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Abstract

Background: Alignment-free (AF) sequence comparison is attracting persistent interest driven by data-intensive
applications. Hence, many AF procedures have been proposed in recent years, but a lack of a clearly defined
benchmarking consensus hampers their performance assessment.

Results: Here, we present a community resource (http://afproject.org) to establish standards for comparing
alignment-free approaches across different areas of sequence-based research. We characterize 74 AF methods
available in 24 software tools for five research applications, namely, protein sequence classification, gene tree
inference, regulatory element detection, genome-based phylogenetic inference, and reconstruction of species
trees under horizontal gene transfer and recombination events.

Conclusion: The interactive web service allows researchers to explore the performance of alignment-free tools
relevant to their data types and analytical goals. It also allows method developers to assess their own algorithms and
compare them with current state-of-the-art tools, accelerating the development of new, more accurate AF solutions.

Keywords: Alignment-free, Sequence comparison, Benchmark, Whole-genome phylogeny, Horizontal gene transfer,
Web service

Background
Comparative analysis of DNA and amino acid sequences
is of fundamental importance in biological research, par-
ticularly in molecular biology and genomics. It is the
first and key step in molecular evolutionary analysis,
gene function and regulatory region prediction, sequence
assembly, homology searching, molecular structure pre-
diction, gene discovery, and protein structure-function
relationship analysis. Traditionally, sequence comparison
was based on pairwise or multiple sequence alignment
(MSA). Software tools for sequence alignment, such as
BLAST [1] and CLUSTAL [2], are the most widely used
bioinformatics methods. Although alignment-based ap-
proaches generally remain the references for sequence
comparison, MSA-based methods do not scale with the

very large data sets that are available today [3, 4].
Additionally, alignment-based techniques have been
shown to be inaccurate in scenarios of low sequence
identity [5] (e.g., gene regulatory sequences [6, 7] and
distantly related protein homologs [5, 8]). Moreover,
alignment algorithms assume that the linear order of
homology is preserved within the compared sequences, so
these algorithms cannot be directly applied in the pres-
ence of sequence rearrangements (e.g., recombination and
protein domain swapping [9]) or horizontal transfer [10]
in cases where large-scale sequence data sets are proc-
essed, e.g., for whole-genome phylogenetics [11]. In
addition, aligning two long DNA sequences—millions of
nucleotide long—is infeasible in practice. Therefore,
as an alternative to sequence alignment, many so-
called alignment-free (AF) approaches to sequence ana-
lysis have been developed [5], with the earliest works dat-
ing back to the mid 1970s [12], although the concept of
the alignment-independent sequence comparison gained
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increased attention only in the beginning of the 2000s
[13]. Most of these methods are based on word statistics
or word comparison, and their scalability allows them to
be applied to much larger data sets than conventional
MSA-based methods.
A wide array of AF approaches to sequence compari-

son have been developed. These approaches include
methods based on word or k-mer counts [14–18], the
length of common substrings [19–22], micro-alignments
[23–27], sequence representations based on chaos theory
[28, 29], moments of the positions of the nucleotides
[30], Fourier transformations [31], information theory
[32], and iterated-function systems [32, 33]. Currently,
the most widely used AF approaches are based on k-mer
counts [34]. These methods are very diverse, providing a
variety of statistical measures that are implemented
across different software tools [5, 35–37] (Table 1).
Many k-mer methods work by projecting each of the
input sequences into a feature space of k-mer counts,
where sequence information is transformed into numerical

values (e.g., k-mer frequencies) that can be used to calculate
distances between all possible sequence pairs in a given
data set. In-depth background of alignment-free methods
for sequence comparison has been reviewed in several ex-
cellent publications [5, 13, 32, 54–56].
Despite the extensive progress achieved in the field of

AF sequence comparison [5], developers and users of AF
methods face several difficulties. New AF methods are
usually evaluated by their authors, and the results are
published together with these new methods. Therefore,
it is difficult to compare the performance of these tools
since they are based on inconsistent evaluation strat-
egies, varying benchmarking data sets and variable
testing criteria. Moreover, new methods are usually
evaluated with relatively small data sets selected by
their authors, and they are compared with a very lim-
ited set of alternative AF approaches. As a conse-
quence, the assessment of new algorithms by individual
researchers presently consumes a substantial amount of
time and computational resources, compounded by the

Table 1 Alignment-free sequence comparison tools included in this study

Software Approach class Software version Availability

AAF [38] Exact k-mer count 10/01/2017 https://github.com/fanhuan/AAF

AFKS [34] 1.0 https://github.com/TulsaBioinformaticsToolsmith/
Alignment-Free-Kmer-Statistics

alfpy [5] 1.0.6 https://github.com/aziele/alfpy

CAFÉ [36] 1.0.0 https://github.com/younglululu/CAFE

FFP [35, 39] 2v.2.1 https://github.com/jaejinchoi/FFP

jD2Stat [37] 1.0 http://bioinformatics.org.au/tools/jD2Stat/

LZW-Kernel [40] Information theory NA https://github.com/kfattila/LZW-Kernel

spaced [41–43] Inexact k-mer count 1.0 http://spaced.gobics.de

kWIP [44] k-mer count 0.2.0–13-g3cf8a9e https://github.com/kdmurray91/kWIP

ALFRED-G [45] Maximal length of exact
common substrings

NA https://alurulab.cc.gatech.edu/phylo

kmacs [20, 42] 1.0 http://kmacs.gobics.de

kr [46] 2.0.2 http://guanine.evolbio.mpg.de/cgi-bin/kr2/kr.cgi.pl

Underlying Approach [47] NA http://www.dei.unipd.it/~ciompin/main/underlying.html

andi [24] Micro-alignments 0.02 https://github.com/EvolBioInf/andi

co-phylog [23] NA https://github.com/yhg926/co-phylog

FSWM [26]/Read-SpaM [48] 1.0 http://fswm.gobics.de

Multi-SpaM [25] 1.0 https://github.com/tdencker/multi-SpaM

phylonium [49] 0.3 https://github.com/kloetzl/phylonium

mash [11] Number of word matches 2.1 https://github.com/marbl/Mash

Slope-SpaM 0.1 https://github.com/burkhard-morgenstern/Slope-SpaM

Skmer [50] 3.0.0 https://github.com/shahab-sarmashghi/Skmer

RTD-Phylogeny [51] Return time distribution 1.0.1 https://github.com/pandurang-kolekar/rtd-phylogeny

kSNP3 [52] SNP count 3.1 https://sourceforge.net/projects/ksnp/files/

EP-sim [53] Variable-length word counts 1.0 http://www.dei.unipd.it/~ciompin/main/EP-sim.html

Detailed information about the tools’ parameter values used in this study for different reference data sets is provided in Additional file 1: Table S1. A concise
description of the listed tools is provided in the “Methods” section
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unintended biases of partial comparison. To date, no com-
prehensive benchmarking platform has been established
for AF sequence comparison to select algorithms for dif-
ferent sequence types (e.g., genes, proteins, regulatory ele-
ments, or genomes) under different evolutionary scenarios
(e.g., high mutability or horizontal gene transfer (HGT)).
As a result, users of these methods cannot easily identify
appropriate tools for the problems at hand and are instead
often confused by a plethora of existing programs of un-
clear applicability to their study. Finally, as for other soft-
ware tools in bioinformatics, the results of most AF tools
strongly depend on the specified parameter values. For
many AF methods, the word length k is a crucial param-
eter. Note, however, that words are used in different ways
by different AF methods, so there can be no universal op-
timal word length k for all AF programs. Instead, different
optimal word lengths have to be identified for the different
methods. In addition, best parameter values may depend
on the data-analysis task at hand, for instance, whether a
set of protein sequences is to be grouped into protein fam-
ilies or superfamilies.
To address these problems, we developed AFproject

(http://afproject.org), a publicly available web-based ser-
vice for comprehensive and unbiased evaluation of AF
tools. The service is based on eight well-established and
widely used reference sequence data sets as well as four
new data sets. It can be used to comprehensively evalu-
ate AF methods under five different sequence analysis
scenarios: protein sequence classification, gene tree in-
ference, regulatory sequence identification, genome-
based phylogenetics, and HGT (Table 2). To evaluate
the existing AF methods with these data sets, we asked
the developers of 24 AF tools to run their software on
our data sets or to recommend suitable input parameter
values appropriate for each data set. In total, our study
involved 10,202 program runs, resulting in 1,020,493,359
pairwise sequence comparisons (Table 1; Additional file 1:
Table S1). All benchmarking results are stored and can
be downloaded, reproduced, and inspected with the
AFproject website. Thus, any future evaluation results
can be seamlessly compared to the existing ones ob-
tained using the same reference data sets with precisely
defined software parameters. By providing a way to auto-
matically include new methods and to disseminate their
results publicly, we aim to maintain an up-to-date and
comprehensive assessment of state-of-the-art AF tools,
allowing contributions and continuous updates by all de-
velopers of AF-based methods.

Results
Benchmarking service
To automate AF method benchmarking with a wide
range of reference data sets, we developed a publicly
available web-based evaluation framework (Fig. 1). Using

this workflow, an AF method developer who wants to
evaluate their own algorithm first downloads sequence
data sets from one or more of the five categories (e.g.,
data set of protein sequences with low identity from the
protein sequence classification category) from the server.
The developer then uses the downloaded data set to cal-
culate pairwise AF distances or dissimilarity scores be-
tween the sequences of the selected data sets. The
benchmarking service accepts the resulting pairwise dis-
tances in tab-separated value (TSV) format or as a
matrix of pairwise distances in standard PHYLIP format.
In addition, benchmarking procedures in two categories
(genome-based phylogeny and horizontal gene transfer)
also support trees in Newick format to allow for further
comparative analysis of tree topologies.
Once the output file is uploaded to the AFproject web

server, the service starts the benchmarking procedure,
which is typically completed in a few seconds. Finally,
the raw data and the time-stamped benchmark report
are stored and provided to the submitter. The report
shows the performance of the evaluated method and
compares it with the performance of other methods that
have been previously evaluated through the AFproject
web server. In the report, the performance of the com-
pared methods is ordered by a statistical measure spe-
cific to the respective benchmark category (e.g., the
Robinson-Foulds distance measure [63] in the categories
of gene trees, genome-based phylogeny, and horizontal
gene transfer). By default, the report is private (visible
only to the submitter), and the developer can choose if
and when to make the report publicly available. Similar
to other benchmarking platforms [64], we have released
the source code of the web service to facilitate transpar-
ency and encourage feedback and improvements from
the community (https://github.com/afproject-org/afpro-
ject) [65].

Alignment-free method catalog
To evaluate the performance of currently available AF
tools and create a reference data set for future compari-
sons, we benchmarked 24 standalone tools (Table 1),
covering a large proportion of the currently available AF
methods. Some tools offer multiple related methods to
measure pairwise distances (or dissimilarity) between se-
quences; for instance, jD2Stat [37] supports three differ-
ent distance measures based on the D2 statistic:
jD2Stat--d2n, jD2Stat--d2s, and jD2Stat--d2st. In this
study, we included these different distance measures,
resulting in a total of 74 tested tool variants (Fig. 2).
Each of these tool variants was run with various combi-
nations of parameter values (Additional file 1: Table S1).
The values yielding the best performance for a given
method were selected and saved in the AFproject
database; if multiple parameters produced the same

Zielezinski et al. Genome Biology          (2019) 20:144 Page 3 of 18

http://afproject.org
https://github.com/afproject-org/afproject
https://github.com/afproject-org/afproject


best-performing results for a tool, we selected only
the values that were least computationally demanding
(e.g., the shortest word length for word-counting
methods or the smallest sketch size). Full information
about the benchmarking results, including all combi-
nations of parameter values of the evaluated tools,
can be downloaded from http://afproject.org/down
load/ [66].
Only three tools (Alignment-Free-Kmer-Statistics (AFKS)

[34], FFP [39], and mash [11]) are sufficiently generic to be
applied to all 12 benchmarking data sets; the remaining

tools can handle only subsets of our reference data sets, ei-
ther because they have been designed only for a specific
purpose (e.g., to handle only certain sequence types, such
as nucleotides, proteins, and unassembled or assembled
genomic sequences) or—less frequently—because of some
unexpected software behavior (e.g., a program stops func-
tioning, does not terminate in a reasonable amount of time,
or produces invalid results; Additional file 1: Table S1).
Hence, one of the results of our benchmarking study is an
extensive and annotated catalog of tools (http://afproject.
org/tools/) [67], which constitutes a resource not only for

Table 2 Overview of the reference data sets

Category Name # Sequences Average sequence length # Files # Sequence comparisons

Regulatory element detection Cis-regulatory modules (CRMs) [6] 370 764 nt 370 68,256

Protein sequence classification Low sequence identity (< 40%) [57] 1,066 180 aa 1,066 567,645

High sequence identity (≥ 40%) [57] 2,128 184 aa 2,128 2,263,128

Gene tree inference SwissTree [58] 651 398 aa 651 211,575

Genome-based phylogeny Assembled genomes

29 E. coli/Shigella strains 29 4,895,247 nt 29 406

14 plant species 14 337,515,688 nt 14 91

25 fish mitochondrial genomes [59] 25 16,623 nt 25 300

Unassembled genomes

29 E. coli/Shigella strains

Coverage 0.03125 29,557 150 nt 29 406

Coverage 0.0625 59,116 150 nt 29 406

Coverage 0.125 118,266 150 nt 29 406

Coverage 0.25 236,541 150 nt 29 406

Coverage 0.5 473,081 150 nt 29 406

Coverage 1 946,169 150 nt 29 406

Coverage 5 4,730,778 150 nt 29 406

14 plant species

Coverage 0.015625 48,274 150 nt 14 91

Coverage 0.03125 96,489 150 nt 14 91

Coverage 0.0625 1,931,268 150 nt 14 91

Coverage 0.125 3,862,905 150 nt 14 91

Coverage 0.25 7,725,928 150 nt 14 91

Coverage 0.5 15,461,718 150 nt 14 91

Coverage 1 30,903,727 150 nt 14 91

Horizontal gene transfer 27 E. coli/Shigella genomes [60] 27 4,905,896 nt 27 351

8 Yersinia species [61] 8 4,605,553 nt 8 28

33 simulated genomes [62]

HGT level 0 33 2,205,524 nt 33 528

HGT level 250 33 2,149,620 nt 33 528

HGT level 500 33 2,230,317 nt 33 528

HGT level 750 33 2,263,926 nt 33 528

HGT level 1,000 33 2,238,661 nt 33 528

An interactive visualization of all results for all data sets can be found online (http://afproject.org)
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users of AF methods but also for the developers of these
methods, as it should help identify which aspects of existing
software code may be in need of further development.

Protein sequence classification
Recognition of structural and evolutionary relationships
among amino acid sequences is central to the under-
standing of the function and evolution of proteins.
Historically, the first comprehensive evaluation of AF
methods [8] investigated the accuracy of the tools for
protein structure classification at four hierarchical levels
used in the Structural Classification of Proteins (SCOP)
database [68], namely, family, superfamily, class, and fold
(for details about SCOP levels see the “Methods” sec-
tion). The original protocol tested six k-mer-based dis-
tance measures against a subset of the SCOP database,
containing protein family members sharing less than
40% sequence identity [8]. In the present study, we ex-
tend the original analysis [8] to test the accuracy of 56
tool variants in recognition of structural relationships of

protein sequences sharing both low (< 40%) and high
(≥ 40%) sequence identity (Fig. 2).
The area under the receiver operating characteristic

(ROC) curve (AUC), which indicates whether a method
is able to discriminate between homologous and nonho-
mologous protein sequences (“Methods” section),
showed the favorable performance of AFKS [34] soft-
ware. AFKS with parameters set to the simratio [34] dis-
tance and a word length of k = 2 is the best-performing
tool for both low- and high-sequence-identity data sets
(Fig. 2). For the latter type of the data set, the method
produces the highest AUC values across all four
structural levels, with an average AUC of 0.798 ±
0.139 (Additional file 1: Table S2). When considering
the low-sequence-identity data set (Additional file 1:
Table S3), AFKS--simratio also has the highest aver-
age AUC of 0.742 ± 0.079 but lower performance at
the superfamily and family levels than alfpy [5] (set to
the Google distance and k = 1). alfpy--google is ranked
second (0.738 ± 0.091) and fourth (0.778 ± 0.142) for

Fig. 1 Overview of the AFproject benchmarking service facilitating assessment and comparison of AF methods. AF method developers run their
methods on a reference sequence set and submit the computed pairwise sequence distances to the service. The submitted distances are subjected to
a test specific to given data sets, and the results are returned to the method developer, who can choose to make the results publicly available
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the low- and high-sequence-identity data sets, re-
spectively. Notably, the top-seven-ranking positions in
both the low- and high-sequence-identity data sets
are occupied, though in a different order, by the same
measures from AFKS and alfpy software (Fig. 2).
In general, the tested tools achieve greater discrimin-

atory power in recognizing structural relationships
(higher average AUCs) in our high-sequence-identity
data set than in the low-sequence-identity data set (Fig. 2;
Wilcoxon signed rank test, p = 2.602 × 10−11). Almost all
tool variants, except AFKS--afd (AUC 0.492 ± 0.016) for
the low-sequence-identity data set, achieved higher over-
all performance than the random classifier (AUC > 0.5).
As expected and previously reported [5, 8], the tools lose
discriminatory power from the family to the class level
for both data sets (the AUC decreases; Additional file 1:
Table S2-S3), as the sequence similarity is lower within
higher hierarchical groups. As a result, all methods
tested (except AFKS--harmonic_mean) achieve their
best accuracy at the family level. The AUC values at the
family, superfamily, and fold levels are higher (Wilcoxon
signed rank tests, p < 10−5) for data sets with high se-
quence similarity than for data sets with low sequence
similarity. The greatest difference in performance was
observed at the family level, where the maximum AUC
obtained by the tools with the high- and low-sequence-
identity data sets was 1.0 and 0.84, respectively. The
methods result in more similar AUCs at the class level
for the low-sequence-identity data set than for the high-
sequence-identity data set (Wilcoxon signed rank tests,
p = 0.0185). Protein sequences at the class level lack con-
served segments, and the median AUC values obtained
by the methods with high- and low-sequence-identity
data sets are similar to those obtained with the random
classifier (median AUC 0.57 in both data sets).

Gene tree inference
Only a few studies [69, 70] have evaluated AF methods
in the construction of gene trees. Because of the limited
amount of sequence information available, gene trees are
typically more difficult to reconstruct than species trees
[71]. We assessed the accuracy of 11 AF tools (55 tool
variants) in inferring phylogenetic relationships of
homologous sequences based on a collection of high-
confidence SwissTree phylogenies representing different
types of challenges for homology prediction, e.g., numer-
ous gene duplications and HGT [58, 64]. Similar to
SwissTree, we assessed the gene families at the protein
sequence level to minimize the impact of codon degen-
eracy. We thus interpret an inferred phylogenetic tree
based on a homologous family of protein sequences as
the tree for the gene family (i.e., the gene tree). As a
measure of accuracy, we computed the normalized
Robinson-Foulds (nRF) distance [63] between the trees

Fig. 2 Summary of AF tool performance across all reference data sets.
The numbers in the fields indicate the performance scores (from 0 to
100; see the “Methods” section) of a given AF method for a given data
set. Fields are color-coded by performance values. The numbers in
bold indicate the highest performance obtained within a given data
set. An empty field indicates the corresponding tool’s inability to be
run on a data set. An extended version of this figure including values
of the overall performance score is provided in Additional file 1: Table S14.
The most up-to-date summary of AF tool performance can be found
at: http://afproject.org/app/tools/performance/
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reconstructed by the AF methods under study and the
reference trees. The nRF distance has values between 0
and 1, with 0 indicating identical tree topologies and 1
indicating the most dissimilar topologies (“Methods”
section).
None of the AF methods that we tested were able to

perfectly infer the respective reference tree topology for
any of the 11 gene families. jD2Stat [37] (Dn

2 with param-
eter values n = 1 and k = 5) was the most accurate tool in
our test (Fig. 2). This method achieved the lowest nRF
values (highest accuracy) among all the tested methods
averaged across all 11 reference gene families (nRF =
0.3296 ± 0.1511; Additional file 1: Table S4), which can
be interpreted as 33% (± 15%) of incongruent biparti-
tions between the inferred and the reference tree. To
put this number into perspective, the corresponding
gene trees based on MSA (i.e., neighbor-joining trees in-
ferred using ClustalW alignments generated with default
parameters) yielded a similar average accuracy (nRF =
0.2995 ± 0.1511). In general, the nRF distances obtained
by the tested methods vary greatly across the gene fam-
ilies (Friedman rank sum test, p < 2.2 × 10− 16; df = 10;
Friedman chi-square = 463.88) due to different complex-
ities of the encoded protein families (e.g., evolutionary
distance between proteins, domain architecture, and
structural and functional affiliations). Consequently, the
tools obtain their best accuracy in phylogenetic inference
of the eukaryotic protein family of sulfatase modifying
factor (SUMF) proteins, which are characterized by a
single protein domain and the smallest number of gene
duplications; four distance measures in AFKS software
generated trees (nRF = 0.077) with minor topological
differences in the speciation order of three proteins
(Additional file 2: Figure S1). The AF methods
achieved the second-best accuracy (median nRF = 0.178)
for the eukaryotic NOX family NADPH oxidases—a gene
family coding for transmembrane enzymes with 10 gene
duplications and 3–4 protein domains. However, the ex-
amined tools produced highly inaccurate phylogenetic
trees of two other transmembrane protein families,
namely, Bambi and Asterix (median nRFs 0.615 and 0.611,
respectively), where more than 60% of tree topologies dif-
fered from the reference tree.

Regulatory elements
Analysis of gene regulatory sequences is another domain
where AF methods are popular, as the similarity between
these elements is usually low and alignments typically
fail to detect it properly [6]. We adopted a benchmark-
ing procedure and a reference data set of cis-regulatory
modules (CRMs) introduced by Kantarovitz et al. [6],
which was further used in other studies [72], showing
that alignment algorithms lag behind AF methods in

recognizing functionally related CRMs. A CRM can be
broadly defined as a contiguous noncoding sequence
that contains multiple transcription factor binding sites
and regulates the expression of a gene. The Kantorovitz
protocol assesses to what extent AF tools are capable of
capturing the similarities between functionally related
CRMs expressed in the tissues of fly and human (see the
“Methods” section).
However, none of the AF methods produced perfect

results for any of the seven tissues/species data set com-
binations (i.e., all functionally related CRM pairs classi-
fied in front of all random DNA pairs). alfpy software [5]
set to three distance measures—Canberra, Chebyshev,
and Jensen–Shannon divergence—captured the largest
number (averaged across 7 tissue samples) of function-
ally related regulatory elements (Fig. 2). The selection of
Canberra distance (word length of k = 2) correctly recog-
nized 73.6% ± 10.54% of CRMs, capturing the highest
functional relatedness in three out of seven data sets
(tracheal system 97%, eye 78%, and blastoderm-stage
embryo 76% in fly; Additional file 1: Table S5). The Che-
byshev distance (k = 7) obtained the second-highest aver-
age performance of 67.59% and the highest performance
variation across seven data sets (standard deviation =
20.14%) among all methods in the ranking; this measure
had the highest performance for two tissues (peripheral
nervous system in fly and HBB complex in human) and
relatively low performance in human liver tissue. The
third measure, Jensen–Shannon divergence (k = 2),
achieved more stable performance across the data sets
than the Canberra and Chebyshev distances (63.16% ±
8.22%). Overall, 51 out of 63 methods showed average
performance better than that of the random classifier
(> 50%).

Genome-based phylogeny
AF methods are particularly popular in genome-based
phylogenetic studies [11, 14, 15, 39] because of (i) the
considerable size of the input data, (ii) variable rates of
evolution across the genomes, and (iii) complex corres-
pondence of the sequence parts, often resulting from
genome rearrangements such as inversions, transloca-
tions, chromosome fusions, chromosome fissions, and
reciprocal translocations [4, 73]. We assessed the ability
of AF methods to infer species trees using benchmarking
data from different taxonomic groups, including bac-
teria, animals, and plants. Here, we used completely as-
sembled genomes as well as simulated unassembled
next-generation sequencing reads at different levels of
coverage.

Assembled genomes
As many studies have applied AF methods to whole
mitochondrial genomes [74, 75], we tested the
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performance of 23 AF software tools (70 tool variants in
total) in phylogenetic inference using complete mtDNA
from 25 fish species of the suborder Labroidei [59]. The
best accuracy was achieved by nine AF tools (19 tool
variants), which generated tree topologies that were al-
most identical to the reference Labroidei tree (nRF =
0.05; Fig. 2; Additional file 1: Table S6). The results differ
only in the speciation order of three closely related fish
species belonging to the Tropheini tribe of the Pseudo-
crenilabrinae family (Additional file 2: Figure S2). The
same species were misplaced in the topologies generated
by another 39 tool variants that all occupied the second
place in the benchmark ranking (nRF = 0.09). These
methods additionally misplace species within the Poma-
centridae and Embiotocidae families. These results indi-
cate that most AF methods infer trees in general
agreement with the reference tree of mitochondrial ge-
nomes [20, 46, 74, 76].
We further tested the performance of AF methods in

phylogenetic inference with larger, bacterial genomes of
Escherichia coli/Shigella and with nuclear genomes of
plant species (Fig. 2). Seven tools (nine tool variants)
could not be tested on all three sets of complete ge-
nomes since the programs did not complete analyses
(Additional file 1: Table S1). The remaining 16 tools (61
tool variants) lead to greater nRF distances, i.e., lower
performance, for the phylogeny of the E. coli/Shigella
and plant nuclear genomes than for the phylogeny of
mitochondrial genomes (Fig. 2; one-way analysis of vari-
ance (ANOVA) with repeated measures, p < 2 × 10−16;
post hoc pairwise paired t test, p < 2 × 10−16). Although
the tools that we tested show similar nRF distances for
bacterial and plant genomes in general (pairwise paired
t-test, p = 0.073), the top-performing tools are different
between the two data sets. For example, phylonium [49]
and andi [24], which were developed for phylogenetic
comparison of closely related organisms, are the best-
performing tools for the E. coli/Shigella data sets,
whereas on the plant data sets, both tools perform
poorly (Fig. 2). Phylonium almost perfectly reproduced
the reference tree for the E. coli/Shigella group with an
nRF = 0.04 (Additional file 1: Table S7; there was
only a single error in the placement of two closely
related E. coli K-12 substrains: BW2952 and DH10B;
Additional file 2: Figure S3), while the plant trees
obtained by these tools showed very low topological
similarity to the reference tree (nRF = 0.64; Additional file 1:
Table S8).
The best-performing tools for the plant data set are

co-phylog [23], mash [11], and Multi-SpaM [25], all of
which almost perfectly recovered the reference tree top-
ology of the plant species (with an nRF = 0.09 for all
three programs). In each of the trees produced by these
programs, there was exactly one species placed at an

incorrect position compared to its position in the refer-
ence tree, namely, in the speciation order in the Brassica-
ceae family for co-phylog (Additional file 2: Figure S4), for
mash (Additional file 2: Figure S5), and for Multi-SpaM,
the last of which placed Carica papaya outside the Brassi-
cales order (Additional file 2: Figure S6). Additionally, co-
phylog is the third-best-performing tool in reconstructing
the E. coli/Shigella tree topology (nRF = 0.12), while mash
and Multi-SpaM are at the fourth and sixth positions,
respectively, in this ranking (nRF = 0.15 and nRF =
0.27, respectively). As a result, co-phylog, mash, FFP
[35], Skmer [50], and FSWM [26] are among the top
5 best-performing tools for both data sets (Fig. 2).

Raw sequencing reads
We also tested the accuracy of AF tools in phylogenetic
inference based on simulated, unassembled sequencing
reads, represented by seven different levels of sequen-
cing coverage, from E. coli/Shigella and from a set of
plant species (Table 2; see the “Methods” section). No
differences in nRF values were observed between the re-
sults based on the unassembled and assembled E. coli/
Shigella genomes (Wilcoxon signed rank test, p = 0.169),
indicating that the AF tools exhibited equal performance
for unassembled and assembled genomes. In contrast,
the tested tools showed lower performance (i.e., higher
nRF values) in assembly-free phylogenetic reconstruc-
tion of the plant species (Wilcoxon signed rank test, p =
0.00026). andi and co-phylog [23] are the most accurate
tools in the E. coli/Shigella data set (Fig. 2), with an average
nRF distance of 0.21 ± 0.14 (Additional file 1: Table S9).
Both tools achieved the minimum nRF for seven coverage
levels in the E. coli/Shigella data set (i.e., andi for coverage
0.03125, 0.25, 0.5, and 5, and co-phylog for coverage from
0.0625 to 0.125 and from 1 to 5). Although andi could not
be tested with unassembled plant data set due to high se-
quence divergence (Additional file 1: Table S1), the accur-
acy of co-phylog for this set is similar as for E. coli/Shigella
data (nRF = 0.27 ± 0.13; Additional file 1: Table S10), which
places the tool at the third position in the ranking for the
plant sequences (Fig. 2).
For the unassembled plant data sets, mash is the most

accurate tool (Fig. 2), i.e., the tool with the shortest nRF
distance between the inferred trees and the reference
tree. For the lowest coverage level (0.015625), mash still
allows us to infer trees with average nRF distances of
0.27 from the reference tree (Additional file 1: Table S10).
In general, mash shows the best performance at six out of
the seven coverage levels (i.e., from 0.015625 to 0.5). For
the unassembled E. coli/Shigella data set, mash is ranked
at the second position, with an average nRF distance of
0.27 ± 0.18. Notably, for coverage 0.25 in plant data set,
mash inferred tree topology in perfect agreement with the
reference tree (nRF = 0; Additional file 1: Table S10);
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however, its performance slightly decreases for higher
coverage levels (with nRFs of 0.09 and 0.18 for coverage
0.5 and 1, respectively). The best accuracy at the highest
coverage level (1×) was obtained by co-phylog (nRF =
0.09).
When considering the most universal tools applied to

all the tested reference data sets, mash ranks first and
the second for the assembly-free phylogeny of plants
and E. coli/Shigella, respectively (Fig. 2). In addition to
mash, two other methods designed specifically for phylo-
genetic reconstruction from next-generation sequencing
data—co-phylog and Skmer—are the only tools ranked
among the top 5 methods tested on both unassembled
data sets (Fig. 2).

Horizontal gene transfer
To assess the accuracy of the AF methods in phylogen-
etic reconstruction of sequences that underwent fre-
quent HGT events and genome rearrangements, we
used sets of simulated genomes with different levels of
HGT [62] as well as two real-world data sets of micro-
bial species, namely, 27 genomes of E. coli and Shigella
[60, 62, 77] and eight Yersinia genomes [61, 62] (Table 1).
Similar to previous tests, we applied the nRF distance
between the obtained and the reference trees as a meas-
ure of accuracy.
We simulated five sets of 33 genomes, each with dif-

ferent extents of HGT as determined by the mean num-
ber of HGT events per iteration (l = 0, 250, 500, 750, and
1,000; l is the number of HGT events attempted in the
set at each iteration of the simulation process of genome
evolution; for details, see the “Methods” section). This
simulation strategy has been shown to yield data that are
appropriate to assess the performance accuracy of a
range of AF methods an earlier study [62]. The tools,
AFKS (Markov measure, with a word length of k = 12)
and mash (k = 17–24), achieved the highest general ac-
curacy (Fig. 2) by obtaining the lowest average nRF
(0.05 ± 0.05) and perfect topological agreement with the
reference trees at the two lowest frequencies of simu-
lated HGT (l = 0 and 250; Additional file 1: Table S11).
As expected, for most AF methods, the accuracy of
phylogenetic inference declines with an increase in the
extent of HGT. Nevertheless, the seven best-performing
software applications—AFKS, mash, CAFE, alfpy, FFP,
jD2Stat, and ALFRED-G [45]—were capable of recon-
structing the reference tree with little incongruence at
almost all HGT frequency levels (nRF ≤ 0.1 at l ≤ 750),
except for the highest frequencies of HGT simulated,
where the nRF distance was in the range of 0.13–0.17
(Additional file 1: Table S11). Interestingly, the basic AF
distance measures (Euclidean, Manhattan, Canberra, and
LCC distances) implemented in alfpy achieve a lower
average nRF (0.07 ± 0.06) and minimum nRF at a higher

HGT frequency level (nRF = 0.13) than AF tools de-
signed for phylogenetic reconstruction of whole ge-
nomes (co-phylog, FSWM, Multi-SpaM, and kr), which
surprisingly were relatively inaccurate (nRF > 0.2 for dif-
ferent values of l). As has been reported before [62], the
accuracy of kr generally increased (nRF, from 0.73 to
0.33) with increasing l.
To assess the performance of AF methods with real-

world sequence data, we first used a reference supertree
of 27 genomes of E. coli and Shigella that was generated
based on thousands of single-copy protein trees [60, 62, 77].
For this data set, the tools designed for whole-genome phy-
logenetics achieved lower nRF values than did basic AF dis-
tance measures; eleven tools for whole-genome
phylogenetics occupied the first six positions in the ranking
list (Fig. 2). Three such methods—andi, co-phylog, and phy-
lonium—achieved the highest accuracy (Fig. 2), with a mini-
mum nRF of 0.08 (Additional file 1: Table S12). The andi
and co-phylog tools yielded topologically equivalent trees
that were very similar to the reference tree, misplacing only
two closely related E. coli strains in the D and B1 reference
groups (Additional file 2: Figure S7), while phylonium
showed two minor topological differences in E. coli refer-
ence group D (Additional file 2: Figure S8). Most AF mea-
sures implemented in AFKS, alfpy, and CAFE were ranked
at the 10th position (Fig. 2) and led to the reconstruction of
inaccurate species trees where half of the bipartitions were
not present in the reference tree (nRF = 0.5). Interestingly,
the opposite result was obtained for phylogenetic infer-
ence of 8 Yersinia genomes, where almost all basic
measures (42 tool variants) recovered the reference
tree topology (nRF = 0) while whole-genome phylo-
genetic tools obtained relatively incongruent trees
(nRF > 0.2) compared to the reference (Fig. 2, Add-
itional file 1: Table S13).

Discussion
We have addressed key challenges in assessing methods
for AF sequence comparison by automating the applica-
tion of multiple AF methods to a range of reference data
sets. This automated approach critically benefits from ex-
tensive work described in the previous section to identify
optimal parameter values for all combinations of methods
and data sets. Finally, the resulting open platform for a
standardized evaluation of new methods is provided with
an interactive web-based interface and a reporting func-
tionality designed to ensure reproducibility. We believe
that the uniform framework for testing AF algorithms
with common data sets and procedures will be beneficial
to both developers and users of these methods. The
benchmarking results will guide users in choosing the
most effective tool tailored to their project needs and for
finding optimal parameter settings, improving the quality
of their studies and results. For developers, the interactive
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platform speeds up benchmarking and provides reference
data sets, on which new AF methods can be compared to
existing approaches.
Our results showed that no single method performed

best across all the data sets tested. Nevertheless, some
tools were among the top five performers more often
than others. For example, when considering genomic-
scale benchmarks, encompassing 8 data sets from the
whole-genome phylogeny and horizontal gene transfer
categories, the tools developed for genomic comparisons
were among the top 5 performing tools: mash (8 times),
co-phylog and Skmer (7 times), FFP (6 times), and
FSWM/Read-SpaM (5 times; Fig. 2). Since mash is the
only method that is placed among the top 5 best-
performing tools on all genome-scale benchmarking data
sets, it is particularly well suited for genome sequence
comparisons, regardless of the phylogenetic range and
technology that were used to obtain the data (e.g., short
reads or assembled contigs). Most AF approaches (14
out of 21 software applications or, more specifically, 56
out of 68 tool variants) performed particularly well—al-
though not perfectly—in phylogenetic inference of mito-
chondrial genomes from different fish species, yielding
trees generally consistent (nRF < 0.1) with the reference
phylogeny (Fig. 2, Additional file 1: Table S6). However,
our results on whole-genome sequence comparison for
prokaryotes and eukaryotes show a significant decrease
in performance of tested AF tools. Thus, novel AF
methods should not be benchmarked with mitochondrial
sequences alone. Considering the evolutionary and
structural relationships among the protein sequences
and inferred gene trees, we were surprised by the highest
performance of very simple AF distance measures imple-
mented in AFKS and alfpy (i.e., intersection, simratio,
Kulczynski, Bray–Curtis, Google, Canberra, Squared_
chord, chi_squared, and Manhattan). Overall, methods
based on conventional statistics performed better than
approaches using more complex statistics such as state-
of-the-art D2-related metrics implemented in jD2Stat (
DS

2, D
�
2, and Dn

2) and AFKS (Dz
2, D

�
2, and DS

2), the Markov
metric in AFSK (sim_mm, rr_k_r, and markov), and the
N2 metric in AFKS (n2r) (Additional file 1: Table S14).
Interestingly, the basic Canberra distance implemented
in alfpy is the most effective distance measure in recog-
nizing functionally related regulatory sequences (Add-
itional file 1: Table S5), greatly exceeding the DS

2 and D�
2

statistics from CAFE and jD2Stat.
Another surprising observation in our study is that dif-

ferent implementations of the same AF algorithm, run
with the same input parameter values, can deliver differ-
ent results. For example, two implementations of the
Canberra distance from AFKS and alfpy achieve different
performances in almost all data sets (Fig. 2). The dis-
crepancy in the Canberra distance with a word length of

k = 2 between the two tools is apparent for the CRM
data set, where AFKS--Canberra obtained a performance
score of 54, while alfpy--Canberra had a performance
score of 74, which was the highest performance score
among the tools that we evaluated (Additional file 1:
Table S5; see the “Methods” section for the definition
of “performance score”). The differences observed
were due to the different methods of sequence data
preprocessing applied by the two tools—alfpy projects
sequences into a vector of k-mer frequencies, whereas
AFKS represents sequences as k-mer count vectors
with the inclusion of pseudocounts. This sequence
data preprocessing in alfpy and AFKS has the highest
impact on the performance of methods based on the
Canberra distance in the case of nucleotide data sets
of regulatory elements, whole genomes of plants, and
simulated genomes that underwent HGT (Additional file 2:
Figure S9). For other data sets, the same distance mea-
sures in alfpy and AFKS, run on common word lengths,
produce results with very similar performances, and the
observed differences between the tools in this study are
the results of different ranges of k. Similarly, the D�

2 and
DS

2 metrics implemented in AFKS, CAFE, and jD2Stat
produce slightly different results.
When assessing the accuracy of AF methods in infer-

ring phylogenetic relationships, we compared the in-
ferred phylogenetic tree topologies to trusted reference
tree topologies. However, the assumption that evolution-
ary relationships are generally tree-like is known to be
unrealistic because genome evolution is shaped by both
vertical and lateral processes [77–79]. Although the sig-
nal of vertical descent (e.g., for ribosomal rRNAs) can be
described adequately using a phylogenetic tree, horizon-
tal transfer of genetic material between different taxa
and genome rearrangements can obscure this signal. A
classic example involves the Yersinia genomes, which
are well known to have undergone extensive structural
rearrangements [61]. We have shown in this study that
reconstructing phylogenetic trees of these taxa from
whole-genome sequences is difficult with AF methods.
The same is true for more conventional approaches that
are based on MSA [61], and finding a trusted reference
tree for these taxa has been problematic. In such cases, a
non-tree-like network representation of genome evolu-
tion is more appropriate. Recent studies [80, 81] have
demonstrated the scalability and applicability of AF
methods to quickly infer networks of relatedness among
microbial genomes. Although we did not consider net-
works in this study, the curated benchmarking data sets
can be easily extended to AF phylogenetic analysis be-
yond a tree-like structure in the future.
We acknowledge that the presented data sets do not

cover all possible applications of AF tools. The data sets
include only the most typical sequence comparison
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tasks, where all-versus-all sequence comparisons need to
be computed. Although the AF project is extendable and
new data sets can be seamlessly added in the future, for
more specific applications such as orthology prediction,
genome assembly, RNA-seq aligners, or metagenomics ana-
lyses, we recommend using other web-based benchmarking
services developed for these purposes [64, 82–85]. Never-
theless, AFproject can be used to evaluate any sequence
comparison tool—not necessarily AF—that produces dis-
similarity scores between sequence pairs. Since similarity
scores can be easily converted into dissimilarity scores, our
benchmarking system can also be used to evaluate methods
that generate similarity scores, e.g., alignment scores. We
thus invite developers and users of sequence compari-
son methods to submit and evaluate their results with
the AFproject benchmarking platform. The ability to
rapidly, objectively, and collaboratively compare com-
putational methods for sequence comparison should
be beneficial for all fields of DNA and RNA sequence
analysis, regardless of whether the analysis is alignment-
based or alignment-free.

Methods
Data sets
Twelve sequence data sets were used to evaluate AF
methods across five research areas (Table 1).

Protein homology
The reference data sets of protein family members shar-
ing a high (≥ 40%) and low (< 40%) sequence identity
were constructed based on two sections of the SCOPe
database v. 2.07 [68], namely, ASTRAL95 and AS-
TRAL40 v. 2.07 [86], respectively. The SCOPe database
provides a structural classification of proteins at four
levels: classes (proteins with similar secondary structure
composition, but different sequences and overall tertiary
structures), folds (protein domains of similar topology
and structure without detectable sequence similarity),
superfamilies (proteins with similar structures and weak
sequence similarity), and families (proteins with readily
detectable sequence similarity). According to previous
studies [5, 8], the ASTRAL data sets were subsequently
trimmed to exclude sequences with unknown amino
acids and families with fewer than 5 proteins and in-
cluded only the four major classes (i.e., α, β, α/β, and
α + β). To minimize the requirements for AF method
submission related to performing all-versus-all sequence
comparisons and uploading the output to the AFproject
server, we further reduced the data sets by randomly
selecting only two protein members in each family. As
ASTRAL95 also contains protein family members shar-
ing a sequence identity lower than 40%, the Needle-
man–Wunsch alignment was performed (using needle
software in the EMBOSS package [87]) to select proteins

with a sequence identity ≥ 40% to acquire a reference
data set of proteins with high sequence identity.

Gene trees
Reference trees and corresponding protein sequences of
eleven gene families were downloaded from SwissTree
release 2017.0 [58, 88]: Popeye domain-containing pro-
tein family (49 genes), NOX “ancestral-type” subfamily
NADPH oxidases (54 genes), V-type ATPase beta subunit
(49 genes), serine incorporator family (115 genes), SUMF
family (29 genes), ribosomal protein S10/S20 (60 genes),
Bambi family (42 genes), Asterix family (39 genes), cited
family (34 genes), Glycosyl hydrolase 14 family (159
genes), and Ant transformer protein (21 genes).

Gene regulatory elements
The data set of CRMs known to regulate expression in
the same tissue and/or developmental stage in fly or hu-
man was obtained from Kantorovitz et al. [6]. The data
set was specifically selected to test the capacity of AF
measures to identify functional relationships among
regulatory sequences (e.g., enhancers or promoters). The
data set contains 185 CRM sequences taken from D.
melanogaster—blastoderm-stage embryo (n = 82), eye
(n = 17), peripheral nervous system (n = 23), and tracheal
system (n = 9)—and Homo sapiens—HBB complex (n =
17), liver (n = 9), and muscle (n = 28).

Genome-based phylogeny
The sequences of 25 whole mitochondrial genomes of
fish species from the suborder Labroidei and the species
tree were taken from Fischer et al. [59]. The set of 29 E.
coli genome sequences was originally compiled by Yin
and Jin [23] and has been used in the past by other
groups to evaluate AF programs [24, 25, 89]. Finally, the
set of 14 plant genomes is from Hatje et al. [90]. This set
was also used in the past to evaluate AF methods. To
simulate unassembled reads from these data sets, we
used the program ART [91].

Horizontal gene transfer
The 27 E. coli and Shigella genomes, and the 8 Yersinia
genomes, were taken from Bernard et al. [62]. We used
EvolSimulator [92] to simulate HGT in microbial ge-
nomes, adopting an approach similar to that described
in Bernard et al. [62]. The HGT events were simulated
to occur at random, i.e., anywhere along a genomic se-
quence and between any pair of genomes in a set. Each
set of genomes was simulated under a birth-and-death
model at speciation rate = extinction rate = 0.5. The
number of genomes in each set was allowed to vary from
25 to 35, with each containing 2000–3000 genes 240–
1500 nucleotides long. HGT receptivity was set at a
minimum of 0.2, mean of 0.5, and maximum of 0.8, with
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a mutation rate m = 0.4–0.6 and a number of genera-
tions i = 5000. The varying extent of HGT was simulated
using the mean number of HGT events attempted per it-
eration l = 0, 250, 500, 750, and 1000, and divergence
factor d = 2000 (transferred genes that are of high se-
quence divergence, i.e., > 2000 iterations apart, will not
be successful). All other parameters in this simulation
followed Beiko et al. [92].

Alignment-free tools
AAF [38] reconstructs a phylogeny directly from unas-
sembled next-generation sequencing reads. Specifically,
AAF calculates the Jaccard distance between sets of
k-mers of two samples of short sequence reads. This dis-
tance between samples or species is based on the esti-
mate of the rate parameter from a Poisson process for a
mutation occurring at a single nucleotide. The phyl-
ogeny is constructed using weighted least squares with
weights proportional to the expected variance of the es-
timated distances. AAF provides features for correcting
tip branches and bootstrapping of the obtained phylo-
genetic trees, directly addressing the problems of se-
quencing error and incomplete coverage.
AFKS [34] is a package for calculating 33 k-mer-based

dissimilarity/distance measures between nucleotide or
protein sequences. AFKS categorizes the measures into
nine families: Minkowski (e.g., Euclidean), Mismatch
(e.g., Jaccard), Intersection (e.g., Kulczynski), D2 (e.g.,
D2s), Squared Chord (e.g., Hellinger), Inner Product
(e.g., normalized vectors), Markov (e.g., SimMM), Diver-
gence (e.g., KL Conditional), and Others (e.g., length dif-
ference). The tool determines the optimal k-mer size for
given input sequences and calculates dissimilarity/dis-
tance measures between k-mer counts that include pseu-
docounts (adding 1 to each k-mer count). The obtained
distance is standardized to between 0 and 1.
alfpy [5] provides 38 AF dissimilarity measures with

which to calculate distances among given nucleotide or
protein sequences. The tool includes 25 k-mer-based
measures (e.g., Euclidean, Minkowski, Jaccard, and Ham-
ming), eight information-theoretic measures (e.g., Lempel–
Ziv complexity and normalized compression distance),
three graph-based measures, and two hybrid measures (e.g.,
Kullback–Leibler divergence and W-metric). alfpy is also
available as a web application and Python package. In this
study, the results based on 14 dissimilarity measures are
evaluated.
ALFRED-G [45] uses an efficient algorithm to calcu-

late the length of maximal k-mismatch common sub-
strings between two sequences. Specifically, to measure
the degree of dissimilarity between two nucleic acid or
protein sequences, the program calculates the length of
maximal word pairs—one word from each of the se-
quences—with up to k mismatches.

andi [24] estimates phylogenetic distances between ge-
nomes of closely related species by identifying pairs of
maximal unique word matches a certain distance from
each other and on the same diagonal in the comparison
matrix of two sequences. Such word matches can be effi-
ciently found using enhanced suffix arrays. The tool then
uses these gap-free alignments to estimate the number
of substitutions per position.
CAFE [36] is a package for efficient calculation of 28

AF dissimilarity measures, including 10 conventional
measures based on k-mer counts, such as Chebyshev,
Euclidean, Manhattan, uncentered correlation distance,
and Jensen–Shannon divergence. It also offers 15 mea-
sures based on the presence/absence of k-mers, such as
Jaccard and Hamming distances. Most importantly, it
provides a fast calculation of background-adjusted dis-
similarity measures including CVTree, d2star, and
d2shepp. CAFE allows for both assembled genome se-
quences and unassembled next-generation sequencing
shotgun reads as inputs. However, it does not deal with
amino acid sequences. In this study, the results based on
CVTree, d2star, and d2shepp are evaluated.
co-phylog [23] estimates evolutionary distances among

assembled or unassembled genomic sequences of closely
related microbial organisms. The tool finds short, gap-
free alignments of a fixed length and consisting of
matching nucleotide pairs only, except for the middle
position in each alignment, where mismatches are
allowed. Phylogenetic distances are estimated from the
fraction of such alignments for which the middle pos-
ition is a mismatch.
EP-sim [53] computes an AF distance between nucleo-

tide or amino acid sequences based on entropic profiles
[93, 94]. The entropic profile is a function of the gen-
omic location that captures the importance of that re-
gion with respect to the whole genome. For each
position, it computes a score based on the Shannon en-
tropies of the word distribution and variable-length word
counts. EP-sim estimates a phylogenetic distance, similar
to D2, by summing the entropic profile scores over all
positions, or similar to D�

2 , with the sum of normalized
entropic profile scores.
FFP [35, 39] estimates the distances among nucleotide

or amino acid sequences. The tool calculates the count
of each k-mer and then divides the count by the total
count of all k-mers to normalize the counts into fre-
quencies of a given sequence. This process leads to the
conversion of each sequence into its feature frequency
profile (FFP). The pairwise distance between two se-
quences is then calculated by the Jensen–Shannon diver-
gence between their respective FFPs.
FSWM [26] estimates the phylogenetic distance be-

tween two DNA sequences. The program first defines a
fixed binary pattern P of length l representing “match
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positions” and “don’t care positions.” Then, it identifies
all “Spaced-word Matches” (SpaM) w.r.t. P, i.e., gap-free
local alignments of the input sequences of length l, with
matching nucleotides at the “match positions” of P and
possible mismatches at the “do not care” positions. To
estimate the distance between two DNA sequences,
SpaMs with low overall similarity are discarded, and the
remaining SpaMs are used to estimate the distance be-
tween the sequences, based on the mismatch ratio at the
“do not care” positions. There is a version of FSWM that
can compare sets of unassembled sequencing reads to
each other called Read-SpaM [48].
jD2Stat [37] utilizes a series of D2 statistics [17, 18] to

extract k-mers from a set of biological sequences and
generate pairwise distances for each possible pair as a
matrix. For each sequence set, we generated distance
matrices (at the defined k; Additional file 1: Table S1),
each using DS

2 (D2S; exact k-mer counts normalized
based on the probability of occurrence of specific k-
mers), D�

2 (d2St; similar to DS
2 but normalized based on

means and variance), and Dn
2 (d2n; extension of D2 that

expands each word w recovered in the sequences to its
neighborhood n, i.e., all possible k-mers with n number
of wildcard residues, relative to w).
kmacs [20] compares two DNA or protein sequences

by searching for the longest common substrings with up
to k mismatches. More precisely, for each position i in
one sequence, the program identifies the longest pair of
substrings with up to k mismatches, starting at i in the
first sequence and somewhere in the second sequence.
The average length of these substring pairs is then used
to define the distance between the sequences.
kr [46] estimates the evolutionary distance between ge-

nomes by calculating the number of substitutions per
site. The estimator for the rate of substitutions between
two unaligned sequences depends on a mathematical
model of DNA sequence evolution and average shortest
unique substring (shustring) length.
kSNP3 [52] identifies single nucleotide polymorphisms

(SNPs) in a set of genome sequences without the need
for genome alignment or a reference genome. The tool
defines a SNP locus as the k-mers surrounding a central
SNP allele. kSNP3 can analyze complete genomes, draft
genomes at the assembly stage, genomes at the raw
reads stage, or any combination of these stages. Based
on the identified SNPs, kSNP3.0 estimates phylogenetic
trees by parsimony, neighbor-joining, and maximum-
likelihood methods and reports a consensus tree with
the number of SNPs unique to each node.
kWIP [44] estimates genetic dissimilarity between

samples directly from next-generation sequencing data
without the need for a reference genome. The tool uses
the weighted inner product (WIP) metric, which aims at
reducing the effect of technical and biological noise and

elevating the relevant genetic signal by weighting k-mer
counts by their informational entropy across the analysis
set. This procedure downweights k-mers that are typically
uninformative (highly abundant or present in very few
samples).
LZW-Kernel [40] classifies protein sequences and

identifies remote protein homology via a convolutional
kernel function. LZW-Kernel exploits code blocks de-
tected by the universal Lempel–Ziv–Welch (LZW) text
compressors and then builds a kernel function out of
them. LZW-Kernel provides a similarity score between
sequences from 0 to 1, which can be directly used with
support vector machines (SVMs) in classification prob-
lems. LZW-Kernel can also estimate the distance be-
tween protein sequences using normalized compression
distances (LZW-NCD).
mash [11] estimates the evolutionary distance between

nucleotide or amino acid sequences. The tool uses the
MinHash algorithm to reduce the input sequences to
small “sketches,” which allow fast distance estimations
with low storage and memory requirements. To create a
“sketch,” each k-mer in a sequence is hashed, which
creates a pseudorandom identifier (hash). By sorting
these hashes, a small subset from the top of the
sorted list can represent the entire sequence (min-
hashes). Two sketches are compared to provide an esti-
mate of the Jaccard index (i.e., the fraction of shared
hashes) and the Mash distance, which estimates the rate
of sequence mutation under an evolutionary model.
Multi-SpaM [25], similar to FSWM, starts with a bin-

ary pattern P of length l representing “match positions”
and “don’t care positions.” It then searches for four-way
Spaced-word Matches (SpaMs) w.r.t. P, i.e., local gap-
free alignments of length l involving four sequences each
and with identical nucleotides at the “match positions”
and possible mismatches at the “do not care positions.”
Up to 1,000,000 such multiple SpaMs with a score above
some threshold are randomly sampled, and a quartet
tree is calculated for each of them with RAxML [95].
The program Quartet Max-Cut [96] is used to calculate
a final tree of all input sequences from the obtained
quartet trees.
phylonium [49] estimates phylogenetic distances among

closely related genomes. The tool selects one reference
from a given set of sequences and finds matching
sequence segments of all other sequences against this ref-
erence. These long and unique matching segments (an-
chors) are calculated using an enhanced suffix array. Two
equidistant anchors constitute homologous region, in
which SNPs are counted. With the analysis of SNPs, phy-
lonium estimates the evolutionary distances between the
sequences.
RTD-Phylogeny [51] computes phylogenetic distances

among nucleotide or protein sequences based on the
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time required for the reappearance of k-mers. The time
refers to the number of residues in successive appear-
ance of particular k-mers. Thus, the occurrence of each
k-mer in a sequence is calculated in the form of a return
time distribution (RTD), which is then summarized
using the mean (μ) and standard deviation (σ). As a re-
sult, each sequence is represented in the form of a nu-
meric vector of size 2·4k containing the μ and σ of 4k

RTDs. The pairwise distance between sequences is cal-
culated using Euclidean distance.
Skmer [50] estimates phylogenetic distances between

samples of raw sequencing reads. Skmer runs mash [11]
internally to compute the k-mer profile of genome skims
and their intersection and estimates the genomic dis-
tances by correcting for the effect of low coverage and
sequencing error. The tool can estimate distances be-
tween samples with high accuracy from low-coverage
and mixed-coverage genome skims with no prior know-
ledge of the coverage or the sequencing error.
Slope-SpaM [97] estimates the phylogenetic distance

between two DNA sequences by calculating the number
Nk of k-mer matches for a range of values of k. The dis-
tance between the sequences can then be accurately esti-
mated from the slope of a certain function that depends
on Nk. Instead of exact word matches, the program can
also use SpaMs w.r.t. a predefined binary pattern of
“match positions” and “don’t care positions.”
spaced [41–43] is similar to previous methods that

compare the k-mer composition of DNA or protein se-
quences. However, the program uses the so-called
spaced words instead of k-mers. For a given binary pat-
tern P of length l representing “match positions” and
“don’t care positions,” a spaced word w.r.t. P is a word
of length l with nucleotide or amino acid symbols at the
“match positions” and “wildcard characters” at the “do
not care positions.” The advantage of using spaced
words instead of exact k-mers is that the obtained results
are statistically more stable. This idea has been previ-
ously proposed for database searching [98, 99]. The ori-
ginal version of Spaced [41] used the Euclidean or
Jensen–Shannon [100] distance to compare the spaced-
word composition of genomic sequences. By default, the
program now uses a distance measure introduced by
Morgenstern et al. [43] that estimates the number of
substitutions per sequence position.
Underlying Approach [47] estimates phylogenetic dis-

tances between whole genomes using matching statistics
of common words between two sequences. The match-
ing statistics are derived from a small set of independent
subwords with variable lengths (termed irredundant
common subwords). The dissimilarity between sequences
is calculated based on the length of the longest common
subwords, such that each region of genomes contributes
only once, thus avoiding counting shared subwords

multiple times (i.e., subwords occurring in genomic
regions covered by other more significant subwords
are discarded).

Benchmarks
Evaluation of structural and evolutionary relationships
among proteins
To test the capacity of AF distance measures to
recognize SCOPe relationships (i.e., family, superfamily,
fold, and class), we used a benchmarking protocol from
previous studies [5, 8]. Accordingly, the benchmarking
procedure takes the distances between all sequence pairs
present in the data set file. The distances between all
protein pairs are subsequently sorted from minimum to
maximum (i.e., from the maximum to minimum similar-
ity). The comparative test procedure is based on a binary
classification of each protein pair, where 1 corresponds
to the two proteins sharing the same group in the
SCOPe database and 0 corresponds to other outcomes.
The group can be defined at one of the four different
levels of the database (family, superfamily, fold, and
class), exploring the hierarchical organization of the pro-
teins in that structure. Therefore, each protein pair is as-
sociated with four binary classifications, one for each
level. At each SCOPe level, ROC curves and AUC values
computed in scikit-learn [101] are obtained to give a
unique number of the relative accuracy of each metric
and level according to the SCOP classification scheme.
The overall assessment of method accuracy is an average
of AUC values across all four SCOPe levels.

Evaluation of functionally related regulatory sequences
To test how well AF methods can capture the similarity
between sequences with similar functional roles, we used
the original benchmarking protocol introduced by
Kantorovitz et al. [6]. Briefly, a set of CRMs known to
regulate expression in the same tissue and/or develop-
mental stage is taken as the “positive” set. An equally
sized set of randomly chosen noncoding sequences with
lengths matching the CRMs is taken as the “negative”
set. Each pair of sequences in the positive set is com-
pared, as is each pair in the negative set. The test evalu-
ates if functionally related CRM sequence pairs (from
the positive half ) are better scored by a given AF tool
(i.e., have lower distance/dissimilarity values) than unre-
lated pairs of sequences (from the negative half ). This
procedure is done by sorting all pairs, whether they are
from the positive set or the negative set, in one com-
bined list and then counting how many of the pairs in
the top half of this list are from the positive set. The
overall assessment of method accuracy is the weighted
average of the positive pairs across all seven subsets.
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Evaluation of phylogenetic inference
The accuracy of AF methods for data sets from three
categories—gene tree inference, genome-based phyl-
ogeny, and horizontal gene transfer—was evaluated by
a comparison of topology between the method’s tree
and the reference tree. The pairwise sequence dis-
tances obtained by the AF method were used as input
for the neighbor-joining algorithm (fneighbor in the
EMBOSS package [87], version: EMBOSS:6.6.0.0 PHY-
LIPNEW:3.69.650) to generate the corresponding
method tree. To assess the degree of topological (dis)
agreement between the inferred and reference trees,
we calculated the normalized Robinson–Foulds (nRF)
distance [63] using the Tree.compare function in the
ETE3 [102] toolkit for phylogenetic trees with the op-
tion unrooted = True. The Robinson–Foulds (RF) dis-
tance is a measure for the dissimilarity between two
tree topologies with the same number of leaves and
the same labels (species) at the leaves, i.e., it mea-
sures the dissimilarity of branching patterns and ig-
nores branch lengths. More specifically, the RF
distance between two trees is defined as the number
of certain edit operations that are necessary to trans-
form the first topology into the second topology (or
vice versa). Equivalently, one can define the RF dis-
tance between two topologies by considering biparti-
tions of the leaves (species) of the trees, obtained by
removing edges from the trees. The RF distance is
then the number of bipartitions that can be obtained
only from one tree but not from the respective other
tree. The nRF measure normalizes the RF distance such
that the maximal possible nRF distance for the given num-
ber of leaves is set to 1. Thus, the nRF distance has values
between 0 and 1 with 0 for identical tree topologies and 1
for maximally dissimilar topologies, where no bipartition
in the reference is recovered. Given certain shortcomings
of nRF distance such as rapid saturation (i.e., relatively
minor differences between trees can result in the max-
imum distance value) [103] and imprecise values (i.e., the
number of unique values that the metric can take is two
fewer than the number of taxa) [104], we supplemented
the AFproject service with additional measure for topo-
logical disagreement, normalized Quartet Distance (nQD)
[105], which is the fraction of subsets of four leaves that
are not related by the same topology in both trees.

Performance summary criteria
Figure 2 shows the color-coded performance of the eval-
uated AF methods across 12 reference data sets.

Performance score
For our benchmarking data sets, we use different mea-
sures to assess the performance of each method for a
given data set, for example, nRF or AUC. To make our

benchmarking results from different data sets compar-
able, we converted these measures to a performance
score with values between 0 and 100. For the protein
sequence classification data sets, this score is defined
as AUC × 100; for data sets from gene trees, genome-
based phylogeny, and horizontal gene transfer cat-
egories, we define the performance score as (1 −
nRF) × 100. For the regulatory element data set, the
performance score is already a number between 0 and
100, namely, the weighted average performance across
seven data subsets.
Moreover, we define an overall performance score

(Additional file 1: Table S14) that assesses each
method across the data sets and that also takes values
between 0 and 100. For a given method, we calculate
revised scores for each data set, on which the method
was tested as (S −min_score)/(max_score −min_
score) × 100, where S is the performance score ob-
tained by the method and min_score and max_score
are the minimum and maximum scores obtained with
all methods for a given data set, respectively. This
way, the best-performing method in a given data set
receives a score of 100, and the worst performer re-
ceives a score of 0. The overall performance is an
average of the revised scores across the data sets on
which the given method was tested.

Additional files

Additional file 1: Parameter values and detailed benchmarking results of
alignment-free tools included in this study. (XLSX 82 kb)

Additional file 2: Figure S1. Comparison (tanglement) of test tree and
reference tree of sulfatase modifying factor (SUMF) gene family in
Eukaryotes. The test tree is inferred by 4 alignment-free measures in AFKS
program (mismatch, markov, rre_k_r, kl_conditional). Reference phylogenetic
tree was taken from SwissTree. Figure S2. Comparison (tanglement) of test
tree and reference tree of complete mitochondrial genomes from 25 labroid
fishes. The test tree is inferred by 9 alignment-free programs (AFKS, alfpy, CAFE,
FSWM, jD2Stat, kmacs, mash, RTD-Phylogeny, and spaced). Reference
phylogenetic tree was taken from [1]. Figure S3. Comparison (tanglement)
of test and reference cladograms of complete genomes from 29 E. coli/Shigella
species. Test tree was inferred by phylonium. Figure S4. Comparison
(tanglement) of test and reference cladograms of complete genomes
from 14 plant species. Test tree was inferred by co-phylog. Figure S5.
Comparison (tanglement) of test and reference cladograms of complete
genomes from 14 plant species. Test tree was inferred by mash. Figure S6.
Comparison (tanglement) of test and reference cladograms of complete
genomes from 14 plant species. Test tree was inferred by Multi-SpaM.
Figure S7. Comparison (tanglement) of test and reference cladograms of
complete genomes from 27 E.coli and Shigella species. Test tree was inferred
by andi and co-phylog. Reference phylogenetic tree was constructed in
[2–4] from 5282 Bayesian protein trees. E. coli reference groups and
Shigella (S) are indicated. Figure S8. Comparison (tanglement) of test
and reference cladograms of complete genomes from 27 E. coli and
Shigella species. Test tree was inferred by phylonium. Reference
phylogenetic tree was constructed in [2–4] from 5282 Bayesian
protein trees. E. coli reference groups and Shigella (S) are indicated.
Figure S9. Performance scores obtained by alfpy--canberra (dark gray)
and AFKS--canberra (light gray) run on common word lengths across data
sets. (PDF 1718 kb)
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