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Abstract

Longitudinal studies are crucial for discovering causal relationships between the microbiome and human disease. We
present MITRE, the Microbiome Interpretable Temporal Rule Engine, a supervised machine learning method for
microbiome time-series analysis that infers human-interpretable rules linking changes in abundance of clades of
microbes over time windows to binary descriptions of host status, such as the presence/absence of disease. We
validate MITRE’s performance on semi-synthetic data and five real datasets. MITRE performs on par or outperforms
conventional difficult-to-interpret machine learning approaches, providing a powerful new tool enabling the discovery
of biologically interpretable relationships between microbiome and human host (https://github.com/gerberlab/mitre/).
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Introduction
The human microbiome is highly dynamic on multiple
timescales, changing dramatically during the develop-
ment of the gut in childhood, with diet, or due to med-
ical interventions [1]. Recently, a number of longitudinal
studies have been undertaken, seeking to link the
changes in the microbiota over time with medical inter-
ventions such as delivery by Cesarean section [2], dietary
changes [3], or antibiotic treatment [4], or with disease
outcomes in the host such as type 1 diabetes [5], dietary
allergies [6], premature delivery [7, 8], necrotizing
enterocolitis [9, 10], and infection [11, 12].
Deriving maximally useful information from these

studies requires computational methods that can simul-
taneously identify patterns of change in the microbiome
and link these patterns to the host’s status (e.g., disease
outcome, presence or absence of an intervention). More-
over, such computational methods must contend with
numerous challenges inherent to microbiome time-
series data, including measurement noise, sparse and
irregular temporal sampling, and inter-subject variability.
To overcome the challenges inherent in linking longi-

tudinal microbiome data to host status, we developed
MITRE, a computational model that infers human-

interpretable predictive rules from high-throughput
microbiome time-series data, implemented in an open-
source software package (https://github.com/gerberlab/
mitre/) [13]. MITRE falls into the general category of
Bayesian supervised machine learning classifiers and
predictive modeling: the algorithm uses a training data-
set of microbiota time series and binary descriptions of
host statuses (supervised learning) to learn a probability
distribution (Bayesian inference) over a set of alternative
models that predict the status of a host given only input
microbiome data and optional covariates (classification).
Bayesian approaches are powerful, because they provide
principled estimates of uncertainty throughout the
model, which is an especially important feature in bio-
medical applications where noisy inputs are the norm.
We note that another rule-based method, association
rule mining (ARM), has recently been applied to analyz-
ing microbiome data in a different context (finding
interaction patterns among OTUs) [14]. Although ARM
has some commonalities with Bayesian rule learning
approaches, ARM methods tend to employ user-based
cutoffs and heuristics, rather than principled probabilis-
tic methods, as their primary function is to mine large
databases for putative interactions, rather than build
predictive models. Further, unlike Bayesian models,
ARM methods do not incorporate prior knowledge, as
their focus is mining from large databases.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: ggerber@bwh.harvard.edu
1Massachusetts Host-Microbiome Center, Department of Pathology, Brigham
and Women’s Hospital, Harvard Medical School, 60 Fenwood Road, Boston,
MA, USA
Full list of author information is available at the end of the article

Bogart et al. Genome Biology          (2019) 20:186 
https://doi.org/10.1186/s13059-019-1788-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1788-y&domain=pdf
http://orcid.org/0000-0002-9149-5509
https://github.com/gerberlab/mitre/
https://github.com/gerberlab/mitre/)
https://github.com/gerberlab/mitre/)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ggerber@bwh.harvard.edu


In previous work, we presented the MDSINE [15]
algorithm, which infers dynamical systems models from
microbiome time-series data in order to forecast the
population dynamics of the microbiome over time. Our
present work, MITRE, addresses a different question:
can we predict or infer the status of the host given
microbiome time-series data. From the machine learning
perspective, MDSINE is an unsupervised model, whereas
MITRE is a supervised model. The key distinction is that
MDSINE models microbiome data, whereas MITRE in-
stead models host outcomes. Like other supervised
models, MITRE focuses on finding only the essential fea-
tures (in this case, microbial clades and relevant time
windows) to explain the outcome, rather than attempt-
ing to explain the microbiome data itself. This architec-
ture is ideal for highly heterogeneous datasets with
many “distractors,” which are the reality for longitudinal
studies of the human microbiome. Supervised machine
learning classifiers are employed in many biomedical
predictive modeling applications, including forecasting
(predicting a future outcome, such as the onset of dis-
ease, based on past data) and diagnosis or subtyping
(predicting which category a subject belongs to based on
all available data).
MITRE’s unique contributions are its modeling of the

special properties of microbiome time-series data (phylo-
genetic and temporal relationships) and its emphasis on
producing human-interpretable predictors. This latter
capability is in contrast to various generic “black box”
machine learning methods that have been applied to
analyzing static microbiome data, such as random
forests [6, 16–18], which may achieve high predictive
accuracy but do not yield easily human-interpretable
models; interpretability is especially challenging for such
models in the context of time-series analyses, given re-
peated measurements and the fact that relevant dynam-
ics may occur at multiple timescales. In the following
sections, we introduce the MITRE framework, then pro-
vide benchmarking results of MITRE versus comparator
methods on semi-synthetic data and five real micro-
biome time-series datasets, and finally illustrate exam-
ples of MITRE’s exploratory data analysis capabilities
and how these can help extract biological insights.

Results
Conceptual overview of the MITRE model and software
Figure 1 provides an overview of the MITRE framework.
MITRE takes as input the following: (1) tables of micro-
bial abundances, typically operational taxonomic units
(OTUs) from 16S rRNA amplicon sequencing or species
mappings from metagenomic data, measured over time
for each host; (2) a binary (two-valued) description of
the status of each host (e.g., phenotype A or phenotype
B); (3) an optional set of static covariates for each host

(e.g., gender); and (4) placements of the microbes on a
reference phylogenic tree [19].
Because MITRE seeks to learn patterns of change over

time in the microbiome that link to host status, it is
necessary to provide MITRE with data with sufficient
temporal sampling. At a minimum, MITRE requires 3
time points, although we recommend at least 6 time
points and preferably at least 12 time points based on
experiments with semi-synthetic data detailed in the
subsequent section; the subsequent analysis also pro-
vides information about the performance of MITRE with
differing numbers of subjects in a study. Although highly
irregularly sampled time series (i.e., regions of dense
sampling followed by widely separated time points) can
in principle be used as input to MITRE, such data can-
not be fully exploited by MITRE because the algorithm
seeks to find contiguous stretches of time (windows) to as-
sess the temporal changes. Thus, if using non-uniformly
sampled data, we recommend at least 3 consecutive prox-
imate time points in each non-uniformly sampled region.
Beyond these basic guidelines, multiple factors must be
considered for appropriate experimental design of longitu-
dinal studies, including the timescale of the relevant bio-
logical processes under study (e.g., rapid changes in the
microbiome due to diet versus prolonged recovery from
antibiotic exposure), see for instance [20, 21] for further
discussion on this important topic.
MITRE automatically learns from the provided data

predictive models that can be expressed as a set of con-
ditional statements, or human-readable rules, about
time-localized patterns of change in the abundances of
groups of phylogenetically related organisms. Weighted
sums of the truth values of the rules are used to predict
the status of each host. The MITRE software package
also provides a graphical user interface (GUI) for inter-
active visualization of the output, which summarizes the
predictive models learned from the data.
To be more precise, a MITRE model consists of a

baseline probability of a default host status plus a set of
zero or more rules. Each rule is a conjunction of one or
more detectors—conditional statements about bacterial
abundances in the form “between times t0 and t1, the
average abundance of bacterial group j is [above/below]
threshold θl” or “between times t0 and t1, the slope of
the abundance of bacterial group j is [above/below]
threshold θl”—together with a multiplicative effect on
the odds of the outcome of interest if all the detectors
are satisfied.
As a simple example, a MITRE model predicting the

odds of an infant developing a disease in the first year of
life might be:

� If, from month 2 to month 5, the average relative
abundance of bacterial clade A is above 4.0%, and
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from month 5 to month 8, the relative abundance of
bacterial clade B increases by at least 1.0% per
month, the odds of disease increase by a factor of
10.

� If, from month 3 to month 10, the average relative
abundance of OTU C is less than 9.5%, the odds of
disease decrease by a factor of 2.

� The baseline probability of disease is 22.0%.

Figure 1b schematically illustrates the application of a
rule set to hypothetical data. To predict the probability
that an individual will develop the disease, the effects of
each rule satisfied by that individual’s microbiome data
are combined with the baseline disease probability.
A comprehensive pool of possible detectors is gener-

ated automatically at the beginning of a MITRE analysis,
including the detectors that apply to average values and

A

B

Fig. 1 MITRE learns human-interpretable rule-based models linking features of microbiota time-series data to host status. Rules operate on
automatically learned time periods and groups of phylogenetically related microbes. a Schematic of the MITRE analysis pipeline, resulting in a single
best predictive model as well as a distribution over alternative models that can be interactively explored. b Schematic of example rule in a applied to
hypothetical data. Here, two subjects satisfy both the condition on the average abundance of microbe group A and the rate of change of abundance
of group B
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rates of change of clades at all levels on the phylogenetic
tree of observed bacteria at as many time windows as
the temporal resolution of the data will allow (see the
“Methods” section.) By combining the detectors from
this pool, rules in a MITRE model can capture rich
temporal patterns, but still remain human-interpretable
because each component rule is easy to understand.
MITRE is a nonlinear model, which has a number of ad-

vantages over a linear model. Most obviously, nonlinear
models can capture effects such as thresholds/saturation or
interactions between variables. A more subtle issue, par-
ticularly relevant to microbiome ratio-based data, is that
linear models introduce mathematical/statistical difficulties
when analyzing compositional or proportional data. While
special constraints are needed for linear models to over-
come these difficulties [22], nonlinear models do not suffer
from the same limitations because they can inherently
learn nonlinear transformations of the data. It is particu-
larly straightforward to understand the transformations
produced by the MITRE detectors described above: the
learned thresholds effectively discretize ratio data into
distinct levels, a transformation that renders the data math-
ematically non-compositional.
The MITRE framework is fully Bayesian, meaning it

learns a distribution over models, called the posterior
probability distribution, which takes into account both
the input data and prior information provided. In the
case of MITRE, this prior information favors by default
parsimonious explanations, i.e., short sets of simple
rules. Importantly, the default prior is designed to favor
the empty rule set, or the case in which the baseline
odds only are used to predict host status, and the micro-
biome data plays no role. This feature of the default
prior is designed to guard against over-fitting. Moreover,
through the formalism of Bayes factors (see the
“Methods” section), MITRE provides a quantitative
measure for the evidence favoring no association between
the microbiome data and host status or the alternative of
any rule sets that predict such a relationship; this feature
allows the user to rigorously evaluate whether sufficient
signal is present in the microbiome data to predict host
status. Of note, this measure in effect incorporates mul-
tiple “hypotheses” simultaneously (as the inference pro-
cedure explores the entire space of possible rule sets at
once.) Additional Bayes factors allow the user to assess
the evidence that each particular bacterial clade or OTU is
associated with the host status, by comparing the evidence
for a model in which no detector in the rule set applies to
the clade of interest to a model in which at least one
detector does apply to the clade.
The MITRE software approximately infers the poster-

ior probability distribution using a custom Markov chain
Monte Carlo algorithm and reports a point estimate of
the single best rule set as well as a summary of the

distribution, which the user may investigate interactively
with the provided GUI. To make predictions for new
data, either the point estimate or an ensemble of mul-
tiple rule sets, weighted according to their posterior
probabilities, may be used.

Benchmarking against standard machine learning
methods: semi-synthetic data
We used semi-synthetic data to compare the cross-
validated predictive performance of MITRE to two
popular standard machine learning methods, random
forests, and L1-regularized logistic regression, which
have been widely used to analyze data from static micro-
biome studies. We tested the performance of MITRE
and the comparator methods using cross-fold validation.
In brief, a subset of the data, including both microbiome
time-series measurements and host status labels, was
used to train the models, and then model performance
was tested by predicting the host status labels on the un-
seen data using only the microbiome time-series mea-
surements as inputs; this process was repeated to cycle
through the complete dataset. For each method, the per-
formance was evaluated using the F1-score under cross-
validation, converting modeled probabilities of outcomes
to binary predictions by applying a threshold at prob-
ability 0.5. The F1-score is a widely used metric to assess
the performance of machine learning binary classifier al-
gorithms, which averages positive predictive value and
sensitivity metrics, thus providing a useful summary that
balances the assessment of the classifier algorithm’s rate
of accurate positive prediction relative to all positive pre-
dictions made or relative to all positives in the dataset.
We simulated data from a real dataset using a para-

metric bootstrapping-type procedure, in which models
of microbiome dynamics were employed to interpolate
the real data and inject temporal perturbations into mi-
crobial clades to simulate a “disease” host phenotype
(see the “Methods” section for details). The real dataset
[2] we bootstrapped from tracked the gut microbiome
composition from birth to 2 years of age in a cohort of
US infants; we chose this dataset because it was among
the densest and most regularly sampled of available
time-series datasets, and also studied a relatively large
number of subjects. To gain insight into the predictive
performance of the different methods, we simulated data
with varying numbers of subjects or time points, and
one or two temporal perturbations to microbial clades
to simulate subjects with a “disease.” In other words, for
a single-clade perturbation, we assumed for subjects
with a “disease” a systematic change over time in abun-
dances of a single clade of microbes, and for a two-clade
perturbation, we assumed systematic changes over time
in abundances of two separate clades of microbes; these
scenarios correspond to the results observed in real
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datasets as described below. We assumed the perturba-
tions occur over a limited but unknown time period
during the study (~ 20% of the study duration), which
represents a challenging but biologically relevant sce-
nario for analysis. The ranges of subjects and time points
simulated correspond approximately to those in real
studies and thus provide insight into the performance of
the algorithms on realistically sized studies. Note that
MITRE is a supervised machine learning method, which
does not directly model the covariates (microbiome
data.) Thus, our data simulation procedure is unrelated
to the underlying MITRE model and not expected to
introduce bias in favor of our method.
To provide as reasonable a comparison as possible, we

used the average abundance of each OTU in a series of
time windows as input to the comparator algorithms. It
is important to note that there are no prior methods
available that were specifically designed for supervised
learning from microbiome time-series data. In fact, the
comparator algorithms we implemented themselves
represent an advance over the state of the art for many
studies. To date, most studies have employed an ad hoc
strategy of manually identifying time windows of interest
within the experiment and then testing for a differential
abundance of pre-specified groups of taxa in each time
window separately. Such an approach has significant
limitations. For example, effects occurring outside the
defined windows or across their boundaries may not be
detected, and analyzing each time window/taxon pair in-
dependently significantly reduces statistical power and
precludes the discovery of interactions across taxa or
sequences of events across multiple time windows.
Our results on semi-synthetic data over a range of sce-

narios (Fig. 2a–d) demonstrate superior cross-validated
predictive performance of MITRE compared to the other
methods. Several interesting trends are also evident from
these results. First, the MITRE ensemble (use of multiple
rule sets weighted according to their posterior probabil-
ities) and point (estimate of single best rule set) methods
have similar performance, except for in the setting of
low numbers of subjects, which is likely simply a sto-
chastic effect since all the methods in that setting have
poor performance. The similar performance of the
MITRE point and ensemble methods is very encouraging
from the interpretability perspective, since the point
method yields a single, human-interpretable rule set.
Second, as expected, all of the methods improve in
performance with increasing numbers of subjects, with
eventual plateauing of gains in performance at a level ul-
timately limited by noise in the data. Third, there is also
an improvement in performance with increasing num-
bers of time points, but this improvement is less impres-
sive. This phenomenon can be partially explained by our
assumption in generating the semi-synthetic data that

perturbations corresponding to the “disease” phenotype
occur over a limited time period during the study. Thus,
sampling of more time points outside the perturbation
period provides only limited additional information
useful for prediction. Fourth and finally, we also see
generally worse performance of all methods in the more
complex setting of two perturbations in the “disease”
cases, particularly with limited numbers of subjects or
time points. Interestingly, random forests outperform
L1-regularized logistic regression in the two-
perturbation case in the setting of low numbers of sub-
jects or time points, while the opposite is true in the
one-perturbation case, which may be due to random
forest’s capacity to handle nonlinearities. In any event,
MITRE, which models nonlinearities through conjunc-
tions in rules, consistently outperforms the other two
methods in this setting as well. Overall, our results dem-
onstrate that MITRE, a method specifically tailored for
analyzing microbiome time-series data, outperforms
generic machine learning methods. Moreover, we pro-
vide a simulation and testing platform for users to inves-
tigate the questions relevant to particular microbiome
time-series datasets in the future.

Benchmarking against standard machine learning methods:
real data
We next evaluated the performance of MITRE on real
experimental datasets with 16S rRNA amplicon and
whole-genome shotgun metagenomic sequencing data,
from five representative published studies with relatively
dense temporal sampling and numbers of subjects.
Vatanen et al. [6] tracked the gut microbiome compos-
ition and life history data, including allergy diagnoses
and serum IgE levels, from birth to 3 years of age in
cohorts of infants at high risk for autoimmune disease in
Finland, Estonia, and Russia. David et al. [3] tracked the
gut microbiome composition of healthy adults before,
during, and after a 5-day period of consuming exclu-
sively plant-based or exclusively animal-based diets.
Bokulich et al. [2] tracked the gut microbiome compos-
ition from birth to 2 years of age in a cohort of US infants
and examined the effects of mode of delivery, diet, and
antibiotic exposure. Kostic et al. [5] tracked the gut micro-
biome of Finnish and Estonian infants at high risk for type
1 diabetes throughout the first years of life, examining the
microbiome correlates of disease development. Finally,
DiGiulio et al. [7] tracked the composition of the vaginal
microbiome in a cohort of pregnant women, investigating
an association with premature delivery.
Using the microbiome and outcome/class data from

these five studies, we defined a total of 11 representative
microbiome-based prediction or classification tasks (e.g.,
given the vaginal microbiome data of DiGiulio et al., pre-
dict which women in the cohort experienced premature
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delivery; given the gut microbiome data of David et al.,
determine which time series correspond to exclusively
animal-based diets versus exclusively plant-based diets).
A full list of the tasks analyzed is given in
Additional file 1: Table S1. In 5 out of the 11 tasks, we
found that at least 1 of the methods performed well (F1-
score > 0.7, indicating reasonably high precision and re-
call). These tasks represent scenarios in which true bio-
logical signal may be present in the data and thus serve
as the most meaningful basis for comparing the per-
formance of the different methods. Detailed results for

all methods on all tasks are given in Additional file 2:
Table S2.
Both the MITRE point estimate and ensemble

methods achieved high accuracy on all five of the rele-
vant prediction or classification tasks (Fig. 2e). In the
case of distinguishing infants fed formula-based diets
from those predominantly breast-fed (Bokulich et al.),
predicting seroconversion to serum autoantibody posi-
tivity in infants at high risk of T1D (Kostic et al.), and
predicting premature delivery (DiGiulio et al.), MITRE
significantly outperformed the random forest and L1-
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Fig. 2 Cross-validated predictive performance of MITRE and comparator methods on semi-synthetic and real data. a–d Results on semi-synthetic data.
A parametric bootstrapping-type method was used to generate simulated data from an underlying real dataset. Simulated cases were generated by
randomly selecting and perturbing bacterial clades over a randomly selected limited time window (~ 20% of the duration of the study); an equal
number of control subjects were simulated. For the one-clade perturbation scenarios, the clade remained unperturbed for the simulated cases; for the
two-clade perturbation scenarios, one clade was perturbed in the simulated control subjects, and both were perturbed in the simulated cases. a, b
One or two clades randomly perturbed in simulated subjects, 18 time points, varying numbers of subjects. c, d One or two clades randomly perturbed
in simulated subjects, 32 subjects, varying numbers of time points. e Results on real data. The different methods were used to predict the indicated
categories in the datasets shown. F1-score is the harmonic mean of precision and recall; higher scores indicate superior results
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regularized logistic regression approaches; for Russian
cohort membership (Vatanen et al.) or plant-based diet
(David et al.) prediction, MITRE performed on par with
the best comparator method (random forest). These
results are consistent with our semi-synthetic data simu-
lations as well. Collectively, our results suggest that MI-
TRE’s phylogenetic aggregation approach and robust use
of the temporal structure of the data provide significant
advantages for classification, and the increased interpret-
ability of the MITRE point estimate comes at little if any
cost in predictive accuracy.

Model interpretability and exploratory analysis
capabilities
We illustrate here an example demonstrating MITRE’s
ability to achieve high accuracy while maintaining inter-
pretability. The best (point estimate) rule set learned by
MITRE to distinguish between predominantly formula-
fed and predominantly breast-fed infants in the study of
Bokulich et al. [2] is “If, between the 1st day of life and
the 156th day of life, the average abundance of clade
13241 increases faster than 0.03% per day, the probabil-
ity that the subject was predominantly formula-fed is
79%; otherwise, that probability is 5.4%.” Though this
MITRE rule set is simple enough to express in a single
sentence, it outperforms the random forest models that
aggregate the predictions of over a thousand decision
trees (Fig. 2e). Moreover, this MITRE rule set lends itself
readily to biological interpretation. Clade 13241 is a
broad group of Firmicutes, including OTUs in the
dataset mapping to Ruminococcus gnavus, Roseburia
hominis, and several Clostridium and Blautia species.
These species are generally viewed as more representa-
tive of adult or at least more mature microbiomes, being
strict anaerobes with specialized carbon source
utilization requirements and capabilities (e.g., [23]), sug-
gesting that the formula diet may shift infants toward
more adult-like gut microbiota. Of note, the expressive-
ness and interpretability of the MITRE rule set format is
retained even in cases of nonlinear interactions across
multiple clades and time windows, see Additional file 3:
Supplementary Note for an example.
In addition to providing the point estimate, which can

serve as a powerful predictive model as described,
MITRE also allows the user to explore the distribution
of probable rules learned by the framework. Such explo-
rations can be useful for further interpreting rule sets
and generating biological hypotheses. Figure 3 illustrates
MITRE’s capabilities for interactive visualization of the
distribution of learned rules. Heat maps as shown in
Fig. 3a and d allow the user to examine the time win-
dows and regions of the phylogenetic tree where the
temporal changes in the microbiota are most strongly
associated with the outcome of interest. In Fig. 3a–c,

MITRE has been used to learn the rules that distinguish
the microbial dynamics observed when the subjects in
the study of David et al. [3] were fed an exclusively
plant-based diet for 5 days versus the dynamics observed
when subjects were fed an exclusively animal-derived
diet. The user has clicked on two areas on the heat map,
revealing rules that apply to different time windows and
different groups of OTUs in the order Clostridiales. The
first rule set pertains to a clade containing Roseburia
species, which are butyrate producers, whereas the
second rule set pertains to a clade containing Dorea
species, which produce other short-chain fatty acids in-
cluding acetate and formate, but not butyrate. Thus, this
capability to explore the distribution of rule sets allows
the user to find evidence that the animal-based diet pro-
motes two groups of phylogenetically distinct, and likely
functionally distinct, groups of microbes.
As another example, Fig. 3d and e demonstrate the

exploration of the posterior distribution of rule sets
identifying the temporal patterns that distinguish the
microbiota of predominantly formula-fed and predomin-
antly breast-fed infants in the study of Bokulich et al.
[2], for which the point estimate described above per-
formed well. The heat map of Fig. 3d shows that the
high-posterior-probability rule sets are strongly focused
on a single group of OTUs in the first 156 days of life.
Figure 3e presents a particular detector, included in
many such rule sets, that discriminates effectively
between diet types in the training data (which is the de-
tector used by MITRE to form the point estimate rule
discussed above). Thus, in this case, the user finds
evidence that the posterior distribution is essentially
unimodal, with the point estimate alone characterizing
the temporal differences between the formula and breast
milk-fed infants well.

Discussion
MITRE offers a number of advantages over generic
statistical or machine learning methods. Incorporation
of phylogenetic information readily allows for biological
interpretation of results, as discussed, whereas standard
classification methods that evaluate each taxon inde-
pendently clearly do not have this advantage. MITRE
automatically learns time windows that are relevant to
predicting host status, as opposed to generic approaches
that require the user to manually specify the periods of
interest, which are generally unknown a priori. We have
also highlighted the utility of MITRE’s human-readable
rules. These rules can capture rich temporal patterns
and nonlinear relationships among microbes, but remain
interpretable, as they are composed of simple and under-
standable detectors. Indeed, as we have shown, MITRE
rule sets are not only easy to understand, but a single
MITRE rule can outperform black box machine learning
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methods that make predictions based on collections of
hundreds to thousands of components, which are diffi-
cult to understand even individually.

Another important feature of the MITRE framework is
that it is fully Bayesian. Bayesian models are increasingly
being adopted in a variety of fields, in particular, for

A B

C

D

E

Fig. 3 MITRE supports exploratory analyses through an interactive visualization interface. The interface allows the user to explore the distribution
of learned rules. MITRE was applied to predict diet type from data from David et al. [3] (a–c) or Bokulich et al. [2] (d, e). In a and d, cell colors
indicate the strength of evidence that the dynamics of an OTU, or one of its ancestors, during a time window is associated with diet. b, c, e
High-probability detectors and phylogenetic subtrees to which they apply. b, c Analyses reveals dynamic behaviors of two different clades, one
with butyrate producers and the other without, which distinguish subjects on plant- or animal-based diets. The animal-based diet thus promotes
two groups of phylogenetically distinct microbes which are also likely functionally distinct. e Analyses reveal dynamic behavior of a clade of
bacteria, associated with a more mature microbiome, which is increased in the predominantly formula-fed infants, suggesting the formula diet
may shift infants toward more adult-like gut microbiota. Red lines, threshold slopes/abundances; black lines, median slopes/abundances. Median
effect = median over all rules containing the detector
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biomedical applications (e.g., [24]), because they provide
a unified framework that handles a number of key mod-
eling and inferential issues, including incorporation of
prior knowledge, accurate estimation of confidence in
predictions, and principled comparisons of multiple
models. Bayesian methods for model comparison have
recently been highlighted as powerful alternatives [25] to
traditional p value-based hypothesis testing [26], because
Bayesian approaches allow direct comparison of multiple
relevant alternative models, rather than just the ability to
reject a null model that is often of little interest in itself.
In particular, MITRE facilitates principled model com-
parisons by calculating Bayes factors [27], which quantify
the strength of the evidence provided by the data for
each of a set of competing models. We have also de-
scribed how the exploration of the posterior distribution
of rule sets using the provided GUI in the MITRE soft-
ware package allows the user to evaluate the possibility
of multiple informative rule sets and formulate biological
hypotheses about the dataset.
Although MITRE as currently implemented is primar-

ily designed to use taxonomic abundance profiles de-
rived from 16S rRNA amplicon sequencing or WGS
metagenomics data as input—currently the most com-
mon data types in longitudinal microbiome studies—the
model and software can readily incorporate other time
series of additional data types, e.g., host physiological
measurements, metabolomics, or metagenomics-derived
functional profiles, as such data become more widely
available. Other model features that could be readily
added in the future include time-varying, continuous
(e.g., quantitative host traits), and multiple host out-
comes, e.g., multivariate host readouts such as blood
pressure, blood glucose, and body weight.

Conclusion
We have demonstrated that our software package
MITRE overcomes unique challenges of linking micro-
biome time-series information to host outcomes, while
drawing on a well-established tradition of rule-based
techniques in machine learning and artificial intelligence
[28–30], and can perform as well as or better than “black
box” machine learning methods while maintaining inter-
pretability. This latter feature is critical as microbiome
analyses move into clinical applications, in which pa-
tients and physicians necessarily place a premium on
transparency and interpretability of results. We have
provided an open-source and user-friendly implementa-
tion of our method, which we expect will greatly aid in-
vestigators analyzing longitudinal host-microbiome
studies and ultimately provide novel insights into the
complex interplay between microbiome dynamics and
host health and disease.

Methods
Operation of the software and input data requirements
The MITRE software is implemented in Python 2.7.3.
MITRE and its dependencies are available through the Py-
thon Package Index, pypi.python.org, facilitating installa-
tion across multiple platforms. The software is run from
the command line, with parameters and other inputs
specified using a straightforward configuration file format.
Each MITRE run requires four input files (for the

standard case of 16S rRNA amplicon data): a table of
OTU abundances in each sample, a table specifying the
subject and time point associated with each sample, a
table specifying the outcome (and optionally other data)
associated with each subject, and phylogenetic place-
ments of the OTUs on a reference tree. The user pro-
vides the three tables in comma-separated value format
and phylogenetic placements in the .jplace format pro-
duced by pplacer. Alternative input data types, including
taxonomic abundance profiles generated from WGS
metagenomic data with Metaphlan, are described in the
MITRE manual online.
The output of the software, described in detail below, in-

cludes textual summaries of a single best set of rules (the
point estimate) and the distribution of probable alternative
rule sets, as well as an HTML file providing a graphical
interface for interactive visualization of the results.
Additional details of the method are found in

Additional file 4.

MITRE model details
Mathematical basis of the MITRE model
MITRE can be expressed as a hierarchical generative
model that generates sets of rules of the form described
above. The generative process, starting at the top of the
hierarchy, is as follows:

� Sample a length K for the rule set
� For each rule k ∈ {1,…,K}, sample:

� A weight βk
� A rule length Lk (number of detectors in the rule)
� The detectors d ∈ {1,…,Lk}, drawing from a pre-

defined pool of detectors (see below) according to a
probability distribution which is parameterized by
the time window and bacterial group (phylogenetic
subtrees) to which each detector applies

The rules are then weighted in a Bayesian logistic
regression model to predict host status. To be precise,
assume we have observations xijt for i = 1,2,…,Nsubjects of
relative abundances of bacterial OTUs j = 1,2,…,NOTUs

sampled at time points t = 1,2,…,Nsamples,i, as well as a
binary status variable yi for each host. The MITRE prob-
ability model can then be expressed as:
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yi � Bernoulli pið Þ
pi ¼

1
1þ e−ψi

ψ ¼ β0 þ A R; xð Þ β!
β j R � Normal 0; σ2

bI
� �

β0 � Normal 0; σ2b
� �

R � π R; x:ð Þ
Here, R is a set of rules, and A(R,x) is the matrix whose

entry Aik is 1 if the data from subject i satisfies the condi-
tions of all detectors in the kth rule in the set, and zero
otherwise. Conditional on R, this is a standard Bayesian
logistic regression model, whose covariates are the truth
values of the rules in R (along with an offset term modeling
baseline odds). MITRE also allows the optional inclusion
of static non-microbiome covariates, see Additional file 3:
Supplementary Note for complete details.
The prior probability distribution over rule sets, π(R,

x), is a mixture over the probability Θempty for an empty
rule set R0 versus a truncated negative binomial distribu-
tion for the length of a non-empty rule set. For a non-
empty rule set, the prior further models the distribution
over detectors that comprise each rule, taking into ac-
count the length of the time window for the detector
and an associated position on the phylogenetic tree.
Hyperparameters for these priors, as well as priors on
other variables, complete the model. A full specification
of priors in MITRE and a discussion of sensitivity to the
choice of hyperparameters are given in Additional file 3:
Supplementary Note.

Generation of pools of detectors from data
MITRE generates a comprehensive pool of detectors
from the supplied data and user-specified parameters
tmin, tmax, Nw, and Nθ, as follows:

1. Divide the duration of the experiment/observations
into Nw equal basic time windows and enumerate
all combinations of 1 or more consecutive basic
time windows that are longer than tmin and shorter
than tmax and during which at least one sample was
collected for every subject.

2. Within each such time window (t0, t1), for each
bacterial group (phylogenetic subtree) j, calculate
the average abundance of the group in each subject
i and sort those values, obtaining v1 ≤ v2 ≤… ≤
vNsubjects. If Nsubjects <Nθ + 1, for l = 1,2,…,Nsubjects-1,
let θl = (vl + vl + 1)/2 and add the detectors “between
t0 and t1, the average abundance of group j is above
θl” and “between t0 and t1, the average abundance
of group j is below θl” to the population. If instead
Nsubjects >Nθ, hierarchically cluster the values v0, …,
vNsubjects into the Nθ groups, let θl be the midpoint
between cluster l and cluster l + 1, for l = 1,2,…, Nθ

− 1, and add the detectors corresponding to those
thresholds instead.

3. Then, repeat the process for all combinations of
one or more consecutive basic time windows longer
than tmin and shorter than tmax during which at
least two samples were collected for every subject,
calculating the slope of the abundance of each
group j in each subject i during each such window,
and adding the detectors “If, between t0 and t1, the
slope of the abundance of group j is [above/below]
θl” to the population (again carrying out a
clustering process to reduce the number of
threshold values to Nθ, if needed.)

The runtime of the inference algorithm (described
below) depends approximately linearly on the size of the
detector pool; thus, the choice of parameters tmin, tmax,
Nw, and Nθ controls a tradeoff between high resolution
(temporally, and in the space of threshold values for
OTU abundance/slope) and performance. It is recom-
mended to choose Nw as large as possible while ensuring
that most basic time windows include at least one obser-
vation from every subject, and to set Nθ = 40; tmin should
generally be set to 0 and tmax to either the duration of the
study or (to enforce temporal localization of the rules in
cases where, e.g., dramatic increases in abundance at a
well-defined time also lead to notable increases in average
abundance over the period of the entire study) half that
duration, but may be adjusted if dynamics on a particular
timescale are of a priori interest.

Model inference
We perform approximate Bayesian inference, to learn
the posterior distribution over the model parameters in-
cluding rule sets R and regression coefficients β. MITRE
employs a custom Markov chain Monte Carlo (MCMC)
algorithm, which alternates efficient updates of the re-
gression coefficients using a Polya-Gamma auxiliary
variable scheme [31], Metropolis-Hastings update steps
that propose changes to the rule set R and updates to
the hyperparameters governing the prior distribution
over rule sets. The MCMC algorithm is described in
detail in Additional file 3: Supplementary Note. Briefly,
four types of updates to R are considered:

1. A randomly chosen detector in R may be replaced
by another detector from the pool.

2. A randomly chosen detector in R may be removed
from R (if it is the only detector in a rule, the rule is
removed as well).

3. A detector from the pool may be added to R, either
to an existing rule chosen at random, or to form a
new rule of length 1.
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4. A detector may be moved from one rule in R to
another.

For the analyses presented here, 50,000 samples were
drawn from the posterior distribution (except for analyses
of data from Vatanen et al. [6], where 25,000 samples were
used, and Kostic et al. [5], where 100,000 samples were
used.) Mixing of the MCMC sampler was assessed using
the diagnostics described in Additional file 3: Supplemen-
tary Note; we recommend users employ these diagnostics
to determine the appropriate number of samples needed
for their particular studies.
Run time depends on the size and complexity of the

dataset; using a single Intel Xeon CPU (E5-2697 v3
2.60GHz), sampling took 45min for the data of DiGiulio
et al. [7], 23 h for the data of David et al. [3], 30 h for the
data of Bokulich et al. [2], and 64.5 h for the data of
Vatanen et al. [6]. Cross-validation was performed in
parallel (onefold/core) requiring similar total elapsed
time for each study.

Data simulation
We simulated from the Bokulich et al. [2] dataset using
a parametric bootstrapping-style procedure. Simulated
subjects were sampled with replacement from the set of
control subjects in the real data. Equal numbers of simu-
lated cases and control subjects were generated for each
scenario. In order to have sufficient real data to boot-
strap to evaluate the range of scenarios of interest, we
excluded subjects with fewer than 13 time points sam-
pled, who had no samples before 10 days, and who were
studied for less than 600 days; this yielded 20 subjects
for bootstrapping. We then truncated the data to an
interval between 10 and 600 days, since this contained
the densest sampling across subjects.
Perturbations of duration 120 days, in time windows

randomly occurring throughout the experiment, were in-
troduced into randomly selected clade(s) to simulate
cases, with the magnitude of the perturbation distributed
among clade members according to the relative abun-
dance of members in the original data. The duration of
the perturbation(s) was chosen to be approximately of
the order of that seen with the MITRE point rule on the
real dataset. Perturbations were introduced randomly
into the clades with the following characteristics: mini-
mum average relative abundance of 0.1%, maximum
average relative abundance of 20%, and a maximum of
30 OTUs in the clade. These parameters were chosen so
as to provide a meaningful relative disturbance to other
clades, but not to drastically disrupt the entire micro-
biome (which would present less of a challenge to the
prediction algorithms.) The magnitude of perturbation(s)
was sampled for each subject from log-normal distribu-
tions, with mean and variance of the order of that seen

with the MITRE point rule on the real dataset (control
log mean = − 6, control std. = 1.5, case log mean = − 3,
case log std. = 1.5). When two perturbations were ap-
plied, each control subject received only one perturb-
ation, whereas case subjects received both perturbations.
Note that MITRE is a supervised learning (conditional)

method, meaning that the microbiome data itself is not
modeled; to simulate the time points not present in the
original dataset, we therefore must introduce a model of
microbiome dynamics. We model the underlying
microbiome data as arising from latent time-dependent
stochastic processes (Gaussian random walks):

xos tð Þ � Normalþ xos t−1ð Þ;Δtτ2� �

Here, xos(t) is the latent trajectory for OTU o in subject
s at time t, and τ2 is the process variance parameter, which
is empirically estimated from the real data as approxi-
mately the 75-percentile variance. We assume a Bayesian
model and infer the posterior latent trajectories using a 1-
step ahead MCMC algorithm similar to our previously
described method [32], except in this case, trajectories are
assumed to be independent of one another.
The observed data cs(t), consisting of sequencing

counts, is assumed to arise through a two-stage error
model:

yos tð Þ � Normalþ xos tð Þ; θxos tð Þð Þ
ms tð Þ ¼

X

o

yos tð Þ
Cs tð Þ � DMD ys tð Þ=ms tð Þ; α;Nð Þ

Here, DMD denotes the Dirichlet-Multinomial distri-
bution with concentration parameter α and number of
simulated sequencing reads per sample N; we use
parameters estimated from data (α = 286; N = 50,000) as
previously described [15].
The model thus provides temporal coherence through

the Gaussian random walk latent trajectory, while model-
ing compositionality and over-inflation through the two-
stage error model. Posterior samples from the model
capture temporal trends seen in the real data (e.g., periods
of time in which a particular OTU are increasing), but
with randomness introduced so that subjects sampled
with replacement look sufficiently different.
For each scenario simulated (e.g., a particular number

of time points or subjects), 10 independent simulations
were performed. To investigate the effects of varying the
number of subjects, we fixed the simulation at an inter-
mediate number of time points (18) and simulated
different numbers of subjects. Similarly, to investigate
the effects of varying the number of time points, we
fixed the simulation at an intermediate number of sub-
jects (32) and simulated different numbers of time
points. To facilitate comparisons, we sampled evenly
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spaced time points in all cases. The simulated data were
then provided to the MITRE and the other methods in
the same input format as for real data, as described
below. Complete Python code to reproduce the simula-
tions is available in the MITRE online repository.

Output
MITRE generates several summaries from the posterior
samples obtained from the MCMC inference procedure
described above. The point estimate is a single rule set
R* (with coefficients β*) that summarizes the mode of
the posterior distribution. If the posterior probability
that R is empty is greater than 0.5, the point estimate is
the empty rule set. Otherwise, to obtain a representative
non-empty summary list, we determine the posterior
mode d* of the total number of detectors in R and take
R* to be the rule set with the highest posterior probabil-
ity among all sampled rule sets that contain d* total
detectors. The point estimate coefficients β* are the
highest posterior probability sampled coefficients associ-
ated with R*.
To provide an overview of the possible alternative rule

sets learned by the model, rule sets in the posterior sam-
ples are clustered and a summary of the highest prob-
ability clusters is produced. The clustering process first
forms clusters of detectors that apply to the average
value or slope of the same variable in highly overlapping
time windows (ignoring threshold values), then clusters
together rules whose component detectors belong to the
same clusters, and finally groups rule sets whose rules
belong to the same clusters (see Additional file 3:
Supplementary Note for a full description.) For each
cluster, a representative rule set and the estimated
posterior probability that R* belongs to the cluster are
reported.
Calculation of the Bayes factor for the empty rule set R0

(versus any non-empty R) and two additional types of
Bayes factors, indicating the relevance of phylogenetic
subtrees or time windows, is described in Additional file 3:
Supplementary Note.
Finally, MITRE generates an interactive graphical

visualization of the posterior distribution of rule sets. A
heatmap of the Bayes factors for leaf variable/basic time
window combinations is rendered alongside the bacterial
phylogeny (as in Fig. 3a, d); clicking on any cell allows
the visualization of the detectors associated with the cell
with the largest Bayes factors (as in Fig. 3b–c, e.)

Data preprocessing and filtering
MITRE offers a number of user-configurable options for
preprocessing and filtering microbiome time-series data.
The following procedure is recommended and was used
for the results presented here (except as noted below):

1. To remove potentially spurious rare OTUs, discard
all OTUs with less than Ncounts,OTU observed across
all samples (typically Ncounts,OTU = 10).

2. To exclude samples where coverage is so low that
abundance estimates for uncommon OTUs may be
unreliable, discard all samples with less than
Ncounts,sample total counts observed across all
remaining OTUs (typically Ncounts,sample = 5000 for
HiSeq/MiSeq data).

3. If desired, to analyze only a particular time period
(because, e.g., samples are not available outside that
period for the majority of subjects) discard all
samples before time ti and after time tf (by default,
ti is the time of the earliest available sample, and tf
the time of the latest sample).

4. To exclude subjects for whom microbiome
dynamics cannot be resolved at the desired
temporal resolution throughout the entire study,
discard the subjects with too few, or too sparse,
observation points, by dividing the duration of the
study into Nw,filter equal pieces and keeping only
subjects with at least Ns samples in any Nc

consecutive such pieces. Default values are
Nw,filter = 10, Ns = 2, and Nc = 1; note that for data
with very inconsistent sampling, these parameters
must be chosen judiciously to maximize the
number of subjects included while allowing an
acceptable level of temporal resolution.

After these steps, counts data are converted to relative
abundance data for each sample, and, for each node in
the phylogenetic tree, a relative abundance estimate is
obtained by summing the relative abundances of its
children. The following filtering steps are then applied
to all taxa (both OTUs and higher nodes in the tree):

5. To exclude low abundance taxa (for which
abundance estimates may be inaccurate) or
infrequently observed taxa (which we expect are
unlikely to be explanatory, though higher taxa
including them may be), discard all taxa except
those that exceed a threshold abundance a in at
least Na consecutive samples in at least Ni subjects.
Typically, Na = 2. Appropriate values for a and Ni

depend on the number of subjects and typical reads
per sample; for studies with 10–150 subjects and
average reads per sample on the order of 104, we
recommend a = 10−4 and Ni = 4 or 10% of the
number of subjects, whichever is larger.

6. To minimize redundancy, discard all taxa
corresponding to the nodes in the phylogenetic tree
with exactly one remaining child taxon, as their
temporal patterns are often very similar to those of
their children.
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Note that when a large number of taxa are considered,
the detector pool becomes large and the computational
cost of the inference algorithm grows; if necessary, it is
recommended to increase the stringency of steps 5 and
6 to keep the total number of taxa below 500.

Bioinformatics and preprocessing for analyzed datasets
For each 16S-based dataset to which MITRE was ap-
plied, the original 16S rRNA amplicon sequencing
data was reprocessed to obtain tables of OTU
abundances and phylogenetic placements for each
OTU on a reference tree, using as consistent an
analysis process as possible given the differences in se-
quencing methodology and the nature of the available
data. Where possible, DADA2 1.1.5 [33] was used to
trim, quality filter, merge, and remove chimeras from
the reads, assign them to inferred true sequences, and
classify the inferred sequences taxonomically (such
classification is not necessary for MITRE application
but is helpful for interpretation of the results.) In-
ferred sequences were then placed on a reference tree
generated from full-length or near full-length (> 1200
nt) 16S rDNA sequences of type strains from the
Ribosomal Database Project [34] using pplacer [19].
When quality scores for sequences were not available
and DADA2 could not be used, sequences were in-
stead processed using mothur 1.35.1 [35, 36] for
denoising, quality filtering, alignment against the ARB
Silva 16S gene sequence reference database, clustering
into OTUs at 97% identity, and taxonomic classifica-
tion. For the WGS metagenomics data of Kostic et al.
[5], published taxonomic abundance tables were used
directly as input data to MITRE, exploiting MITRE’s
built-in support for parsing Metaphlan result tables,
described in the MITRE manual. Full details regarding
the preprocessing of all datasets are described in
Additional file 3: Supplementary Note.
After reanalyzing the sequencing data for each study

and excluding subjects with infrequent sampling (see de-
scription of filtering methods above), we applied MITRE
and the comparator methods to classify the subjects ac-
cording to relevant categories: membership in the Rus-
sian cohort (n = 30), elevated IgE levels (n = 28),
diagnosis with any allergy (n = 49), any dietary allergy
(n = 42), with dairy allergy (n = 32), or with egg allergy
(n = 25) in the data of Vatanen et al. (n = 113 total for
nationality; n = 109 total for all other outcomes);
formula-dominant diet (n = 11) or Cesarean delivery
(n = 13) in the data of Bokulich et al. (n = 35 total); sero-
conversion (n = 11) in the data of Kostic et al. (n = 19
total); premature delivery (n = 6) in the data of DiGiulio
et al. (n = 37 total); and plant-based diet (n = 10) in the
data of David et al. (n = 20 total.)

Comparison methods
To compare MITRE’s predictive performance to alterna-
tive methods, each OTU’s abundance data for each sub-
ject was averaged across all observations within each set
of time windows, defined by dividing the experiment
into Nw,comparison equal intervals and taking any consecu-
tive Nc,comparison such intervals as a valid time window.
Parameters were chosen to maximize temporal
resolution while ensuring that each time window still
contained at least one observation for each subject. Note
that the same subjects were used (i.e., those not ex-
cluded by the preprocessing settings described above)
for both MITRE and the comparison methods. For Da-
vid et al. [3], Nw,comparison = 10 and Nc,comparison = 3; for
Vatanen et al. [6], Nw,comparison = 9 and Nc,comparison = 4;
for DiGiulio et al. [7], Nw,comparison =Nc,comparison = 1; for
Bokulich et al. [2], Nw,comparison = 12 and Nc,comparison = 2;
for Kostic et al. [5], Nw,comparison = 5 and Nc,comparison = 2.
These averaged abundances were then used to train ran-

dom forest or logistic regression classifiers using the Py-
thon package scikit-learn [37]. Random forest classifiers
included 1024 trees (as larger numbers of trees were not
found to improve classifier performance.) For logistic re-
gression with L1 regularization, the regularization strength
parameter was chosen using tenfold cross-validation from
among a grid of logarithmically spaced options spanning
the range 10−4 to 104.

Additional files

Additional file 1: Table S1. Classification problems to which MITRE
and comparator methods were applied, and performance of the
methods applied to each. (PDF 100 kb)

Additional file 2: Table S2. Technical details of the application of MITRE
and comparator methods to each classification problem. (PDF 111 kb)

Additional file 3: Supplementary Note: additional technical details of
the MITRE method and analyses run. (PDF 324 kb)

Additional file 4: Mathematical Appendix: mathematical details of the
MITRE model and inference method. (PDF 255 kb)
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