44541-2_8#citeas
https://link.springer.com/chapter/10.1007/3-540-44541-2_8#citeas
https://github.com/marbl/MetaCarvel
https://github.com/marbl/MetaCarvel
https://doi.org/10.5281/zenodo.3360985
https://doi.org/10.5281/zenodo.3360985

	Abstract
	Background
	Results
	Effect of microbial mixtures on scaffolding
	Detection of regions with high sequence variation
	Accuracy of detecting insertions and deletions
	Effectiveness in detecting repeats
	Evaluation of scaffold quality using synthetic datasets
	Evaluation using CAMI-simulated metagenome datasets
	Evaluation using real metagenomics data
	Effect of sequencing coverage on metagenome scaffolding
	Computational requirements of MetaCarvel

	Discussion
	Methods
	Contig graph construction
	Repeat identification
	Orientation
	Graph simplification and variant detection
	Three-node bubbles
	Four-node bubbles
	Interspersed repeats

	Generation of linear scaffolds

	Additional file
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

